xref: /openbmc/qemu/linux-user/signal.c (revision ec150c7e)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include <sys/ucontext.h>
22 #include <sys/resource.h>
23 
24 #include "qemu.h"
25 #include "trace.h"
26 #include "signal-common.h"
27 
28 static struct target_sigaction sigact_table[TARGET_NSIG];
29 
30 static void host_signal_handler(int host_signum, siginfo_t *info,
31                                 void *puc);
32 
33 static uint8_t host_to_target_signal_table[_NSIG] = {
34     [SIGHUP] = TARGET_SIGHUP,
35     [SIGINT] = TARGET_SIGINT,
36     [SIGQUIT] = TARGET_SIGQUIT,
37     [SIGILL] = TARGET_SIGILL,
38     [SIGTRAP] = TARGET_SIGTRAP,
39     [SIGABRT] = TARGET_SIGABRT,
40 /*    [SIGIOT] = TARGET_SIGIOT,*/
41     [SIGBUS] = TARGET_SIGBUS,
42     [SIGFPE] = TARGET_SIGFPE,
43     [SIGKILL] = TARGET_SIGKILL,
44     [SIGUSR1] = TARGET_SIGUSR1,
45     [SIGSEGV] = TARGET_SIGSEGV,
46     [SIGUSR2] = TARGET_SIGUSR2,
47     [SIGPIPE] = TARGET_SIGPIPE,
48     [SIGALRM] = TARGET_SIGALRM,
49     [SIGTERM] = TARGET_SIGTERM,
50 #ifdef SIGSTKFLT
51     [SIGSTKFLT] = TARGET_SIGSTKFLT,
52 #endif
53     [SIGCHLD] = TARGET_SIGCHLD,
54     [SIGCONT] = TARGET_SIGCONT,
55     [SIGSTOP] = TARGET_SIGSTOP,
56     [SIGTSTP] = TARGET_SIGTSTP,
57     [SIGTTIN] = TARGET_SIGTTIN,
58     [SIGTTOU] = TARGET_SIGTTOU,
59     [SIGURG] = TARGET_SIGURG,
60     [SIGXCPU] = TARGET_SIGXCPU,
61     [SIGXFSZ] = TARGET_SIGXFSZ,
62     [SIGVTALRM] = TARGET_SIGVTALRM,
63     [SIGPROF] = TARGET_SIGPROF,
64     [SIGWINCH] = TARGET_SIGWINCH,
65     [SIGIO] = TARGET_SIGIO,
66     [SIGPWR] = TARGET_SIGPWR,
67     [SIGSYS] = TARGET_SIGSYS,
68     /* next signals stay the same */
69     /* Nasty hack: Reverse SIGRTMIN and SIGRTMAX to avoid overlap with
70        host libpthread signals.  This assumes no one actually uses SIGRTMAX :-/
71        To fix this properly we need to do manual signal delivery multiplexed
72        over a single host signal.  */
73     [__SIGRTMIN] = __SIGRTMAX,
74     [__SIGRTMAX] = __SIGRTMIN,
75 };
76 static uint8_t target_to_host_signal_table[_NSIG];
77 
78 int host_to_target_signal(int sig)
79 {
80     if (sig < 0 || sig >= _NSIG)
81         return sig;
82     return host_to_target_signal_table[sig];
83 }
84 
85 int target_to_host_signal(int sig)
86 {
87     if (sig < 0 || sig >= _NSIG)
88         return sig;
89     return target_to_host_signal_table[sig];
90 }
91 
92 static inline void target_sigaddset(target_sigset_t *set, int signum)
93 {
94     signum--;
95     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
96     set->sig[signum / TARGET_NSIG_BPW] |= mask;
97 }
98 
99 static inline int target_sigismember(const target_sigset_t *set, int signum)
100 {
101     signum--;
102     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
103     return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
104 }
105 
106 void host_to_target_sigset_internal(target_sigset_t *d,
107                                     const sigset_t *s)
108 {
109     int i;
110     target_sigemptyset(d);
111     for (i = 1; i <= TARGET_NSIG; i++) {
112         if (sigismember(s, i)) {
113             target_sigaddset(d, host_to_target_signal(i));
114         }
115     }
116 }
117 
118 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
119 {
120     target_sigset_t d1;
121     int i;
122 
123     host_to_target_sigset_internal(&d1, s);
124     for(i = 0;i < TARGET_NSIG_WORDS; i++)
125         d->sig[i] = tswapal(d1.sig[i]);
126 }
127 
128 void target_to_host_sigset_internal(sigset_t *d,
129                                     const target_sigset_t *s)
130 {
131     int i;
132     sigemptyset(d);
133     for (i = 1; i <= TARGET_NSIG; i++) {
134         if (target_sigismember(s, i)) {
