1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include <sys/ucontext.h> 22 #include <sys/resource.h> 23 24 #include "qemu.h" 25 #include "trace.h" 26 #include "signal-common.h" 27 28 static struct target_sigaction sigact_table[TARGET_NSIG]; 29 30 static void host_signal_handler(int host_signum, siginfo_t *info, 31 void *puc); 32 33 34 /* 35 * System includes define _NSIG as SIGRTMAX + 1, 36 * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX 37 * and the first signal is SIGHUP defined as 1 38 * Signal number 0 is reserved for use as kill(pid, 0), to test whether 39 * a process exists without sending it a signal. 40 */ 41 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); 42 static uint8_t host_to_target_signal_table[_NSIG] = { 43 [SIGHUP] = TARGET_SIGHUP, 44 [SIGINT] = TARGET_SIGINT, 45 [SIGQUIT] = TARGET_SIGQUIT, 46 [SIGILL] = TARGET_SIGILL, 47 [SIGTRAP] = TARGET_SIGTRAP, 48 [SIGABRT] = TARGET_SIGABRT, 49 /* [SIGIOT] = TARGET_SIGIOT,*/ 50 [SIGBUS] = TARGET_SIGBUS, 51 [SIGFPE] = TARGET_SIGFPE, 52 [SIGKILL] = TARGET_SIGKILL, 53 [SIGUSR1] = TARGET_SIGUSR1, 54 [SIGSEGV] = TARGET_SIGSEGV, 55 [SIGUSR2] = TARGET_SIGUSR2, 56 [SIGPIPE] = TARGET_SIGPIPE, 57 [SIGALRM] = TARGET_SIGALRM, 58 [SIGTERM] = TARGET_SIGTERM, 59 #ifdef SIGSTKFLT 60 [SIGSTKFLT] = TARGET_SIGSTKFLT, 61 #endif 62 [SIGCHLD] = TARGET_SIGCHLD, 63 [SIGCONT] = TARGET_SIGCONT, 64 [SIGSTOP] = TARGET_SIGSTOP, 65 [SIGTSTP] = TARGET_SIGTSTP, 66 [SIGTTIN] = TARGET_SIGTTIN, 67 [SIGTTOU] = TARGET_SIGTTOU, 68 [SIGURG] = TARGET_SIGURG, 69 [SIGXCPU] = TARGET_SIGXCPU, 70 [SIGXFSZ] = TARGET_SIGXFSZ, 71 [SIGVTALRM] = TARGET_SIGVTALRM, 72 [SIGPROF] = TARGET_SIGPROF, 73 [SIGWINCH] = TARGET_SIGWINCH, 74 [SIGIO] = TARGET_SIGIO, 75 [SIGPWR] = TARGET_SIGPWR, 76 [SIGSYS] = TARGET_SIGSYS, 77 /* next signals stay the same */ 78 }; 79 80 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; 81 82 /* valid sig is between 1 and _NSIG - 1 */ 83 int host_to_target_signal(int sig) 84 { 85 if (sig < 1 || sig >= _NSIG) { 86 return sig; 87 } 88 return host_to_target_signal_table[sig]; 89 } 90 91 /* valid sig is between 1 and TARGET_NSIG */ 92 int target_to_host_signal(int sig) 93 { 94 if (sig < 1 || sig > TARGET_NSIG) { 95 return sig; 96 } 97 return target_to_host_signal_table[sig]; 98 } 99 100 static inline void target_sigaddset(target_sigset_t *set, int signum) 101 { 102 signum--; 103 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 104 set->sig[signum / TARGET_NSIG_BPW] |= mask; 105 } 106 107 static inline int target_sigismember(const target_sigset_t *set, int signum) 108 { 109 signum--; 110 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 111 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); 112 } 113 114 void host_to_target_sigset_internal(target_sigset_t *d, 115 const sigset_t *s) 116 { 117 int host_sig, target_sig; 118 target_sigemptyset(d); 119 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 120 target_sig = host_to_target_signal(host_sig); 121 if (target_sig < 1 || target_sig > TARGET_NSIG) { 122 continue; 123 } 124 if (sigismember(s, host_sig)) { 125 target_sigaddset(d, target_sig); 126 } 127 } 128 } 129 130 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 131 { 132 target_sigset_t d1; 133 int i; 134 135 host_to_target_sigset_internal(&d1, s); 136 for(i = 0;i < TARGET_NSIG_WORDS; i++) 137 d->sig[i] = tswapal(d1.sig[i]); 138 } 139 140 void target_to_host_sigset_internal(sigset_t *d, 141 const target_sigset_t *s) 142 { 143 int host_sig, target_sig; 144 sigemptyset(d); 145 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 146 host_sig = target_to_host_signal(target_sig); 147 if (host_sig < 1 || host_sig >= _NSIG) { 148 continue; 149 } 150 if (target_sigismember(s, target_sig)) { 151 sigaddset(d, host_sig); 152 } 153 } 154 } 155 156 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 157 { 158 target_sigset_t s1; 159 int i; 160 161 for(i = 0;i < TARGET_NSIG_WORDS; i++) 162 s1.sig[i] = tswapal(s->sig[i]); 163 target_to_host_sigset_internal(d, &s1); 164 } 165 166 void