1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include "exec/gdbstub.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 24 #include <sys/ucontext.h> 25 #include <sys/resource.h> 26 27 #include "qemu.h" 28 #include "user-internals.h" 29 #include "strace.h" 30 #include "loader.h" 31 #include "trace.h" 32 #include "signal-common.h" 33 #include "host-signal.h" 34 #include "user/safe-syscall.h" 35 36 static struct target_sigaction sigact_table[TARGET_NSIG]; 37 38 static void host_signal_handler(int host_signum, siginfo_t *info, 39 void *puc); 40 41 /* Fallback addresses into sigtramp page. */ 42 abi_ulong default_sigreturn; 43 abi_ulong default_rt_sigreturn; 44 45 /* 46 * System includes define _NSIG as SIGRTMAX + 1, 47 * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX 48 * and the first signal is SIGHUP defined as 1 49 * Signal number 0 is reserved for use as kill(pid, 0), to test whether 50 * a process exists without sending it a signal. 51 */ 52 #ifdef __SIGRTMAX 53 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); 54 #endif 55 static uint8_t host_to_target_signal_table[_NSIG] = { 56 [SIGHUP] = TARGET_SIGHUP, 57 [SIGINT] = TARGET_SIGINT, 58 [SIGQUIT] = TARGET_SIGQUIT, 59 [SIGILL] = TARGET_SIGILL, 60 [SIGTRAP] = TARGET_SIGTRAP, 61 [SIGABRT] = TARGET_SIGABRT, 62 /* [SIGIOT] = TARGET_SIGIOT,*/ 63 [SIGBUS] = TARGET_SIGBUS, 64 [SIGFPE] = TARGET_SIGFPE, 65 [SIGKILL] = TARGET_SIGKILL, 66 [SIGUSR1] = TARGET_SIGUSR1, 67 [SIGSEGV] = TARGET_SIGSEGV, 68 [SIGUSR2] = TARGET_SIGUSR2, 69 [SIGPIPE] = TARGET_SIGPIPE, 70 [SIGALRM] = TARGET_SIGALRM, 71 [SIGTERM] = TARGET_SIGTERM, 72 #ifdef SIGSTKFLT 73 [SIGSTKFLT] = TARGET_SIGSTKFLT, 74 #endif 75 [SIGCHLD] = TARGET_SIGCHLD, 76 [SIGCONT] = TARGET_SIGCONT, 77 [SIGSTOP] = TARGET_SIGSTOP, 78 [SIGTSTP] = TARGET_SIGTSTP, 79 [SIGTTIN] = TARGET_SIGTTIN, 80 [SIGTTOU] = TARGET_SIGTTOU, 81 [SIGURG] = TARGET_SIGURG, 82 [SIGXCPU] = TARGET_SIGXCPU, 83 [SIGXFSZ] = TARGET_SIGXFSZ, 84 [SIGVTALRM] = TARGET_SIGVTALRM, 85 [SIGPROF] = TARGET_SIGPROF, 86 [SIGWINCH] = TARGET_SIGWINCH, 87 [SIGIO] = TARGET_SIGIO, 88 [SIGPWR] = TARGET_SIGPWR, 89 [SIGSYS] = TARGET_SIGSYS, 90 /* next signals stay the same */ 91 }; 92 93 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; 94 95 /* valid sig is between 1 and _NSIG - 1 */ 96 int host_to_target_signal(int sig) 97 { 98 if (sig < 1 || sig >= _NSIG) { 99 return sig; 100 } 101 return host_to_target_signal_table[sig]; 102 } 103 104 /* valid sig is between 1 and TARGET_NSIG */ 105 int target_to_host_signal(int sig) 106 { 107 if (sig < 1 || sig > TARGET_NSIG) { 108 return sig; 109 } 110 return target_to_host_signal_table[sig]; 111 } 112 113 static inline void target_sigaddset(target_sigset_t *set, int signum) 114 { 115 signum--; 116 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 117 set->sig[signum / TARGET_NSIG_BPW] |= mask; 118 } 119 120 static inline int target_sigismember(const target_sigset_t *set, int signum) 121 { 122 signum--; 123 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 124 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); 125 } 126 127 void host_to_target_sigset_internal(target_sigset_t *d, 128 const sigset_t *s) 129 { 130 int host_sig, target_sig; 131 target_sigemptyset(d); 132 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 133 target_sig = host_to_target_signal(host_sig); 134 if (target_sig < 1 || target_sig > TARGET_NSIG) { 135 continue; 136 } 137 if (sigismember(s, host_sig)) { 138 target_sigaddset(d, target_sig); 139 } 140 } 141 } 142 143 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 144 { 145 target_sigset_t d1; 146 int i; 147 148 host_to_target_sigset_internal(&d1, s); 149 for(i = 0;i < TARGET_NSIG_WORDS; i++) 150 d->sig[i] = tswapal(d1.sig[i]); 151 } 152 153 void target_to_host_sigset_internal(sigset_t *d, 154 const target_sigset_t *s) 155 { 156 int host_sig, target_sig; 157 sigemptyset(d); 158 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 159 host_sig = target_to_host_signal(target_sig); 160 if (host_sig < 1 || host_sig >= _NSIG) { 161 continue; 162 } 163 if (target_sigismember(s, target_sig)) { 164 sigaddset(d, host_sig); 165 } 166 } 167 } 168 169 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 170 { 171 target_sigset_t s1; 172 int i; 173 174 for(i = 0;i < TARGET_NSIG_WORDS; i++) 175 s1.sig[i] = tswapal(s->sig[i]); 176 target_to_host_sigset_internal(d, &s1); 177 } 178 179 void host_to_target_old_sigset(abi_ulong *old_sigset, 180 const sigset_t *sigset) 181 { 182 target_sigset_t d; 183 host_to_target_sigset(&d, sigset); 184 *old_sigset = d.sig[0]; 185 } 186 187 void target_to_host_old_sigset(sigset_t *sigset, 188 const abi_ulong *old_sigset) 189 { 190 target_sigset_t d; 191 int i; 192 193 d.sig[0] = *old_sigset; 194 for(i = 1;i < TARGET_NSIG_WORDS; i++) 195 d.sig[i] = 0; 196 target_to_host_sigset(sigset, &d); 197 } 198 199 int block_signals(void) 200 { 201 TaskState *ts = (TaskState *)thread_cpu->opaque; 202 sigset_t set; 203 204 /* It's OK to block everything including SIGSEGV, because we won't 205 * run any further guest code before unblocking signals in 206 * process_pending_signals(). 