135             sigaddset(d, target_to_host_signal(i));
136         }
137     }
138 }
139 
140 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
141 {
142     target_sigset_t s1;
143     int i;
144 
145     for(i = 0;i < TARGET_NSIG_WORDS; i++)
146         s1.sig[i] = tswapal(s->sig[i]);
147     target_to_host_sigset_internal(d, &s1);
148 }
149 
150 void host_to_target_old_sigset(abi_ulong *old_sigset,
151                                const sigset_t *sigset)
152 {
153     target_sigset_t d;
154     host_to_target_sigset(&d, sigset);
155     *old_sigset = d.sig[0];
156 }
157 
158 void target_to_host_old_sigset(sigset_t *sigset,
159                                const abi_ulong *old_sigset)
160 {
161     target_sigset_t d;
162     int i;
163 
164     d.sig[0] = *old_sigset;
165     for(i = 1;i < TARGET_NSIG_WORDS; i++)
166         d.sig[i] = 0;
167     target_to_host_sigset(sigset, &d);
168 }
169 
170 int block_signals(void)
171 {
172     TaskState *ts = (TaskState *)thread_cpu->opaque;
173     sigset_t set;
174 
175     /* It's OK to block everything including SIGSEGV, because we won't
176      * run any further guest code before unblocking signals in
177      * process_pending_signals().
178      */
179     sigfillset(&set);
180     sigprocmask(SIG_SETMASK, &set, 0);
181 
182     return atomic_xchg(&ts->signal_pending, 1);
183 }
184 
185 /* Wrapper for sigprocmask function
186  * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
187  * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if
188  * a signal was already pending and the syscall must be restarted, or
189  * 0 on success.
190  * If set is NULL, this is guaranteed not to fail.
191  */
192 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
193 {
194     TaskState *ts = (TaskState *)thread_cpu->opaque;
195 
196     if (oldset) {
197         *oldset = ts->signal_mask;
198     }
199 
200     if (set) {
201         int i;
202 
203         if (block_signals()) {
204             return -TARGET_ERESTARTSYS;
205         }
206 
207         switch (how) {
208         case SIG_BLOCK:
209             sigorset(&ts->signal_mask, &ts->signal_mask, set);
210             break;
211         case SIG_UNBLOCK:
212             for (i = 1; i <= NSIG; ++i) {
213                 if (sigismember(set, i)) {
214                     sigdelset(&ts->signal_mask, i);
215                 }
216             }
217             break;
218         case SIG_SETMASK:
219             ts->signal_mask = *set;
220             break;
221         default:
222             g_assert_not_reached();
223         }
224 
225         /* Silently ignore attempts to change blocking status of KILL or STOP */
226         sigdelset(&ts->signal_mask, SIGKILL);
227         sigdelset(&ts->signal_mask, SIGSTOP);
228     }
229     return 0;
230 }
231 
232 #if !defined(TARGET_NIOS2)
233 /* Just set the guest's signal mask to the specified value; the
234  * caller is assumed to have called block_signals() already.
235  */
236 void set_sigmask(const sigset_t *set)
237 {
238     TaskState *ts = (TaskState *)thread_cpu->opaque;
239 
240     ts->signal_mask = *set;
241 }
242 #endif
243 
244 /* sigaltstack management */
245 
246 int on_sig_stack(unsigned long sp)
247 {
248     TaskState *ts = (TaskState *)thread_cpu->opaque;
249 
250     return (sp - ts->sigaltstack_used.ss_sp
251             < ts->sigaltstack_used.ss_size);
252 }
253 
254 int sas_ss_flags(unsigned long sp)
255 {
256     TaskState *ts = (TaskState *)thread_cpu->opaque;
257 
258     return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
259             : on_sig_stack(sp) ? SS_ONSTACK : 0);
260 }
261 
262 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
263 {
264     /*
265      * This is the X/Open sanctioned signal stack switching.