host_to_target_old_sigset(abi_ulong *old_sigset, 167 const sigset_t *sigset) 168 { 169 target_sigset_t d; 170 host_to_target_sigset(&d, sigset); 171 *old_sigset = d.sig[0]; 172 } 173 174 void target_to_host_old_sigset(sigset_t *sigset, 175 const abi_ulong *old_sigset) 176 { 177 target_sigset_t d; 178 int i; 179 180 d.sig[0] = *old_sigset; 181 for(i = 1;i < TARGET_NSIG_WORDS; i++) 182 d.sig[i] = 0; 183 target_to_host_sigset(sigset, &d); 184 } 185 186 int block_signals(void) 187 { 188 TaskState *ts = (TaskState *)thread_cpu->opaque; 189 sigset_t set; 190 191 /* It's OK to block everything including SIGSEGV, because we won't 192 * run any further guest code before unblocking signals in 193 * process_pending_signals(). 194 */ 195 sigfillset(&set); 196 sigprocmask(SIG_SETMASK, &set, 0); 197 198 return qatomic_xchg(&ts->signal_pending, 1); 199 } 200 201 /* Wrapper for sigprocmask function 202 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset 203 * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if 204 * a signal was already pending and the syscall must be restarted, or 205 * 0 on success. 206 * If set is NULL, this is guaranteed not to fail. 207 */ 208 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) 209 { 210 TaskState *ts = (TaskState *)thread_cpu->opaque; 211 212 if (oldset) { 213 *oldset = ts->signal_mask; 214 } 215 216 if (set) { 217 int i; 218 219 if (block_signals()) { 220 return -TARGET_ERESTARTSYS; 221 } 222 223 switch (how) { 224 case SIG_BLOCK: 225 sigorset(&ts->signal_mask, &ts->signal_mask, set); 226 break; 227 case SIG_UNBLOCK: 228 for (i = 1; i <= NSIG; ++i) { 229 if (sigismember(set, i)) { 230 sigdelset(&ts->signal_mask, i); 231 } 232 } 233 break; 234 case SIG_SETMASK: 235 ts->signal_mask = *set; 236 break; 237 default: 238 g_assert_not_reached(); 239 } 240 241 /* Silently ignore attempts to change blocking status of KILL or STOP */ 242 sigdelset(&ts->signal_mask, SIGKILL); 243 sigdelset(&ts->signal_mask, SIGSTOP); 244 } 245 return 0; 246 } 247 248 #if !defined(TARGET_NIOS2) 249 /* Just set the guest's signal mask to the specified value; the 250 * caller is assumed to have called block_signals() already. 251 */ 252 void set_sigmask(const sigset_t *set) 253 { 254 TaskState *ts = (TaskState *)thread_cpu->opaque; 255 256 ts->signal_mask = *set; 257 } 258 #endif 259 260 /* sigaltstack management */ 261 262 int on_sig_stack(unsigned long sp) 263 { 264 TaskState *ts = (TaskState *)thread_cpu->opaque; 265 266 return (sp - ts->sigaltstack_used.ss_sp 267 < ts->sigaltstack_used.ss_size); 268 } 269 270 int sas_ss_flags(unsigned long sp) 271 { 272 TaskState *ts = (TaskState *)thread_cpu->opaque; 273 274 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE 275 : on_sig_stack(sp) ? SS_ONSTACK : 0); 276 } 277 278 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) 279 { 280 /* 281 * This is the X/Open sanctioned signal stack switching. 282 */ 283 TaskState *ts = (TaskState *)thread_cpu->opaque; 284 285 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 286 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 287 } 288 return sp; 289 } 290 291 void target_save_altstack(target_stack_t *uss, CPUArchState *env) 292 { 293 TaskState *ts = (TaskState *)thread_cpu->opaque; 294 295 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); 296 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); 297 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); 298 } 299 300 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) 301 { 302 TaskState *ts = (TaskState *)thread_cpu->opaque; 303 size_t minstacksize = TARGET_MINSIGSTKSZ; 304 target_stack_t ss; 305 306 #if defined(TARGET_PPC64) 307 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ 308 struct image_info *image = ts->info; 309 if (get_ppc64_abi(image) > 1) { 310 minstacksize = 4096; 311 } 312 #endif 313 314 __get_user(ss.ss_sp, &uss->ss_sp); 315 __get_user(ss.ss_size, &uss->ss_size); 316 __get_user(ss.ss_flags, &uss->ss_flags); 317 318 if (on_sig_stack(get_sp_from_cpustate(env))) { 