1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include "exec/gdbstub.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 24 #include <sys/ucontext.h> 25 #include <sys/resource.h> 26 27 #include "qemu.h" 28 #include "user-internals.h" 29 #include "strace.h" 30 #include "loader.h" 31 #include "trace.h" 32 #include "signal-common.h" 33 #include "host-signal.h" 34 #include "user/safe-syscall.h" 35 36 static struct target_sigaction sigact_table[TARGET_NSIG]; 37 38 static void host_signal_handler(int host_signum, siginfo_t *info, 39 void *puc); 40 41 /* Fallback addresses into sigtramp page. */ 42 abi_ulong default_sigreturn; 43 abi_ulong default_rt_sigreturn; 44 45 /* 46 * System includes define _NSIG as SIGRTMAX + 1, 47 * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX 48 * and the first signal is SIGHUP defined as 1 49 * Signal number 0 is reserved for use as kill(pid, 0), to test whether 50 * a process exists without sending it a signal. 51 */ 52 #ifdef __SIGRTMAX 53 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); 54 #endif 55 static uint8_t host_to_target_signal_table[_NSIG] = { 56 #define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig, 57 MAKE_SIGNAL_LIST 58 #undef MAKE_SIG_ENTRY 59 /* next signals stay the same */ 60 }; 61 62 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; 63 64 /* valid sig is between 1 and _NSIG - 1 */ 65 int host_to_target_signal(int sig) 66 { 67 if (sig < 1 || sig >= _NSIG) { 68 return sig; 69 } 70 return host_to_target_signal_table[sig]; 71 } 72 73 /* valid sig is between 1 and TARGET_NSIG */ 74 int target_to_host_signal(int sig) 75 { 76 if (sig < 1 || sig > TARGET_NSIG) { 77 return sig; 78 } 79 return target_to_host_signal_table[sig]; 80 } 81 82 static inline void target_sigaddset(target_sigset_t *set, int signum) 83 { 84 signum--; 85 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 86 set->sig[signum / TARGET_NSIG_BPW] |= mask; 87 } 88 89 static inline int target_sigismember(const target_sigset_t *set, int signum) 90 { 91 signum--; 92 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 93 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); 94 } 95 96 void host_to_target_sigset_internal(target_sigset_t *d, 97 const sigset_t *s) 98 { 99 int host_sig, target_sig; 100 target_sigemptyset(d); 101 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 102 target_sig = host_to_target_signal(host_sig); 103 if (target_sig < 1 || target_sig > TARGET_NSIG) { 104 continue; 105 } 106 if (sigismember(s, host_sig)) { 107 target_sigaddset(d, target_sig); 108 } 109 } 110 } 111 112 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 113 { 114 target_sigset_t d1; 115 int i; 116 117 host_to_target_sigset_internal(&d1, s); 118 for(i = 0;i < TARGET_NSIG_WORDS; i++) 119 d->sig[i] = tswapal(d1.sig[i]); 120 } 121 122 void target_to_host_sigset_internal(sigset_t *d, 123 const target_sigset_t *s) 124 { 125 int host_sig, target_sig; 126 sigemptyset(d); 127 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 128 host_sig = target_to_host_signal(target_sig); 129 if (host_sig < 1 || host_sig >= _NSIG) { 130 continue; 131 } 132 if (target_sigismember(s, target_sig)) { 133 sigaddset(d, host_sig); 134 } 135 } 136 } 137 138 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 139 { 140 target_sigset_t s1; 141 int i; 142 143 for(i = 0;i < TARGET_NSIG_WORDS; i++) 144 s1.sig[i] = tswapal(s->sig[i]); 145 target_to_host_sigset_internal(d, &s1); 146 } 147 148 void host_to_target_old_sigset(abi_ulong *old_sigset, 149 const sigset_t *sigset) 150 { 151 target_sigset_t d; 152 host_to_target_sigset(&d, sigset); 153 *old_sigset = d.sig[0]; 154 } 155 156 void target_to_host_old_sigset(sigset_t *sigset, 157 const abi_ulong *old_sigset) 158 { 159 target_sigset_t d; 160 int i; 161 162 d.sig[0] = *old_sigset; 163 for(i = 1;i < TARGET_NSIG_WORDS; i++) 164 d.sig[i] = 0; 165 target_to_host_sigset(sigset, &d); 166 } 167 168 int block_signals(void) 169 { 170 TaskState *ts = (TaskState *)thread_cpu->opaque; 171 sigset_t set; 172 173 /* It's OK to block everything including SIGSEGV, because we won't 174 * run any further guest code before unblocking signals in 175 * process_pending_signals(). 176 */ 177 sigfillset(&set); 178 sigprocmask(SIG_SETMASK, &set, 0); 179 180 return qatomic_xchg(&ts->signal_pending, 1); 181 } 182 183 /* Wrapper for sigprocmask function 184 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset 185 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if 186 * a signal was already pending and the syscall must be restarted, or 187 * 0 on success. 