266      */
267     TaskState *ts = (TaskState *)thread_cpu->opaque;
268 
269     if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
270         return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
271     }
272     return sp;
273 }
274 
275 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
276 {
277     TaskState *ts = (TaskState *)thread_cpu->opaque;
278 
279     __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
280     __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
281     __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
282 }
283 
284 /* siginfo conversion */
285 
286 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
287                                                  const siginfo_t *info)
288 {
289     int sig = host_to_target_signal(info->si_signo);
290     int si_code = info->si_code;
291     int si_type;
292     tinfo->si_signo = sig;
293     tinfo->si_errno = 0;
294     tinfo->si_code = info->si_code;
295 
296     /* This memset serves two purposes:
297      * (1) ensure we don't leak random junk to the guest later
298      * (2) placate false positives from gcc about fields
299      *     being used uninitialized if it chooses to inline both this
300      *     function and tswap_siginfo() into host_to_target_siginfo().
301      */
302     memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
303 
304     /* This is awkward, because we have to use a combination of
305      * the si_code and si_signo to figure out which of the union's
306      * members are valid. (Within the host kernel it is always possible
307      * to tell, but the kernel carefully avoids giving userspace the
308      * high 16 bits of si_code, so we don't have the information to
309      * do this the easy way...) We therefore make our best guess,
310      * bearing in mind that a guest can spoof most of the si_codes
311      * via rt_sigqueueinfo() if it likes.
312      *
313      * Once we have made our guess, we record it in the top 16 bits of
314      * the si_code, so that tswap_siginfo() later can use it.
315      * tswap_siginfo() will strip these top bits out before writing
316      * si_code to the guest (sign-extending the lower bits).
317      */
318 
319     switch (si_code) {
320     case SI_USER:
321     case SI_TKILL:
322     case SI_KERNEL:
323         /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
324          * These are the only unspoofable si_code values.
325          */
326         tinfo->_sifields._kill._pid = info->si_pid;
327         tinfo->_sifields._kill._uid = info->si_uid;
328         si_type = QEMU_SI_KILL;
329         break;
330     default:
331         /* Everything else is spoofable. Make best guess based on signal */
332         switch (sig) {
333         case TARGET_SIGCHLD:
334             tinfo->_sifields._sigchld._pid = info->si_pid;
335             tinfo->_sifields._sigchld._uid = info->si_uid;
336             tinfo->_sifields._sigchld._status
337                 = host_to_target_waitstatus(info->si_status);
338             tinfo->_sifields._sigchld._utime = info->si_utime;
339             tinfo->_sifields._sigchld._stime = info->si_stime;
340             si_type = QEMU_SI_CHLD;
341             break;
342         case TARGET_SIGIO:
343             tinfo->_sifields._sigpoll._band = info->si_band;
344             tinfo->_sifields._sigpoll._fd = info->si_fd;
345             si_type = QEMU_SI_POLL;
346             break;
347         default:
348             /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
349             tinfo->_sifields._rt._pid = info->si_pid;
350             tinfo->_sifields._rt._uid = info->si_uid;
351             /* XXX: potential problem if 64 bit */
352             tinfo->_sifields._rt._sigval.sival_ptr
353                 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
354             si_type = QEMU_SI_RT;
355             break;
356         }
357         break;
358     }
359 
360     tinfo->si_code = deposit32(si_code, 16, 16, si_type);
361 }
362 
363 void tswap_siginfo(target_siginfo_t *tinfo,
364                    const target_siginfo_t *info)
365 {
366     int si_type = extract32(info->si_code, 16, 16);
367     int si_code = sextract32(info->si_code, 0, 16);
368 
369     __put_user(info->si_signo, &tinfo->si_signo);
370     __put_user(info->si_errno, &tinfo->si_errno);
371     __put_user(si_code, &tinfo->si_code);
372 
373     /* We can use our internal marker of which fields in the structure
374      * are valid, rather than duplicating the guesswork of
375      * host_to_target_siginfo_noswap() here.