319 return -TARGET_EPERM; 320 } 321 322 switch (ss.ss_flags) { 323 default: 324 return -TARGET_EINVAL; 325 326 case TARGET_SS_DISABLE: 327 ss.ss_size = 0; 328 ss.ss_sp = 0; 329 break; 330 331 case TARGET_SS_ONSTACK: 332 case 0: 333 if (ss.ss_size < minstacksize) { 334 return -TARGET_ENOMEM; 335 } 336 break; 337 } 338 339 ts->sigaltstack_used.ss_sp = ss.ss_sp; 340 ts->sigaltstack_used.ss_size = ss.ss_size; 341 return 0; 342 } 343 344 /* siginfo conversion */ 345 346 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 347 const siginfo_t *info) 348 { 349 int sig = host_to_target_signal(info->si_signo); 350 int si_code = info->si_code; 351 int si_type; 352 tinfo->si_signo = sig; 353 tinfo->si_errno = 0; 354 tinfo->si_code = info->si_code; 355 356 /* This memset serves two purposes: 357 * (1) ensure we don't leak random junk to the guest later 358 * (2) placate false positives from gcc about fields 359 * being used uninitialized if it chooses to inline both this 360 * function and tswap_siginfo() into host_to_target_siginfo(). 361 */ 362 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); 363 364 /* This is awkward, because we have to use a combination of 365 * the si_code and si_signo to figure out which of the union's 366 * members are valid. (Within the host kernel it is always possible 367 * to tell, but the kernel carefully avoids giving userspace the 368 * high 16 bits of si_code, so we don't have the information to 369 * do this the easy way...) We therefore make our best guess, 370 * bearing in mind that a guest can spoof most of the si_codes 371 * via rt_sigqueueinfo() if it likes. 372 * 373 * Once we have made our guess, we record it in the top 16 bits of 374 * the si_code, so that tswap_siginfo() later can use it. 375 * tswap_siginfo() will strip these top bits out before writing 376 * si_code to the guest (sign-extending the lower bits). 377 */ 378 379 switch (si_code) { 380 case SI_USER: 381 case SI_TKILL: 382 case SI_KERNEL: 383 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. 384 * These are the only unspoofable si_code values. 385 */ 386 tinfo->_sifields._kill._pid = info->si_pid; 387 tinfo->_sifields._kill._uid = info->si_uid; 388 si_type = QEMU_SI_KILL; 389 break; 390 default: 391 /* Everything else is spoofable. Make best guess based on signal */ 392 switch (sig) { 393 case TARGET_SIGCHLD: 394 tinfo->_sifields._sigchld._pid = info->si_pid; 395 tinfo->_sifields._sigchld._uid = info->si_uid; 396 tinfo->_sifields._sigchld._status = info->si_status; 397 tinfo->_sifields._sigchld._utime = info->si_utime; 398 tinfo->_sifields._sigchld._stime = info->si_stime; 399 si_type = QEMU_SI_CHLD; 400 break; 401 case TARGET_SIGIO: 402 tinfo->_sifields._sigpoll._band = info->si_band; 403 tinfo->_sifields._sigpoll._fd = info->si_fd; 404 si_type = QEMU_SI_POLL; 405 break; 406 default: 407 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ 408 tinfo->_sifields._rt._pid = info->si_pid; 409 tinfo->_sifields._rt._uid = info->si_uid; 410 /* XXX: potential problem if 64 bit */ 411 tinfo->_sifields._rt._sigval.sival_ptr 412 = (abi_ulong)(unsigned long)info->si_value.sival_ptr; 413 si_type = QEMU_SI_RT; 414 break; 415 } 416 break; 417 } 418 419 tinfo->si_code = deposit32(si_code, 16, 16, si_type); 420 } 421 422 void tswap_siginfo(target_siginfo_t *tinfo, 423 const target_siginfo_t *info) 424 { 425 int si_type = extract32(info->si_code, 16, 16); 426 int si_code = sextract32(info->si_code, 0, 16); 427 428 __put_user(info->si_signo, &tinfo->si_signo); 429 __put_user(info->si_errno, &tinfo->si_errno); 430 __put_user(si_code, &tinfo->si_code); 431 432 /* We can use our internal marker of which fields in the structure 433 * are valid, rather than duplicating the guesswork of 434 * host_to_target_siginfo_noswap() here. 435 */ 436 switch (si_type) { 437 case QEMU_SI_KILL: 438 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); 439 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); 440 break; 441 case QEMU_SI_TIMER: 442 __put_user(info->_sifields._timer._timer1, 443 &tinfo->_sifields._timer._timer1); 444 __put_user(info->_sifields._timer._timer2, 445 &tinfo->_sifields._timer._timer2); 446 break; 447 case QEMU_SI_POLL: 448 __put_user(info->_sifields._sigpoll._band, 449 &tinfo->_sifields._sigpoll._band); 450 __put_user(info->_sifields._sigpoll._fd, 451 &tinfo->_sifields._sigpoll._fd); 452 break; 453 case QEMU_SI_FAULT: 454 __put_user(info->_sifields._sigfault._addr, 455 &tinfo->_sifields._sigfault._addr); 456 break; 457 case QEMU_SI_CHLD: 458 __put_user(info->_sifields._sigchld._pid, 459 &tinfo->_sifields._sigchld._pid); 460 __put_user(info->_sifields._sigchld._uid, 461 &tinfo->_sifields._sigchld._uid); 462 __put_user(info->_sifields._sigchld._status, 463 &tinfo->_sifields._sigchld._status); 464 __put_user(info->_sifields._sigchld._utime, 465 &tinfo->_sifields._sigchld._utime); 466 __put_user(info->_sifields._sigchld._stime, 467 &tinfo->_sifields._sigchld._stime); 468 break; 469 case QEMU_SI_RT: 470 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); 471 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); 472 __put_user(info->_sifields._rt._sigval.sival_ptr, 473 &tinfo->_sifields._rt._sigval.sival_ptr); 474 break; 475 default: 476 g_assert_not_reached(); 477 } 478 } 479 480 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 481 { 482 target_siginfo_t tgt_tmp; 483 host_to_target_siginfo_noswap(&tgt_tmp, info); 484 tswap_siginfo(tinfo, &tgt_tmp); 485 } 486 487 /* XXX: we support only POSIX RT signals are used. */ 488 /* XXX: find a solution for 64 bit (additional malloced data is needed) */ 489 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) 490 { 491 /* This conversion is used only for the rt_sigqueueinfo syscall, 492 * and so we know that the _rt fields are the valid ones. 493 */ 494 abi_ulong sival_ptr; 495 496 __get_user(info->si_signo, &tinfo->si_signo); 497 __get_user(info->si_errno, &tinfo->si_errno); 498 __get_user(info->si_code, &tinfo->si_code); 499 __get_user(info->si_pid, &tinfo->_sifields._rt._pid); 500 __get_user(info->si_uid, &tinfo->_sifields._rt._uid); 501 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); 502 info->si_value.sival_ptr = (void *)(long)sival_ptr; 503 } 504 505 static int fatal_signal (int sig) 506 { 507 switch (sig) { 508 case TARGET_SIGCHLD: 509 case TARGET_SIGURG: 510 case TARGET_SIGWINCH: 511 /* Ignored by default. */ 512 return 0; 513 case TARGET_SIGCONT: 514 case TARGET_SIGSTOP: 515 case TARGET_SIGTSTP: 516 case TARGET_SIGTTIN: 517 case TARGET_SIGTTOU: 518 /* Job control signals. */ 519 return 0; 520 default: 521 return 1; 522 } 523 } 524 525 /* returns 1 if given signal should dump core if not handled */ 526 static int core_dump_signal(int sig) 527 { 528 switch (sig) { 529 case TARGET_SIGABRT: 530 case TARGET_SIGFPE: 531 case TARGET_SIGILL: 532 case TARGET_SIGQUIT: 533 case TARGET_SIGSEGV: 534 case TARGET_SIGTRAP: 535 case TARGET_SIGBUS: 536 return (1); 537 default: 538 return (0); 539 } 540 } 541 542 static void signal_table_init(void) 543 { 544 int host_sig, target_sig, count; 545 546 /* 547 * Signals are supported starting from TARGET_SIGRTMIN and going up 548 * until we run out of host realtime signals. 549 * glibc at least uses only the lower 2 rt signals and probably 550 * nobody's using the upper ones. 551 * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32) 552 * To fix this properly we need to do manual signal delivery multiplexed 553 * over a single host signal. 554 * Attempts for configure "missing" signals via sigaction will be 555 * silently ignored. 