207 */ 208 sigfillset(&set); 209 sigprocmask(SIG_SETMASK, &set, 0); 210 211 return qatomic_xchg(&ts->signal_pending, 1); 212 } 213 214 /* Wrapper for sigprocmask function 215 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset 216 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if 217 * a signal was already pending and the syscall must be restarted, or 218 * 0 on success. 219 * If set is NULL, this is guaranteed not to fail. 220 */ 221 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) 222 { 223 TaskState *ts = (TaskState *)thread_cpu->opaque; 224 225 if (oldset) { 226 *oldset = ts->signal_mask; 227 } 228 229 if (set) { 230 int i; 231 232 if (block_signals()) { 233 return -QEMU_ERESTARTSYS; 234 } 235 236 switch (how) { 237 case SIG_BLOCK: 238 sigorset(&ts->signal_mask, &ts->signal_mask, set); 239 break; 240 case SIG_UNBLOCK: 241 for (i = 1; i <= NSIG; ++i) { 242 if (sigismember(set, i)) { 243 sigdelset(&ts->signal_mask, i); 244 } 245 } 246 break; 247 case SIG_SETMASK: 248 ts->signal_mask = *set; 249 break; 250 default: 251 g_assert_not_reached(); 252 } 253 254 /* Silently ignore attempts to change blocking status of KILL or STOP */ 255 sigdelset(&ts->signal_mask, SIGKILL); 256 sigdelset(&ts->signal_mask, SIGSTOP); 257 } 258 return 0; 259 } 260 261 /* Just set the guest's signal mask to the specified value; the 262 * caller is assumed to have called block_signals() already. 263 */ 264 void set_sigmask(const sigset_t *set) 265 { 266 TaskState *ts = (TaskState *)thread_cpu->opaque; 267 268 ts->signal_mask = *set; 269 } 270 271 /* sigaltstack management */ 272 273 int on_sig_stack(unsigned long sp) 274 { 275 TaskState *ts = (TaskState *)thread_cpu->opaque; 276 277 return (sp - ts->sigaltstack_used.ss_sp 278 < ts->sigaltstack_used.ss_size); 279 } 280 281 int sas_ss_flags(unsigned long sp) 282 { 283 TaskState *ts = (TaskState *)thread_cpu->opaque; 284 285 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE 286 : on_sig_stack(sp) ? SS_ONSTACK : 0); 287 } 288 289 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) 290 { 291 /* 292 * This is the X/Open sanctioned signal stack switching. 293 */ 294 TaskState *ts = (TaskState *)thread_cpu->opaque; 295 296 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 297 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 298 } 299 return sp; 300 } 301 302 void target_save_altstack(target_stack_t *uss, CPUArchState *env) 303 { 304 TaskState *ts = (TaskState *)thread_cpu->opaque; 305 306 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); 307 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); 308 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); 309 } 310 311 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) 312 { 313 TaskState *ts = (TaskState *)thread_cpu->opaque; 314 size_t minstacksize = TARGET_MINSIGSTKSZ; 315 target_stack_t ss; 316 317 #if defined(TARGET_PPC64) 318 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ 319 struct image_info *image = ts->info; 320 if (get_ppc64_abi(image) > 1) { 321 minstacksize = 4096; 322 } 323 #endif 324 325 __get_user(ss.ss_sp, &uss->ss_sp); 326 __get_user(ss.ss_size, &uss->ss_size); 327 __get_user(ss.ss_flags, &uss->ss_flags); 328 329 if (on_sig_stack(get_sp_from_cpustate(env))) { 330 return -TARGET_EPERM; 331 } 332 333 switch (ss.ss_flags) { 334 default: 335 return -TARGET_EINVAL; 336 337 case TARGET_SS_DISABLE: 338 ss.ss_size = 0; 339 ss.ss_sp = 0; 340 break; 341 342 case TARGET_SS_ONSTACK: 343 case 0: 344 if (ss.ss_size < minstacksize) { 345 return -TARGET_ENOMEM; 346 } 347 break; 348 } 349 350 ts->sigaltstack_used.ss_sp = ss.ss_sp; 351 ts->sigaltstack_used.ss_size = ss.ss_size; 352 return 0; 353 } 354 355 /* siginfo conversion */ 356 357 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 358 const siginfo_t *info) 359 { 360 int sig = host_to_target_signal(info->si_signo); 361 int si_code = info->si_code; 362 int si_type; 363 tinfo->si_signo = sig; 364 tinfo->si_errno = 0; 365 tinfo->si_code = info->si_code; 366 367 /* This memset serves two purposes: 368 * (1) ensure we don't leak random junk to the guest later 369 * (2) placate false positives from gcc about fields 370 * being used uninitialized if it chooses to inline both this 371 * function and tswap_siginfo() into host_to_target_siginfo(). 