376      */
377     switch (si_type) {
378     case QEMU_SI_KILL:
379         __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
380         __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
381         break;
382     case QEMU_SI_TIMER:
383         __put_user(info->_sifields._timer._timer1,
384                    &tinfo->_sifields._timer._timer1);
385         __put_user(info->_sifields._timer._timer2,
386                    &tinfo->_sifields._timer._timer2);
387         break;
388     case QEMU_SI_POLL:
389         __put_user(info->_sifields._sigpoll._band,
390                    &tinfo->_sifields._sigpoll._band);
391         __put_user(info->_sifields._sigpoll._fd,
392                    &tinfo->_sifields._sigpoll._fd);
393         break;
394     case QEMU_SI_FAULT:
395         __put_user(info->_sifields._sigfault._addr,
396                    &tinfo->_sifields._sigfault._addr);
397         break;
398     case QEMU_SI_CHLD:
399         __put_user(info->_sifields._sigchld._pid,
400                    &tinfo->_sifields._sigchld._pid);
401         __put_user(info->_sifields._sigchld._uid,
402                    &tinfo->_sifields._sigchld._uid);
403         __put_user(info->_sifields._sigchld._status,
404                    &tinfo->_sifields._sigchld._status);
405         __put_user(info->_sifields._sigchld._utime,
406                    &tinfo->_sifields._sigchld._utime);
407         __put_user(info->_sifields._sigchld._stime,
408                    &tinfo->_sifields._sigchld._stime);
409         break;
410     case QEMU_SI_RT:
411         __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
412         __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
413         __put_user(info->_sifields._rt._sigval.sival_ptr,
414                    &tinfo->_sifields._rt._sigval.sival_ptr);
415         break;
416     default:
417         g_assert_not_reached();
418     }
419 }
420 
421 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
422 {
423     target_siginfo_t tgt_tmp;
424     host_to_target_siginfo_noswap(&tgt_tmp, info);
425     tswap_siginfo(tinfo, &tgt_tmp);
426 }
427 
428 /* XXX: we support only POSIX RT signals are used. */
429 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
430 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
431 {
432     /* This conversion is used only for the rt_sigqueueinfo syscall,
433      * and so we know that the _rt fields are the valid ones.
434      */
435     abi_ulong sival_ptr;
436 
437     __get_user(info->si_signo, &tinfo->si_signo);
438     __get_user(info->si_errno, &tinfo->si_errno);
439     __get_user(info->si_code, &tinfo->si_code);
440     __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
441     __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
442     __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
443     info->si_value.sival_ptr = (void *)(long)sival_ptr;
444 }
445 
446 static int fatal_signal (int sig)
447 {
448     switch (sig) {
449     case TARGET_SIGCHLD:
450     case TARGET_SIGURG:
451     case TARGET_SIGWINCH:
452         /* Ignored by default.  */
453         return 0;
454     case TARGET_SIGCONT:
455     case TARGET_SIGSTOP:
456     case TARGET_SIGTSTP:
457     case TARGET_SIGTTIN:
458     case TARGET_SIGTTOU:
459         /* Job control signals.  */
460         return 0;
461     default:
462         return 1;
463     }
464 }
465 
466 /* returns 1 if given signal should dump core if not handled */
467 static int core_dump_signal(int sig)
468 {
469     switch (sig) {
470     case TARGET_SIGABRT:
471     case TARGET_SIGFPE:
472     case TARGET_SIGILL:
473     case TARGET_SIGQUIT:
474     case TARGET_SIGSEGV:
475     case TARGET_SIGTRAP:
476     case TARGET_SIGBUS:
477         return (1);
478     default:
479         return (0);
480     }
481 }
482 
483 void signal_init(void)
484 {
485     TaskState *ts = (TaskState *)thread_cpu->opaque;
486     struct sigaction act;
487     struct sigaction oact;
488     int i, j;
489     int host_sig;
490 
491     /* generate signal conversion tables */
492     for(i = 1; i < _NSIG; i++) {
493         if (host_to_target_signal_table[i] == 0)
494             host_to_target_signal_table[i] = i;
495     }
496     for(i = 1; i < _NSIG; i++) {
497         j = host_to_target_signal_table[i];
498         target_to_host_signal_table[j] = i;
499     }
500 
501     /* Set the signal mask from the host mask. */
502     sigprocmask(0, 0, &ts->signal_mask);
503 
504     /* set all host signal handlers. ALL signals are blocked during
505        the handlers to serialize them. */
506     memset(sigact_table, 0, sizeof(sigact_table));
507 
508     sigfillset(&act.sa_mask);
509     act.sa_flags = SA_SIGINFO;
510     act.sa_sigaction = host_signal_handler;
511     for(i = 1; i <= TARGET_NSIG; i++) {
512 #ifdef TARGET_GPROF
513         if (i == SIGPROF) {
514             continue;
515         }
516 #endif
517         host_sig = target_to_host_signal(i);
518         sigaction(host_sig, NULL, &oact);
519         if (oact.sa_sigaction == (void *)SIG_IGN) {
520             sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
521         } else if (oact.sa_sigaction == (void *)SIG_DFL) {
522             sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
523         }
524         /* If there's already a handler installed then something has
525            gone horribly wrong, so don't even try to handle that case.  */
526         /* Install some handlers for our own use.  We need at least
527            SIGSEGV and SIGBUS, to detect exceptions.  We can not just
528            trap all signals because it affects syscall interrupt
529            behavior.  But do trap all default-fatal signals.  */
530         if (fatal_signal (i))
531             sigaction(host_sig, &act, NULL);
532     }
533 }
534 
535 /* Force a synchronously taken signal. The kernel force_sig() function
536  * also forces the signal to "not blocked, not ignored", but for QEMU
537  * that work is done in process_pending_signals().