556 */ 557 for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) { 558 target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN; 559 if (target_sig <= TARGET_NSIG) { 560 host_to_target_signal_table[host_sig] = target_sig; 561 } 562 } 563 564 /* generate signal conversion tables */ 565 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 566 target_to_host_signal_table[target_sig] = _NSIG; /* poison */ 567 } 568 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 569 if (host_to_target_signal_table[host_sig] == 0) { 570 host_to_target_signal_table[host_sig] = host_sig; 571 } 572 target_sig = host_to_target_signal_table[host_sig]; 573 if (target_sig <= TARGET_NSIG) { 574 target_to_host_signal_table[target_sig] = host_sig; 575 } 576 } 577 578 if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) { 579 for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) { 580 if (target_to_host_signal_table[target_sig] == _NSIG) { 581 count++; 582 } 583 } 584 trace_signal_table_init(count); 585 } 586 } 587 588 void signal_init(void) 589 { 590 TaskState *ts = (TaskState *)thread_cpu->opaque; 591 struct sigaction act; 592 struct sigaction oact; 593 int i; 594 int host_sig; 595 596 /* initialize signal conversion tables */ 597 signal_table_init(); 598 599 /* Set the signal mask from the host mask. */ 600 sigprocmask(0, 0, &ts->signal_mask); 601 602 sigfillset(&act.sa_mask); 603 act.sa_flags = SA_SIGINFO; 604 act.sa_sigaction = host_signal_handler; 605 for(i = 1; i <= TARGET_NSIG; i++) { 606 #ifdef CONFIG_GPROF 607 if (i == TARGET_SIGPROF) { 608 continue; 609 } 610 #endif 611 host_sig = target_to_host_signal(i); 612 sigaction(host_sig, NULL, &oact); 613 if (oact.sa_sigaction == (void *)SIG_IGN) { 614 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 615 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 616 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 617 } 618 /* If there's already a handler installed then something has 619 gone horribly wrong, so don't even try to handle that case. */ 620 /* Install some handlers for our own use. We need at least 621 SIGSEGV and SIGBUS, to detect exceptions. We can not just 622 trap all signals because it affects syscall interrupt 623 behavior. But do trap all default-fatal signals. */ 624 if (fatal_signal (i)) 625 sigaction(host_sig, &act, NULL); 626 } 627 } 628 629 /* Force a synchronously taken signal. The kernel force_sig() function 630 * also forces the signal to "not blocked, not ignored", but for QEMU 631 * that work is done in process_pending_signals(). 632 */ 633 void force_sig(int sig) 634 { 635 CPUState *cpu = thread_cpu; 636 CPUArchState *env = cpu->env_ptr; 637 target_siginfo_t info; 638 639 info.si_signo = sig; 640 info.si_errno = 0; 641 info.si_code = TARGET_SI_KERNEL; 642 info._sifields._kill._pid = 0; 643 info._sifields._kill._uid = 0; 644 queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); 645 } 646 647 /* Force a SIGSEGV if we couldn't write to memory trying to set 648 * up the signal frame. oldsig is the signal we were trying to handle 649 * at the point of failure. 650 */ 651 #if !defined(TARGET_RISCV) 652 void force_sigsegv(int oldsig) 653 { 654 if (oldsig == SIGSEGV) { 655 /* Make sure we don't try to deliver the signal again; this will 656 * end up with handle_pending_signal() calling dump_core_and_abort(). 657 */ 658 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; 659 } 660 force_sig(TARGET_SIGSEGV); 661 } 662 663 #endif 664 665 /* abort execution with signal */ 666 static void QEMU_NORETURN dump_core_and_abort(int target_sig) 667 { 668 CPUState *cpu = thread_cpu; 669 CPUArchState *env = cpu->env_ptr; 670 TaskState *ts = (TaskState *)cpu->opaque; 671 int host_sig, core_dumped = 0; 672 struct sigaction act; 673 674 host_sig = target_to_host_signal(target_sig); 675 trace_user_force_sig(env, target_sig, host_sig); 676 gdb_signalled(env, target_sig); 677 678 /* dump core if supported by target binary format */ 679 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 680 stop_all_tasks(); 681 core_dumped = 682 ((*ts->bprm->core_dump)(target_sig, env) == 0); 683 } 684 if (core_dumped) { 685 /* we already dumped the core of target process, we don't want 686 * a coredump of qemu itself */ 687 struct rlimit nodump; 688 getrlimit(RLIMIT_CORE, &nodump); 689 nodump.rlim_cur=0; 690 setrlimit(RLIMIT_CORE, &nodump); 691 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", 692 target_sig, strsignal(host_sig), "core dumped" ); 