372 */ 373 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); 374 375 /* This is awkward, because we have to use a combination of 376 * the si_code and si_signo to figure out which of the union's 377 * members are valid. (Within the host kernel it is always possible 378 * to tell, but the kernel carefully avoids giving userspace the 379 * high 16 bits of si_code, so we don't have the information to 380 * do this the easy way...) We therefore make our best guess, 381 * bearing in mind that a guest can spoof most of the si_codes 382 * via rt_sigqueueinfo() if it likes. 383 * 384 * Once we have made our guess, we record it in the top 16 bits of 385 * the si_code, so that tswap_siginfo() later can use it. 386 * tswap_siginfo() will strip these top bits out before writing 387 * si_code to the guest (sign-extending the lower bits). 388 */ 389 390 switch (si_code) { 391 case SI_USER: 392 case SI_TKILL: 393 case SI_KERNEL: 394 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. 395 * These are the only unspoofable si_code values. 396 */ 397 tinfo->_sifields._kill._pid = info->si_pid; 398 tinfo->_sifields._kill._uid = info->si_uid; 399 si_type = QEMU_SI_KILL; 400 break; 401 default: 402 /* Everything else is spoofable. Make best guess based on signal */ 403 switch (sig) { 404 case TARGET_SIGCHLD: 405 tinfo->_sifields._sigchld._pid = info->si_pid; 406 tinfo->_sifields._sigchld._uid = info->si_uid; 407 if (si_code == CLD_EXITED) 408 tinfo->_sifields._sigchld._status = info->si_status; 409 else 410 tinfo->_sifields._sigchld._status 411 = host_to_target_signal(info->si_status & 0x7f) 412 | (info->si_status & ~0x7f); 413 tinfo->_sifields._sigchld._utime = info->si_utime; 414 tinfo->_sifields._sigchld._stime = info->si_stime; 415 si_type = QEMU_SI_CHLD; 416 break; 417 case TARGET_SIGIO: 418 tinfo->_sifields._sigpoll._band = info->si_band; 419 tinfo->_sifields._sigpoll._fd = info->si_fd; 420 si_type = QEMU_SI_POLL; 421 break; 422 default: 423 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ 424 tinfo->_sifields._rt._pid = info->si_pid; 425 tinfo->_sifields._rt._uid = info->si_uid; 426 /* XXX: potential problem if 64 bit */ 427 tinfo->_sifields._rt._sigval.sival_ptr 428 = (abi_ulong)(unsigned long)info->si_value.sival_ptr; 429 si_type = QEMU_SI_RT; 430 break; 431 } 432 break; 433 } 434 435 tinfo->si_code = deposit32(si_code, 16, 16, si_type); 436 } 437 438 void tswap_siginfo(target_siginfo_t *tinfo, 439 const target_siginfo_t *info) 440 { 441 int si_type = extract32(info->si_code, 16, 16); 442 int si_code = sextract32(info->si_code, 0, 16); 443 444 __put_user(info->si_signo, &tinfo->si_signo); 445 __put_user(info->si_errno, &tinfo->si_errno); 446 __put_user(si_code, &tinfo->si_code); 447 448 /* We can use our internal marker of which fields in the structure 449 * are valid, rather than duplicating the guesswork of 450 * host_to_target_siginfo_noswap() here. 451 */ 452 switch (si_type) { 453 case QEMU_SI_KILL: 454 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); 455 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); 456 break; 457 case QEMU_SI_TIMER: 458 __put_user(info->_sifields._timer._timer1, 459 &tinfo->_sifields._timer._timer1); 460 __put_user(info->_sifields._timer._timer2, 461 &tinfo->_sifields._timer._timer2); 462 break; 463 case QEMU_SI_POLL: 464 __put_user(info->_sifields._sigpoll._band, 465 &tinfo->_sifields._sigpoll._band); 466 __put_user(info->_sifields._sigpoll._fd, 467 &tinfo->_sifields._sigpoll._fd); 468 break; 469 case QEMU_SI_FAULT: 470 __put_user(info->_sifields._sigfault._addr, 471 &tinfo->_sifields._sigfault._addr); 472 break; 473 case QEMU_SI_CHLD: 474 __put_user(info->_sifields._sigchld._pid, 475 &tinfo->_sifields._sigchld._pid); 476 __put_user(info->_sifields._sigchld._uid, 477 &tinfo->_sifields._sigchld._uid); 478 __put_user(info->_sifields._sigchld._status, 479 &tinfo->_sifields._sigchld._status); 480 __put_user(info->_sifields._sigchld._utime, 481 &tinfo->_sifields._sigchld._utime); 482 __put_user(info->_sifields._sigchld._stime, 483 &tinfo->_sifields._sigchld._stime); 484 break; 485 case QEMU_SI_RT: 486 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); 487 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); 488 __put_user(info->_sifields._rt._sigval.sival_ptr, 489 &tinfo->_sifields._rt._sigval.sival_ptr); 490 break; 491 default: 492 g_assert_not_reached(); 493 } 494 } 495 496 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 497 { 498 target_siginfo_t tgt_tmp; 499 host_to_target_siginfo_noswap(&tgt_tmp, info); 500 tswap_siginfo(tinfo, &tgt_tmp); 501 } 502 503 /* XXX: we support only POSIX RT signals are used. */ 504 /* XXX: find a solution for 64 bit (additional malloced data is needed) */ 505 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) 506 { 507 /* This conversion is used only for the rt_sigqueueinfo syscall, 508 * and so we know that the _rt fields are the valid ones. 509 */ 510 abi_ulong sival_ptr; 511 512 __get_user(info->si_signo, &tinfo->si_signo); 513 __get_user(info->si_errno, &tinfo->si_errno); 514 __get_user(info->si_code, &tinfo->si_code); 515 __get_user(info->si_pid, &tinfo->_sifields._rt._pid); 516 __get_user(info->si_uid, &tinfo->_sifields._rt._uid); 517 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); 518 info->si_value.sival_ptr = (void *)(long)sival_ptr; 519 } 520 521 static int fatal_signal (int sig) 522 { 523 switch (sig) { 524 case TARGET_SIGCHLD: 525 case TARGET_SIGURG: 526 case TARGET_SIGWINCH: 527 /* Ignored by default. */ 528 return 0; 529 case TARGET_SIGCONT: 530 case TARGET_SIGSTOP: 531 case TARGET_SIGTSTP: 532 case TARGET_SIGTTIN: 533 case TARGET_SIGTTOU: 534 /* Job control signals. */ 535 return 0; 536 default: 537 return 1; 538 } 539 } 540 541 /* returns 1 if given signal should dump core if not handled */ 542 static int core_dump_signal(int sig) 543 { 544 switch (sig) { 545 case TARGET_SIGABRT: 546 case TARGET_SIGFPE: 547 case TARGET_SIGILL: 548 case TARGET_SIGQUIT: 549 case TARGET_SIGSEGV: 550 case TARGET_SIGTRAP: 551 case TARGET_SIGBUS: 552 return (1); 553 default: 554 return (0); 555 } 556 } 557 558 static void signal_table_init(void) 559 { 560 int host_sig, target_sig, count; 561 562 /* 563 * Signals are supported starting from TARGET_SIGRTMIN and going up 564 * until we run out of host realtime signals. 565 * glibc at least uses only the lower 2 rt signals and probably 566 * nobody's using the upper ones. 567 * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32) 568 * To fix this properly we need to do manual signal delivery multiplexed 569 * over a single host signal. 570 * Attempts for configure "missing" signals via sigaction will be 571 * silently ignored. 572 */ 573 for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) { 574 target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN; 575 if (target_sig <= TARGET_NSIG) { 576 host_to_target_signal_table[host_sig] = target_sig; 577 } 578 } 579 580 /* generate signal conversion tables */ 581 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 582 target_to_host_signal_table[target_sig] = _NSIG; /* poison */ 583 } 584 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 585 if (host_to_target_signal_table[host_sig] == 0) { 586 host_to_target_signal_table[host_sig] = host_sig; 587 } 588 target_sig = host_to_target_signal_table[host_sig]; 589 if (target_sig <= TARGET_NSIG) { 590 target_to_host_signal_table[target_sig] = host_sig; 591 } 592 } 593 594 if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) { 595 for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) { 596 if (target_to_host_signal_table[target_sig] == _NSIG) { 597 count++; 598 } 599 } 600 trace_signal_table_init(count); 601 } 602 } 603 604 void signal_init(void) 605 { 606 TaskState *ts = (TaskState *)thread_cpu->opaque; 607 struct sigaction act; 608 struct sigaction oact; 609 int i; 610 int host_sig; 611 612 /* initialize signal conversion tables */ 613 signal_table_init(); 614 615 /* Set the signal mask from the host mask. */ 616 sigprocmask(0, 0, &ts->signal_mask); 617 618 sigfillset(&act.sa_mask); 619 act.sa_flags = SA_SIGINFO; 620 act.sa_sigaction = host_signal_handler; 621 for(i = 1; i <= TARGET_NSIG; i++) { 622 #ifdef CONFIG_GPROF 623 if (i == TARGET_SIGPROF) { 624 continue; 625 } 626 #endif 627 host_sig = target_to_host_signal(i); 628 sigaction(host_sig, NULL, &oact); 629 if (oact.sa_sigaction == (void *)SIG_IGN) { 630 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 631 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 632 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 633 } 634 /* If there's already a handler installed then something has 635 gone horribly wrong, so don't even try to handle that case. */ 636 /* Install some handlers for our own use. We need at least 637 SIGSEGV and SIGBUS, to detect exceptions. We can not just 638 trap all signals because it affects syscall interrupt 639 behavior. But do trap all default-fatal signals. */ 640 if (fatal_signal (i)) 641 sigaction(host_sig, &act, NULL); 642 } 643 } 644 645 /* Force a synchronously taken signal. The kernel force_sig() function 646 * also forces the signal to "not blocked, not ignored", but for QEMU 647 * that work is done in process_pending_signals(). 