538  */
539 void force_sig(int sig)
540 {
541     CPUState *cpu = thread_cpu;
542     CPUArchState *env = cpu->env_ptr;
543     target_siginfo_t info;
544 
545     info.si_signo = sig;
546     info.si_errno = 0;
547     info.si_code = TARGET_SI_KERNEL;
548     info._sifields._kill._pid = 0;
549     info._sifields._kill._uid = 0;
550     queue_signal(env, info.si_signo, QEMU_SI_KILL, &info);
551 }
552 
553 /* Force a SIGSEGV if we couldn't write to memory trying to set
554  * up the signal frame. oldsig is the signal we were trying to handle
555  * at the point of failure.
556  */
557 #if !defined(TARGET_RISCV)
558 void force_sigsegv(int oldsig)
559 {
560     if (oldsig == SIGSEGV) {
561         /* Make sure we don't try to deliver the signal again; this will
562          * end up with handle_pending_signal() calling dump_core_and_abort().
563          */
564         sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
565     }
566     force_sig(TARGET_SIGSEGV);
567 }
568 
569 #endif
570 
571 /* abort execution with signal */
572 static void QEMU_NORETURN dump_core_and_abort(int target_sig)
573 {
574     CPUState *cpu = thread_cpu;
575     CPUArchState *env = cpu->env_ptr;
576     TaskState *ts = (TaskState *)cpu->opaque;
577     int host_sig, core_dumped = 0;
578     struct sigaction act;
579 
580     host_sig = target_to_host_signal(target_sig);
581     trace_user_force_sig(env, target_sig, host_sig);
582     gdb_signalled(env, target_sig);
583 
584     /* dump core if supported by target binary format */
585     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
586         stop_all_tasks();
587         core_dumped =
588             ((*ts->bprm->core_dump)(target_sig, env) == 0);
589     }
590     if (core_dumped) {
591         /* we already dumped the core of target process, we don't want
592          * a coredump of qemu itself */
593         struct rlimit nodump;
594         getrlimit(RLIMIT_CORE, &nodump);
595         nodump.rlim_cur=0;
596         setrlimit(RLIMIT_CORE, &nodump);
597         (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
598             target_sig, strsignal(host_sig), "core dumped" );
599     }
600 
601     /* The proper exit code for dying from an uncaught signal is
602      * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
603      * a negative value.  To get the proper exit code we need to
604      * actually die from an uncaught signal.  Here the default signal
605      * handler is installed, we send ourself a signal and we wait for
606      * it to arrive. */
607     sigfillset(&act.sa_mask);
608     act.sa_handler = SIG_DFL;
609     act.sa_flags = 0;
610     sigaction(host_sig, &act, NULL);
611 
612     /* For some reason raise(host_sig) doesn't send the signal when
613      * statically linked on x86-64. */
614     kill(getpid(), host_sig);
615 
616     /* Make sure the signal isn't masked (just reuse the mask inside
617     of act) */
618     sigdelset(&act.sa_mask, host_sig);
619     sigsuspend(&act.sa_mask);
620 
621     /* unreachable */
622     abort();
623 }
624 
625 /* queue a signal so that it will be send to the virtual CPU as soon
626    as possible */
627 int queue_signal(CPUArchState *env, int sig, int si_type,
628                  target_siginfo_t *info)
629 {
630     CPUState *cpu = env_cpu(env);
631     TaskState *ts = cpu->opaque;
632 
633     trace_user_queue_signal(env, sig);
634 
635     info->si_code = deposit32(info->si_code, 16, 16, si_type);
636 
637     ts->sync_signal.info = *info;
638     ts->sync_signal.pending = sig;
639     /* signal that a new signal is pending */
640     atomic_set(&ts->signal_pending, 1);
641     return 1; /* indicates that the signal was queued */
642 }
643 
644 #ifndef HAVE_SAFE_SYSCALL
645 static inline void rewind_if_in_safe_syscall(void *puc)
646 {
647     /* Default version: never rewind */
648 }
649 #endif
650 
651 static void host_signal_handler(int host_signum, siginfo_t *info,
652                                 void *puc)
653 {
654     CPUArchState *env = thread_cpu->env_ptr;
655     CPUState *cpu = env_cpu(env);
656     TaskState *ts = cpu->opaque;
657 
658     int sig;
659     target_siginfo_t tinfo;
660     ucontext_t *uc = puc;
661     struct emulated_sigtable *k;
662 
663     /* the CPU emulator uses some host signals to detect exceptions,