693 } 694 695 /* The proper exit code for dying from an uncaught signal is 696 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 697 * a negative value. To get the proper exit code we need to 698 * actually die from an uncaught signal. Here the default signal 699 * handler is installed, we send ourself a signal and we wait for 700 * it to arrive. */ 701 sigfillset(&act.sa_mask); 702 act.sa_handler = SIG_DFL; 703 act.sa_flags = 0; 704 sigaction(host_sig, &act, NULL); 705 706 /* For some reason raise(host_sig) doesn't send the signal when 707 * statically linked on x86-64. */ 708 kill(getpid(), host_sig); 709 710 /* Make sure the signal isn't masked (just reuse the mask inside 711 of act) */ 712 sigdelset(&act.sa_mask, host_sig); 713 sigsuspend(&act.sa_mask); 714 715 /* unreachable */ 716 abort(); 717 } 718 719 /* queue a signal so that it will be send to the virtual CPU as soon 720 as possible */ 721 int queue_signal(CPUArchState *env, int sig, int si_type, 722 target_siginfo_t *info) 723 { 724 CPUState *cpu = env_cpu(env); 725 TaskState *ts = cpu->opaque; 726 727 trace_user_queue_signal(env, sig); 728 729 info->si_code = deposit32(info->si_code, 16, 16, si_type); 730 731 ts->sync_signal.info = *info; 732 ts->sync_signal.pending = sig; 733 /* signal that a new signal is pending */ 734 qatomic_set(&ts->signal_pending, 1); 735 return 1; /* indicates that the signal was queued */ 736 } 737 738 #ifndef HAVE_SAFE_SYSCALL 739 static inline void rewind_if_in_safe_syscall(void *puc) 740 { 741 /* Default version: never rewind */ 742 } 743 #endif 744 745 static void host_signal_handler(int host_signum, siginfo_t *info, 746 void *puc) 747 { 748 CPUArchState *env = thread_cpu->env_ptr; 749 CPUState *cpu = env_cpu(env); 750 TaskState *ts = cpu->opaque; 751 752 int sig; 753 target_siginfo_t tinfo; 754 ucontext_t *uc = puc; 755 struct emulated_sigtable *k; 756 757 /* the CPU emulator uses some host signals to detect exceptions, 758 we forward to it some signals */ 759 if ((host_signum == SIGSEGV || host_signum == SIGBUS) 760 && info->si_code > 0) { 761 if (cpu_signal_handler(host_signum, info, puc)) 762 return; 763 } 764 765 /* get target signal number */ 766 sig = host_to_target_signal(host_signum); 767 if (sig < 1 || sig > TARGET_NSIG) 768 return; 769 trace_user_host_signal(env, host_signum, sig); 770 771 rewind_if_in_safe_syscall(puc); 772 773 host_to_target_siginfo_noswap(&tinfo, info); 774 k = &ts->sigtab[sig - 1]; 775 k->info = tinfo; 776 k->pending = sig; 777 ts->signal_pending = 1; 778 779 /* Block host signals until target signal handler entered. We 780 * can't block SIGSEGV or SIGBUS while we're executing guest 781 * code in case the guest code provokes one in the window between 782 * now and it getting out to the main loop. Signals will be 783 * unblocked again in process_pending_signals(). 784 * 785 * WARNING: we cannot use sigfillset() here because the uc_sigmask 786 * field is a kernel sigset_t, which is much smaller than the 787 * libc sigset_t which sigfillset() operates on. Using sigfillset() 788 * would write 0xff bytes off the end of the structure and trash 789 * data on the struct. 790 * We can't use sizeof(uc->uc_sigmask) either, because the libc 791 * headers define the struct field with the wrong (too large) type. 792 */ 793 memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE); 794 sigdelset(&uc->uc_sigmask, SIGSEGV); 795 sigdelset(&uc->uc_sigmask, SIGBUS); 796 797 /* interrupt the virtual CPU as soon as possible */ 798 cpu_exit(thread_cpu); 799 } 800 801 /* do_sigaltstack() returns target values and errnos. */ 802 /* compare linux/kernel/signal.c:do_sigaltstack() */ 803 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, 804 CPUArchState *env) 805 { 806 target_stack_t oss, *uoss = NULL; 807 abi_long ret = -TARGET_EFAULT; 808 809 if (uoss_addr) { 810 /* Verify writability now, but do not alter user memory yet. */ 811 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { 812 goto out; 813 } 814 target_save_altstack(&oss, env); 