648 */ 649 void force_sig(int sig) 650 { 651 CPUState *cpu = thread_cpu; 652 CPUArchState *env = cpu->env_ptr; 653 target_siginfo_t info = {}; 654 655 info.si_signo = sig; 656 info.si_errno = 0; 657 info.si_code = TARGET_SI_KERNEL; 658 info._sifields._kill._pid = 0; 659 info._sifields._kill._uid = 0; 660 queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); 661 } 662 663 /* 664 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 665 * 'force' part is handled in process_pending_signals(). 666 */ 667 void force_sig_fault(int sig, int code, abi_ulong addr) 668 { 669 CPUState *cpu = thread_cpu; 670 CPUArchState *env = cpu->env_ptr; 671 target_siginfo_t info = {}; 672 673 info.si_signo = sig; 674 info.si_errno = 0; 675 info.si_code = code; 676 info._sifields._sigfault._addr = addr; 677 queue_signal(env, sig, QEMU_SI_FAULT, &info); 678 } 679 680 /* Force a SIGSEGV if we couldn't write to memory trying to set 681 * up the signal frame. oldsig is the signal we were trying to handle 682 * at the point of failure. 683 */ 684 #if !defined(TARGET_RISCV) 685 void force_sigsegv(int oldsig) 686 { 687 if (oldsig == SIGSEGV) { 688 /* Make sure we don't try to deliver the signal again; this will 689 * end up with handle_pending_signal() calling dump_core_and_abort(). 690 */ 691 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; 692 } 693 force_sig(TARGET_SIGSEGV); 694 } 695 #endif 696 697 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 698 MMUAccessType access_type, bool maperr, uintptr_t ra) 699 { 700 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 701 702 if (tcg_ops->record_sigsegv) { 703 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 704 } 705 706 force_sig_fault(TARGET_SIGSEGV, 707 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 708 addr); 709 cpu->exception_index = EXCP_INTERRUPT; 710 cpu_loop_exit_restore(cpu, ra); 711 } 712 713 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 714 MMUAccessType access_type, uintptr_t ra) 715 { 716 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 717 718 if (tcg_ops->record_sigbus) { 719 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 720 } 721 722 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 723 cpu->exception_index = EXCP_INTERRUPT; 724 cpu_loop_exit_restore(cpu, ra); 725 } 726 727 /* abort execution with signal */ 728 static G_NORETURN 729 void dump_core_and_abort(int target_sig) 730 { 731 CPUState *cpu = thread_cpu; 732 CPUArchState *env = cpu->env_ptr; 733 TaskState *ts = (TaskState *)cpu->opaque; 734 int host_sig, core_dumped = 0; 735 struct sigaction act; 736 737 host_sig = target_to_host_signal(target_sig); 738 trace_user_dump_core_and_abort(env, target_sig, host_sig); 739 gdb_signalled(env, target_sig); 740 741 /* dump core if supported by target binary format */ 742 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 743 stop_all_tasks(); 744 core_dumped = 745 ((*ts->bprm->core_dump)(target_sig, env) == 0); 746 } 747 if (core_dumped) { 748 /* we already dumped the core of target process, we don't want 749 * a coredump of qemu itself */ 750 struct rlimit nodump; 751 getrlimit(RLIMIT_CORE, &nodump); 752 nodump.rlim_cur=0; 753 setrlimit(RLIMIT_CORE, &nodump); 754 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", 755 target_sig, strsignal(host_sig), "core dumped" ); 756 } 757 758 /* The proper exit code for dying from an uncaught signal is 759 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 760 * a negative value. To get the proper exit code we need to 761 * actually die from an uncaught signal. Here the default signal 762 * handler is installed, we send ourself a signal and we wait for 763 * it to arrive. */ 764 sigfillset(&act.sa_mask); 765 act.sa_handler = SIG_DFL; 766 act.sa_flags = 0; 767 sigaction(host_sig, &act, NULL); 768 769 /* For some reason raise(host_sig) doesn't send the signal when 770 * statically linked on x86-64. */ 771 kill(getpid(), host_sig); 772 773 /* Make sure the signal isn't masked (just reuse the mask inside 774 of act) */ 775 sigdelset(&act.sa_mask, host_sig); 776 sigsuspend(&act.sa_mask); 777 778 /* unreachable */ 779 abort(); 780 } 781 782 /* queue a signal so that it will be send to the virtual CPU as soon 783 as possible */ 784 void queue_signal(CPUArchState *env, int sig, int si_type, 785 target_siginfo_t *info) 786 { 787 CPUState *cpu = env_cpu(env); 788 TaskState *ts = cpu->opaque; 789 790 trace_user_queue_signal(env, sig); 791 792 info->si_code = deposit32(info->si_code, 16, 16, si_type); 793 794 ts->sync_signal.info = *info; 795 ts->sync_signal.pending = sig; 796 /* signal that a new signal is pending */ 797 qatomic_set(&ts->signal_pending, 1); 798 } 799 800 801 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 802 static inline void rewind_if_in_safe_syscall(void *puc) 803 { 804 host_sigcontext *uc = (host_sigcontext *)puc; 805 uintptr_t pcreg = host_signal_pc(uc); 806 807 if (pcreg > (uintptr_t)safe_syscall_start 808 && pcreg < (uintptr_t)safe_syscall_end) { 809 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 810 } 811 } 812 813 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 814 { 815 CPUArchState *env = thread_cpu->env_ptr; 816 CPUState *cpu = env_cpu(env); 817 TaskState *ts = cpu->opaque; 818 target_siginfo_t tinfo; 819 host_sigcontext *uc = puc; 820 struct emulated_sigtable *k; 821 int guest_sig; 822 uintptr_t pc = 0; 823 bool sync_sig = false; 824 void *sigmask = host_signal_mask(uc); 825 826 /* 827 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 828 * handling wrt signal blocking and unwinding. 829 */ 830 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 831 MMUAccessType access_type; 832 uintptr_t host_addr; 833 abi_ptr guest_addr; 834 bool is_write; 835 836 host_addr = (uintptr_t)info->si_addr; 837 838 /* 839 * Convert forcefully to guest address space: addresses outside 840 * reserved_va are still valid to report via SEGV_MAPERR. 841 */ 842 guest_addr = h2g_nocheck(host_addr); 843 844 pc = host_signal_pc(uc); 845 is_write = host_signal_write(info, uc); 846 access_type = adjust_signal_pc(&pc, is_write); 847 848 if (host_sig == SIGSEGV) { 849 bool maperr = true; 850 851 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 852 /* If this was a write to a TB protected page, restart. */ 853 if (is_write && 854 handle_sigsegv_accerr_write(cpu, sigmask, pc, guest_addr)) { 855 return; 856 } 857 858 /* 859 * With reserved_va, the whole address space is PROT_NONE, 860 * which means that we may get ACCERR when we want MAPERR. 861 */ 862 if (page_get_flags(guest_addr) & PAGE_VALID) { 863 maperr = false; 864 } else { 865 info->si_code = SEGV_MAPERR; 866 } 867 } 868 869 sigprocmask(SIG_SETMASK, sigmask, NULL); 870 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 871 } else { 872 sigprocmask(SIG_SETMASK, sigmask, NULL); 873 if (info->si_code == BUS_ADRALN) { 874 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 875 } 876 } 877 878 sync_sig = true; 879 } 880 881 /* get target signal number */ 882 guest_sig = host_to_target_signal(host_sig); 883 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 884 return; 885 } 886 trace_user_host_signal(env, host_sig, guest_sig); 887 888 host_to_target_siginfo_noswap(&tinfo, info); 889 k = &ts->sigtab[guest_sig - 1]; 890 k->info = tinfo; 891 k->pending = guest_sig; 892 ts->signal_pending = 1; 893 894 /* 895 * For synchronous signals, unwind the cpu state to the faulting 896 * insn and then exit back to the main loop so that the signal 897 * is delivered immediately. 898 */ 899 if (sync_sig) { 900 cpu->exception_index = EXCP_INTERRUPT; 901 cpu_loop_exit_restore(cpu, pc); 902 } 903 904 rewind_if_in_safe_syscall(puc); 905 906 /* 907 * Block host signals until target signal handler entered. We 908 * can't block SIGSEGV or SIGBUS while we're executing guest 909 * code in case the guest code provokes one in the window between 910 * now and it getting out to the main loop. Signals will be 911 * unblocked again in process_pending_signals(). 912 * 913 * WARNING: we cannot use sigfillset() here because the sigmask 914 * field is a kernel sigset_t, which is much smaller than the 915 * libc sigset_t which sigfillset() operates on. Using sigfillset() 916 * would write 0xff bytes off the end of the structure and trash 917 * data on the struct. 