664        we forward to it some signals */
665     if ((host_signum == SIGSEGV || host_signum == SIGBUS)
666         && info->si_code > 0) {
667         if (cpu_signal_handler(host_signum, info, puc))
668             return;
669     }
670 
671     /* get target signal number */
672     sig = host_to_target_signal(host_signum);
673     if (sig < 1 || sig > TARGET_NSIG)
674         return;
675     trace_user_host_signal(env, host_signum, sig);
676 
677     rewind_if_in_safe_syscall(puc);
678 
679     host_to_target_siginfo_noswap(&tinfo, info);
680     k = &ts->sigtab[sig - 1];
681     k->info = tinfo;
682     k->pending = sig;
683     ts->signal_pending = 1;
684 
685     /* Block host signals until target signal handler entered. We
686      * can't block SIGSEGV or SIGBUS while we're executing guest
687      * code in case the guest code provokes one in the window between
688      * now and it getting out to the main loop. Signals will be
689      * unblocked again in process_pending_signals().
690      *
691      * WARNING: we cannot use sigfillset() here because the uc_sigmask
692      * field is a kernel sigset_t, which is much smaller than the
693      * libc sigset_t which sigfillset() operates on. Using sigfillset()
694      * would write 0xff bytes off the end of the structure and trash
695      * data on the struct.
696      * We can't use sizeof(uc->uc_sigmask) either, because the libc
697      * headers define the struct field with the wrong (too large) type.
698      */
699     memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE);
700     sigdelset(&uc->uc_sigmask, SIGSEGV);
701     sigdelset(&uc->uc_sigmask, SIGBUS);
702 
703     /* interrupt the virtual CPU as soon as possible */
704     cpu_exit(thread_cpu);
705 }
706 
707 /* do_sigaltstack() returns target values and errnos. */
708 /* compare linux/kernel/signal.c:do_sigaltstack() */
709 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
710 {
711     int ret;
712     struct target_sigaltstack oss;
713     TaskState *ts = (TaskState *)thread_cpu->opaque;
714 
715     /* XXX: test errors */
716     if(uoss_addr)
717     {
718         __put_user(ts->sigaltstack_used.ss_sp, &oss.ss_sp);
719         __put_user(ts->sigaltstack_used.ss_size, &oss.ss_size);
720         __put_user(sas_ss_flags(sp), &oss.ss_flags);
721     }
722 
723     if(uss_addr)
724     {
725         struct target_sigaltstack *uss;
726         struct target_sigaltstack ss;
727         size_t minstacksize = TARGET_MINSIGSTKSZ;
728 
729 #if defined(TARGET_PPC64)
730         /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
731         struct image_info *image = ((TaskState *)thread_cpu->opaque)->info;
732         if (get_ppc64_abi(image) > 1) {
733             minstacksize = 4096;
734         }
735 #endif
736 
737         ret = -TARGET_EFAULT;
738         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
739             goto out;
740         }
741         __get_user(ss.ss_sp, &uss->ss_sp);
742         __get_user(ss.ss_size, &uss->ss_size);
743         __get_user(ss.ss_flags, &uss->ss_flags);
744         unlock_user_struct(uss, uss_addr, 0);
745 
746         ret = -TARGET_EPERM;
747         if (on_sig_stack(sp))
748             goto out;
749 
750         ret = -TARGET_EINVAL;
751         if (ss.ss_flags != TARGET_SS_DISABLE
752             && ss.ss_flags != TARGET_SS_ONSTACK
753             && ss.ss_flags != 0)
754             goto out;
755 
756         if (ss.ss_flags == TARGET_SS_DISABLE) {
757             ss.ss_size = 0;
758             ss.ss_sp = 0;
759         } else {
760             ret = -TARGET_ENOMEM;
761             if (ss.ss_size < minstacksize) {
762                 goto out;
763             }
764         }
765 
766         ts->sigaltstack_used.ss_sp = ss.ss_sp;
767         ts->sigaltstack_used.ss_size = ss.ss_size;
768     }
769 
770     if (uoss_addr) {
771         ret = -TARGET_EFAULT;
772         if (copy_to_user(uoss_addr, &oss, sizeof(oss)))
773             goto out;
774     }
775 
776     ret = 0;
777 out:
778     return ret;
779 }
780 
781 /* do_sigaction() return target values and host errnos */
782 int do_sigaction(int sig, const struct target_sigaction *act,
783                  struct target_sigaction *oact)
784 {
785     struct target_sigaction *k;
786     struct sigaction act1;