815 } 816 817 if (uss_addr) { 818 target_stack_t *uss; 819 820 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 821 goto out; 822 } 823 ret = target_restore_altstack(uss, env); 824 if (ret) { 825 goto out; 826 } 827 } 828 829 if (uoss_addr) { 830 memcpy(uoss, &oss, sizeof(oss)); 831 unlock_user_struct(uoss, uoss_addr, 1); 832 uoss = NULL; 833 } 834 ret = 0; 835 836 out: 837 if (uoss) { 838 unlock_user_struct(uoss, uoss_addr, 0); 839 } 840 return ret; 841 } 842 843 /* do_sigaction() return target values and host errnos */ 844 int do_sigaction(int sig, const struct target_sigaction *act, 845 struct target_sigaction *oact, abi_ulong ka_restorer) 846 { 847 struct target_sigaction *k; 848 struct sigaction act1; 849 int host_sig; 850 int ret = 0; 851 852 trace_signal_do_sigaction_guest(sig, TARGET_NSIG); 853 854 if (sig < 1 || sig > TARGET_NSIG || sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) { 855 return -TARGET_EINVAL; 856 } 857 858 if (block_signals()) { 859 return -TARGET_ERESTARTSYS; 860 } 861 862 k = &sigact_table[sig - 1]; 863 if (oact) { 864 __put_user(k->_sa_handler, &oact->_sa_handler); 865 __put_user(k->sa_flags, &oact->sa_flags); 866 #ifdef TARGET_ARCH_HAS_SA_RESTORER 867 __put_user(k->sa_restorer, &oact->sa_restorer); 868 #endif 869 /* Not swapped. */ 870 oact->sa_mask = k->sa_mask; 871 } 872 if (act) { 873 /* FIXME: This is not threadsafe. */ 874 __get_user(k->_sa_handler, &act->_sa_handler); 875 __get_user(k->sa_flags, &act->sa_flags); 876 #ifdef TARGET_ARCH_HAS_SA_RESTORER 877 __get_user(k->sa_restorer, &act->sa_restorer); 878 #endif 879 #ifdef TARGET_ARCH_HAS_KA_RESTORER 880 k->ka_restorer = ka_restorer; 881 #endif 882 /* To be swapped in target_to_host_sigset. */ 883 k->sa_mask = act->sa_mask; 884 885 /* we update the host linux signal state */ 886 host_sig = target_to_host_signal(sig); 887 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); 888 if (host_sig > SIGRTMAX) { 889 /* we don't have enough host signals to map all target signals */ 890 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", 891 sig); 892 /* 893 * we don't return an error here because some programs try to 894 * register an handler for all possible rt signals even if they 895 * don't need it. 896 * An error here can abort them whereas there can be no problem 897 * to not have the signal available later. 898 * This is the case for golang, 899 * See https://github.com/golang/go/issues/33746 900 * So we silently ignore the error. 901 */ 902 return 0; 903 } 904 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 905 sigfillset(&act1.sa_mask); 906 act1.sa_flags = SA_SIGINFO; 907 if (k->sa_flags & TARGET_SA_RESTART) 908 act1.sa_flags |= SA_RESTART; 909 /* NOTE: it is important to update the host kernel signal 910 ignore state to avoid getting unexpected interrupted 911 syscalls */ 912 if (k->_sa_handler == TARGET_SIG_IGN) { 913 act1.sa_sigaction = (void *)SIG_IGN; 914 } else if (k->_sa_handler == TARGET_SIG_DFL) { 915 if (fatal_signal (sig)) 916 act1.sa_sigaction = host_signal_handler; 917 else 918 act1.sa_sigaction = (void *)SIG_DFL; 919 } else { 920 act1.sa_sigaction = host_signal_handler; 921 } 922 ret = sigaction(host_sig, &act1, NULL); 923 } 924 } 925 return ret; 926 } 927 928 static void handle_pending_signal(CPUArchState *cpu_env, int sig, 929 struct emulated_sigtable *k) 930 { 931 CPUState *cpu = env_cpu(cpu_env); 932 abi_ulong handler; 933 sigset_t set; 934 target_sigset_t target_old_set; 935 struct target_sigaction *sa; 936 TaskState *ts = cpu->opaque; 937 938 trace_user_handle_signal(cpu_env, sig); 939 /* dequeue signal */ 940 k->pending = 0; 941 942 sig = gdb_handlesig(cpu, sig); 943 if (!sig) { 944 sa = NULL; 945 handler = TARGET_SIG_IGN; 946 } else { 947 sa = &sigact_table[sig - 1]; 948 handler = sa->_sa_handler; 949 } 950 951 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 952 print_taken_signal(sig, &k->info); 953 } 954 955 if (handler == TARGET_SIG_DFL) { 956 /* default handler : ignore some signal. The other are job