918 */ 919 memset(sigmask, 0xff, SIGSET_T_SIZE); 920 sigdelset(sigmask, SIGSEGV); 921 sigdelset(sigmask, SIGBUS); 922 923 /* interrupt the virtual CPU as soon as possible */ 924 cpu_exit(thread_cpu); 925 } 926 927 /* do_sigaltstack() returns target values and errnos. */ 928 /* compare linux/kernel/signal.c:do_sigaltstack() */ 929 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, 930 CPUArchState *env) 931 { 932 target_stack_t oss, *uoss = NULL; 933 abi_long ret = -TARGET_EFAULT; 934 935 if (uoss_addr) { 936 /* Verify writability now, but do not alter user memory yet. */ 937 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { 938 goto out; 939 } 940 target_save_altstack(&oss, env); 941 } 942 943 if (uss_addr) { 944 target_stack_t *uss; 945 946 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 947 goto out; 948 } 949 ret = target_restore_altstack(uss, env); 950 if (ret) { 951 goto out; 952 } 953 } 954 955 if (uoss_addr) { 956 memcpy(uoss, &oss, sizeof(oss)); 957 unlock_user_struct(uoss, uoss_addr, 1); 958 uoss = NULL; 959 } 960 ret = 0; 961 962 out: 963 if (uoss) { 964 unlock_user_struct(uoss, uoss_addr, 0); 965 } 966 return ret; 967 } 968 969 /* do_sigaction() return target values and host errnos */ 970 int do_sigaction(int sig, const struct target_sigaction *act, 971 struct target_sigaction *oact, abi_ulong ka_restorer) 972 { 973 struct target_sigaction *k; 974 struct sigaction act1; 975 int host_sig; 976 int ret = 0; 977 978 trace_signal_do_sigaction_guest(sig, TARGET_NSIG); 979 980 if (sig < 1 || sig > TARGET_NSIG) { 981 return -TARGET_EINVAL; 982 } 983 984 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { 985 return -TARGET_EINVAL; 986 } 987 988 if (block_signals()) { 989 return -QEMU_ERESTARTSYS; 990 } 991 992 k = &sigact_table[sig - 1]; 993 if (oact) { 994 __put_user(k->_sa_handler, &oact->_sa_handler); 995 __put_user(k->sa_flags, &oact->sa_flags); 996 #ifdef TARGET_ARCH_HAS_SA_RESTORER 997 __put_user(k->sa_restorer, &oact->sa_restorer); 998 #endif 999 /* Not swapped. */ 1000 oact->sa_mask = k->sa_mask; 1001 } 1002 if (act) { 1003 __get_user(k->_sa_handler, &act->_sa_handler); 1004 __get_user(k->sa_flags, &act->sa_flags); 1005 #ifdef TARGET_ARCH_HAS_SA_RESTORER 1006 __get_user(k->sa_restorer, &act->sa_restorer); 1007 #endif 1008 #ifdef TARGET_ARCH_HAS_KA_RESTORER 1009 k->ka_restorer = ka_restorer; 1010 #endif 1011 /* To be swapped in target_to_host_sigset. */ 1012 k->sa_mask = act->sa_mask; 1013 1014 /* we update the host linux signal state */ 1015 host_sig = target_to_host_signal(sig); 1016 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); 1017 if (host_sig > SIGRTMAX) { 1018 /* we don't have enough host signals to map all target signals */ 1019 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", 1020 sig); 1021 /* 1022 * we don't return an error here because some programs try to 1023 * register an handler for all possible rt signals even if they 1024 * don't need it. 1025 * An error here can abort them whereas there can be no problem 1026 * to not have the signal available later. 1027 * This is the case for golang, 1028 * See https://github.com/golang/go/issues/33746 1029 * So we silently ignore the error. 1030 */ 1031 return 0; 1032 } 1033 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 1034 sigfillset(&act1.sa_mask); 1035 act1.sa_flags = SA_SIGINFO; 1036 if (k->sa_flags & TARGET_SA_RESTART) 1037 act1.sa_flags |= SA_RESTART; 1038 /* NOTE: it is important to update the host kernel signal 1039 ignore state to avoid getting unexpected interrupted 1040 syscalls */ 1041 if (k->_sa_handler == TARGET_SIG_IGN) { 1042 act1.sa_sigaction = (void *)SIG_IGN; 1043 } else if (k->_sa_handler == TARGET_SIG_DFL) { 1044 if (fatal_signal (sig)) 1045 act1.sa_sigaction = host_signal_handler; 1046 else 1047 act1.sa_sigaction = (void *)SIG_DFL; 1048 } else { 1049 act1.sa_sigaction = host_signal_handler; 1050 } 1051 ret = sigaction(host_sig, &act1, NULL); 1052 } 1053 } 1054 return ret; 1055 } 1056 1057 static void handle_pending_signal(CPUArchState *cpu_env, int sig, 1058 struct emulated_sigtable *k) 1059 { 1060 CPUState *cpu = env_cpu(cpu_env); 1061 abi_ulong handler; 1062 sigset_t set; 1063 target_sigset_t target_old_set; 1064 struct target_sigaction *sa; 1065 TaskState *ts = cpu->opaque; 1066 1067 trace_user_handle_signal(cpu_env, sig); 1068 /* dequeue signal */ 1069 k->pending = 0; 1070 1071 sig = gdb_handlesig(cpu, sig); 1072 if (!sig) { 1073 sa = NULL; 1074 handler = TARGET_SIG_IGN; 1075 } else { 1076 sa = &sigact_table[sig - 1]; 1077 handler = sa->_sa_handler; 1078 } 1079 1080 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 1081 print_taken_signal(sig, &k->info); 1082 } 1083 1084 if (handler == TARGET_SIG_DFL) { 1085 /* default handler : ignore some signal. The other are job control or fatal */ 1086 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { 1087 kill(getpid(),SIGSTOP); 1088 } else if (sig != TARGET_SIGCHLD && 1089 sig != TARGET_SIGURG && 1090 sig != TARGET_SIGWINCH && 1091 sig != TARGET_SIGCONT) { 1092 dump_core_and_abort(sig); 1093 } 1094 } else if (handler == TARGET_SIG_IGN) { 1095 /* ignore sig */ 1096 } else if (handler == TARGET_SIG_ERR) { 1097 dump_core_and_abort(sig); 1098 } else { 1099 /* compute the blocked signals during the handler execution */ 1100 sigset_t *blocked_set; 1101 1102 target_to_host_sigset(&set, &sa->sa_mask); 1103 /* SA_NODEFER indicates that the current signal should not be 1104 blocked during the handler */ 1105 if (!