787     int host_sig;
788     int ret = 0;
789 
790     if (sig < 1 || sig > TARGET_NSIG || sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) {
791         return -TARGET_EINVAL;
792     }
793 
794     if (block_signals()) {
795         return -TARGET_ERESTARTSYS;
796     }
797 
798     k = &sigact_table[sig - 1];
799     if (oact) {
800         __put_user(k->_sa_handler, &oact->_sa_handler);
801         __put_user(k->sa_flags, &oact->sa_flags);
802 #ifdef TARGET_ARCH_HAS_SA_RESTORER
803         __put_user(k->sa_restorer, &oact->sa_restorer);
804 #endif
805         /* Not swapped.  */
806         oact->sa_mask = k->sa_mask;
807     }
808     if (act) {
809         /* FIXME: This is not threadsafe.  */
810         __get_user(k->_sa_handler, &act->_sa_handler);
811         __get_user(k->sa_flags, &act->sa_flags);
812 #ifdef TARGET_ARCH_HAS_SA_RESTORER
813         __get_user(k->sa_restorer, &act->sa_restorer);
814 #endif
815         /* To be swapped in target_to_host_sigset.  */
816         k->sa_mask = act->sa_mask;
817 
818         /* we update the host linux signal state */
819         host_sig = target_to_host_signal(sig);
820         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
821             sigfillset(&act1.sa_mask);
822             act1.sa_flags = SA_SIGINFO;
823             if (k->sa_flags & TARGET_SA_RESTART)
824                 act1.sa_flags |= SA_RESTART;
825             /* NOTE: it is important to update the host kernel signal
826                ignore state to avoid getting unexpected interrupted
827                syscalls */
828             if (k->_sa_handler == TARGET_SIG_IGN) {
829                 act1.sa_sigaction = (void *)SIG_IGN;
830             } else if (k->_sa_handler == TARGET_SIG_DFL) {
831                 if (fatal_signal (sig))
832                     act1.sa_sigaction = host_signal_handler;
833                 else
834                     act1.sa_sigaction = (void *)SIG_DFL;
835             } else {
836                 act1.sa_sigaction = host_signal_handler;
837             }
838             ret = sigaction(host_sig, &act1, NULL);
839         }
840     }
841     return ret;
842 }
843 
844 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
845                                   struct emulated_sigtable *k)
846 {
847     CPUState *cpu = env_cpu(cpu_env);
848     abi_ulong handler;
849     sigset_t set;
850     target_sigset_t target_old_set;
851     struct target_sigaction *sa;
852     TaskState *ts = cpu->opaque;
853 
854     trace_user_handle_signal(cpu_env, sig);
855     /* dequeue signal */
856     k->pending = 0;
857 
858     sig = gdb_handlesig(cpu, sig);
859     if (!sig) {
860         sa = NULL;
861         handler = TARGET_SIG_IGN;
862     } else {
863         sa = &sigact_table[sig - 1];
864         handler = sa->_sa_handler;
865     }
866 
867     if (do_strace) {
868         print_taken_signal(sig, &k->info);
869     }
870 
871     if (handler == TARGET_SIG_DFL) {
872         /* default handler : ignore some signal. The other are job control or fatal */
873         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
874             kill(getpid(),SIGSTOP);
875         } else if (sig != TARGET_SIGCHLD &&
876                    sig != TARGET_SIGURG &&
877                    sig != TARGET_SIGWINCH &&
878                    sig != TARGET_SIGCONT) {
879             dump_core_and_abort(sig);
880         }
881     } else if (handler == TARGET_SIG_IGN) {
882         /* ignore sig */
883     } else if (handler == TARGET_SIG_ERR) {
884         dump_core_and_abort(sig);
885     } else {
886         /* compute the blocked signals during the handler execution */
887         sigset_t *blocked_set;
888 
889         target_to_host_sigset(&set, &sa->sa_mask);
890         /* SA_NODEFER indicates that the current signal should not be
891            blocked during the handler */
892         if (!(sa->sa_flags & TARGET_SA_NODEFER))
893             sigaddset(&set, target_to_host_signal(sig));
894 
895         /* save the previous blocked signal state to restore it at the
896            end of the signal execution (see do_sigreturn) */
897         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
898 
899         /* block signals in the handler */
900         blocked_set = ts->in_sigsuspend ?