control or fatal */ 957 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { 958 kill(getpid(),SIGSTOP); 959 } else if (sig != TARGET_SIGCHLD && 960 sig != TARGET_SIGURG && 961 sig != TARGET_SIGWINCH && 962 sig != TARGET_SIGCONT) { 963 dump_core_and_abort(sig); 964 } 965 } else if (handler == TARGET_SIG_IGN) { 966 /* ignore sig */ 967 } else if (handler == TARGET_SIG_ERR) { 968 dump_core_and_abort(sig); 969 } else { 970 /* compute the blocked signals during the handler execution */ 971 sigset_t *blocked_set; 972 973 target_to_host_sigset(&set, &sa->sa_mask); 974 /* SA_NODEFER indicates that the current signal should not be 975 blocked during the handler */ 976 if (!(sa->sa_flags & TARGET_SA_NODEFER)) 977 sigaddset(&set, target_to_host_signal(sig)); 978 979 /* save the previous blocked signal state to restore it at the 980 end of the signal execution (see do_sigreturn) */ 981 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 982 983 /* block signals in the handler */ 984 blocked_set = ts->in_sigsuspend ? 985 &ts->sigsuspend_mask : &ts->signal_mask; 986 sigorset(&ts->signal_mask, blocked_set, &set); 987 ts->in_sigsuspend = 0; 988 989 /* if the CPU is in VM86 mode, we restore the 32 bit values */ 990 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 991 { 992 CPUX86State *env = cpu_env; 993 if (env->eflags & VM_MASK) 994 save_v86_state(env); 995 } 996 #endif 997 /* prepare the stack frame of the virtual CPU */ 998 #if defined(TARGET_ARCH_HAS_SETUP_FRAME) 999 if (sa->sa_flags & TARGET_SA_SIGINFO) { 1000 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1001 } else { 1002 setup_frame(sig, sa, &target_old_set, cpu_env); 1003 } 1004 #else 1005 /* These targets do not have traditional signals. */ 1006 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1007 #endif 1008 if (sa->sa_flags & TARGET_SA_RESETHAND) { 1009 sa->_sa_handler = TARGET_SIG_DFL; 1010 } 1011 } 1012 } 1013 1014 void process_pending_signals(CPUArchState *cpu_env) 1015 { 1016 CPUState *cpu = env_cpu(cpu_env); 1017 int sig; 1018 TaskState *ts = cpu->opaque; 1019 sigset_t set; 1020 sigset_t *blocked_set; 1021 1022 while (qatomic_read(&ts->signal_pending)) { 1023 /* FIXME: This is not threadsafe. */ 1024 sigfillset(&set); 1025 sigprocmask(SIG_SETMASK, &set, 0); 1026 1027 restart_scan: 1028 sig = ts->sync_signal.pending; 1029 if (sig) { 1030 /* Synchronous signals are forced, 1031 * see force_sig_info() and callers in Linux 1032 * Note that not all of our queue_signal() calls in QEMU correspond 1033 * to force_sig_info() calls in Linux (some are send_sig_info()). 1034 * However it seems like a kernel bug to me to allow the process 1035 * to block a synchronous signal since it could then just end up 1036 * looping round and round indefinitely. 1037 */ 1038 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) 1039 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 1040 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); 1041 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 1042 } 1043 1044 handle_pending_signal(cpu_env, sig, &ts->sync_signal); 1045 } 1046 1047 for (sig = 1; sig <= TARGET_NSIG; sig++) { 1048 blocked_set = ts->in_sigsuspend ? 1049 &ts->sigsuspend_mask : &ts->signal_mask; 1050 1051 if (ts->sigtab[sig - 1].pending && 1052 (!sigismember(blocked_set, 1053 target_to_host_signal_table[sig]))) { 1054 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); 1055 /* Restart scan from the beginning, as handle_pending_signal 1056 * might have resulted in a new synchronous signal (eg SIGSEGV). 1057 */ 1058 goto restart_scan; 1059 } 1060 } 1061 1062 /* if no signal is pending, unblock signals and recheck (the act 1063 * of unblocking might cause us to take another host signal which 1064 * will set signal_pending again). 1065 */ 1066 qatomic_set(&ts->signal_pending, 0); 1067 ts->in_sigsuspend = 0; 1068 set = ts->signal_mask; 1069 sigdelset(&set, SIGSEGV); 1070 sigdelset(&set, SIGBUS); 1071 sigprocmask(SIG_SETMASK, &set, 0); 1072 } 1073 ts->in_sigsuspend = 0; 1074 } 1075