(sa->sa_flags & TARGET_SA_NODEFER)) 1106 sigaddset(&set, target_to_host_signal(sig)); 1107 1108 /* save the previous blocked signal state to restore it at the 1109 end of the signal execution (see do_sigreturn) */ 1110 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 1111 1112 /* block signals in the handler */ 1113 blocked_set = ts->in_sigsuspend ? 1114 &ts->sigsuspend_mask : &ts->signal_mask; 1115 sigorset(&ts->signal_mask, blocked_set, &set); 1116 ts->in_sigsuspend = 0; 1117 1118 /* if the CPU is in VM86 mode, we restore the 32 bit values */ 1119 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 1120 { 1121 CPUX86State *env = cpu_env; 1122 if (env->eflags & VM_MASK) 1123 save_v86_state(env); 1124 } 1125 #endif 1126 /* prepare the stack frame of the virtual CPU */ 1127 #if defined(TARGET_ARCH_HAS_SETUP_FRAME) 1128 if (sa->sa_flags & TARGET_SA_SIGINFO) { 1129 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1130 } else { 1131 setup_frame(sig, sa, &target_old_set, cpu_env); 1132 } 1133 #else 1134 /* These targets do not have traditional signals. */ 1135 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1136 #endif 1137 if (sa->sa_flags & TARGET_SA_RESETHAND) { 1138 sa->_sa_handler = TARGET_SIG_DFL; 1139 } 1140 } 1141 } 1142 1143 void process_pending_signals(CPUArchState *cpu_env) 1144 { 1145 CPUState *cpu = env_cpu(cpu_env); 1146 int sig; 1147 TaskState *ts = cpu->opaque; 1148 sigset_t set; 1149 sigset_t *blocked_set; 1150 1151 while (qatomic_read(&ts->signal_pending)) { 1152 sigfillset(&set); 1153 sigprocmask(SIG_SETMASK, &set, 0); 1154 1155 restart_scan: 1156 sig = ts->sync_signal.pending; 1157 if (sig) { 1158 /* Synchronous signals are forced, 1159 * see force_sig_info() and callers in Linux 1160 * Note that not all of our queue_signal() calls in QEMU correspond 1161 * to force_sig_info() calls in Linux (some are send_sig_info()). 1162 * However it seems like a kernel bug to me to allow the process 1163 * to block a synchronous signal since it could then just end up 1164 * looping round and round indefinitely. 1165 */ 1166 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) 1167 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 1168 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); 1169 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 1170 } 1171 1172 handle_pending_signal(cpu_env, sig, &ts->sync_signal); 1173 } 1174 1175 for (sig = 1; sig <= TARGET_NSIG; sig++) { 1176 blocked_set = ts->in_sigsuspend ? 1177 &ts->sigsuspend_mask : &ts->signal_mask; 1178 1179 if (ts->sigtab[sig - 1].pending && 1180 (!sigismember(blocked_set, 1181 target_to_host_signal_table[sig]))) { 1182 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); 1183 /* Restart scan from the beginning, as handle_pending_signal 1184 * might have resulted in a new synchronous signal (eg SIGSEGV). 1185 */ 1186 goto restart_scan; 1187 } 1188 } 1189 1190 /* if no signal is pending, unblock signals and recheck (the act 1191 * of unblocking might cause us to take another host signal which 1192 * will set signal_pending again). 1193 */ 1194 qatomic_set(&ts->signal_pending, 0); 1195 ts->in_sigsuspend = 0; 1196 set = ts->signal_mask; 1197 sigdelset(&set, SIGSEGV); 1198 sigdelset(&set, SIGBUS); 1199 sigprocmask(SIG_SETMASK, &set, 0); 1200 } 1201 ts->in_sigsuspend = 0; 1202 } 1203 1204 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset, 1205 target_ulong sigsize) 1206 { 1207 TaskState *ts = (TaskState *)thread_cpu->opaque; 1208 sigset_t *host_set = &ts->sigsuspend_mask; 1209 target_sigset_t *target_sigset; 1210 1211 if (sigsize != sizeof(*target_sigset)) { 1212 /* Like the kernel, we enforce correct size sigsets */ 1213 return -TARGET_EINVAL; 1214 } 1215 1216 target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1); 1217 if (!target_sigset) { 1218 return -TARGET_EFAULT; 1219 } 1220 target_to_host_sigset(host_set, target_sigset); 1221 unlock_user(target_sigset, sigset, 0); 1222 1223 *pset = host_set; 1224 return 0; 1225 } 1226