901             &ts->sigsuspend_mask : &ts->signal_mask;
902         sigorset(&ts->signal_mask, blocked_set, &set);
903         ts->in_sigsuspend = 0;
904 
905         /* if the CPU is in VM86 mode, we restore the 32 bit values */
906 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
907         {
908             CPUX86State *env = cpu_env;
909             if (env->eflags & VM_MASK)
910                 save_v86_state(env);
911         }
912 #endif
913         /* prepare the stack frame of the virtual CPU */
914 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
915         if (sa->sa_flags & TARGET_SA_SIGINFO) {
916             setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
917         } else {
918             setup_frame(sig, sa, &target_old_set, cpu_env);
919         }
920 #else
921         /* These targets do not have traditional signals.  */
922         setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
923 #endif
924         if (sa->sa_flags & TARGET_SA_RESETHAND) {
925             sa->_sa_handler = TARGET_SIG_DFL;
926         }
927     }
928 }
929 
930 void process_pending_signals(CPUArchState *cpu_env)
931 {
932     CPUState *cpu = env_cpu(cpu_env);
933     int sig;
934     TaskState *ts = cpu->opaque;
935     sigset_t set;
936     sigset_t *blocked_set;
937 
938     while (atomic_read(&ts->signal_pending)) {
939         /* FIXME: This is not threadsafe.  */
940         sigfillset(&set);
941         sigprocmask(SIG_SETMASK, &set, 0);
942 
943     restart_scan:
944         sig = ts->sync_signal.pending;
945         if (sig) {
946             /* Synchronous signals are forced,
947              * see force_sig_info() and callers in Linux
948              * Note that not all of our queue_signal() calls in QEMU correspond
949              * to force_sig_info() calls in Linux (some are send_sig_info()).
950              * However it seems like a kernel bug to me to allow the process
951              * to block a synchronous signal since it could then just end up
952              * looping round and round indefinitely.
953              */
954             if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
955                 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
956                 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
957                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
958             }
959 
960             handle_pending_signal(cpu_env, sig, &ts->sync_signal);
961         }
962 
963         for (sig = 1; sig <= TARGET_NSIG; sig++) {
964             blocked_set = ts->in_sigsuspend ?
965                 &ts->sigsuspend_mask : &ts->signal_mask;
966 
967             if (ts->sigtab[sig - 1].pending &&
968                 (!sigismember(blocked_set,
969                               target_to_host_signal_table[sig]))) {
970                 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
971                 /* Restart scan from the beginning, as handle_pending_signal
972                  * might have resulted in a new synchronous signal (eg SIGSEGV).
973                  */
974                 goto restart_scan;
975             }
976         }
977 
978         /* if no signal is pending, unblock signals and recheck (the act
979          * of unblocking might cause us to take another host signal which
980          * will set signal_pending again).
981          */
982         atomic_set(&ts->signal_pending, 0);
983         ts->in_sigsuspend = 0;
984         set = ts->signal_mask;
985         sigdelset(&set, SIGSEGV);
986         sigdelset(&set, SIGBUS);
987         sigprocmask(SIG_SETMASK, &set, 0);
988     }
989     ts->in_sigsuspend = 0;
990 }
991