188 * If set is NULL, this is guaranteed not to fail. 189 */ 190 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) 191 { 192 TaskState *ts = (TaskState *)thread_cpu->opaque; 193 194 if (oldset) { 195 *oldset = ts->signal_mask; 196 } 197 198 if (set) { 199 int i; 200 201 if (block_signals()) { 202 return -QEMU_ERESTARTSYS; 203 } 204 205 switch (how) { 206 case SIG_BLOCK: 207 sigorset(&ts->signal_mask, &ts->signal_mask, set); 208 break; 209 case SIG_UNBLOCK: 210 for (i = 1; i <= NSIG; ++i) { 211 if (sigismember(set, i)) { 212 sigdelset(&ts->signal_mask, i); 213 } 214 } 215 break; 216 case SIG_SETMASK: 217 ts->signal_mask = *set; 218 break; 219 default: 220 g_assert_not_reached(); 221 } 222 223 /* Silently ignore attempts to change blocking status of KILL or STOP */ 224 sigdelset(&ts->signal_mask, SIGKILL); 225 sigdelset(&ts->signal_mask, SIGSTOP); 226 } 227 return 0; 228 } 229 230 /* Just set the guest's signal mask to the specified value; the 231 * caller is assumed to have called block_signals() already. 232 */ 233 void set_sigmask(const sigset_t *set) 234 { 235 TaskState *ts = (TaskState *)thread_cpu->opaque; 236 237 ts->signal_mask = *set; 238 } 239 240 /* sigaltstack management */ 241 242 int on_sig_stack(unsigned long sp) 243 { 244 TaskState *ts = (TaskState *)thread_cpu->opaque; 245 246 return (sp - ts->sigaltstack_used.ss_sp 247 < ts->sigaltstack_used.ss_size); 248 } 249 250 int sas_ss_flags(unsigned long sp) 251 { 252 TaskState *ts = (TaskState *)thread_cpu->opaque; 253 254 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE 255 : on_sig_stack(sp) ? SS_ONSTACK : 0); 256 } 257 258 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) 259 { 260 /* 261 * This is the X/Open sanctioned signal stack switching. 262 */ 263 TaskState *ts = (TaskState *)thread_cpu->opaque; 264 265 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 266 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 267 } 268 return sp; 269 } 270 271 void target_save_altstack(target_stack_t *uss, CPUArchState *env) 272 { 273 TaskState *ts = (TaskState *)thread_cpu->opaque; 274 275 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); 276 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); 277 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); 278 } 279 280 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) 281 { 282 TaskState *ts = (TaskState *)thread_cpu->opaque; 283 size_t minstacksize = TARGET_MINSIGSTKSZ; 284 target_stack_t ss; 285 286 #if defined(TARGET_PPC64) 287 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ 288 struct image_info *image = ts->info; 289 if (get_ppc64_abi(image) > 1) { 290 minstacksize = 4096; 291 } 292 #endif 293 294 __get_user(ss.ss_sp, &uss->ss_sp); 295 __get_user(ss.ss_size, &uss->ss_size); 296 __get_user(ss.ss_flags, &uss->ss_flags); 297 298 if (on_sig_stack(get_sp_from_cpustate(env))) { 299 return -TARGET_EPERM; 300 } 301 302 switch (ss.ss_flags) { 303 default: 304 return -TARGET_EINVAL; 305 306 case TARGET_SS_DISABLE: 307 ss.ss_size = 0; 308 ss.ss_sp = 0; 309 break; 310 311 case TARGET_SS_ONSTACK: 312 case 0: 313 if (ss.ss_size < minstacksize) { 314 return -TARGET_ENOMEM; 315 } 316 break; 317 } 318 319 ts->sigaltstack_used.ss_sp = ss.ss_sp; 320 ts->sigaltstack_used.ss_size = ss.ss_size; 321 return 0; 322 } 323 324 /* siginfo conversion */ 325 326 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 327 const siginfo_t *info) 328 { 329 int sig = host_to_target_signal(info->si_signo); 330 int si_code = info->si_code; 331 int si_type; 332 tinfo->si_signo = sig; 333 tinfo->si_errno = 0; 334 tinfo->si_code = info->si_code; 335 336 /* This memset serves two purposes: 337 * (1) ensure we don't leak random junk to the guest later 338 * (2) placate false positives from gcc about fields 339 * being used uninitialized if it chooses to inline both this 340 * function and tswap_siginfo() into host_to_target_siginfo(). 341 */ 342 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); 343 344 /* This is awkward, because we have to use a combination of 345 * the si_code and si_signo to figure out which of the union's 346 * members are valid. (Within the host kernel it is always possible 347 * to tell, but the kernel carefully avoids giving userspace the 348 * high 16 bits of si_code, so we don't have the information to 349 * do this the easy way...) We therefore make our best guess, 350 * bearing in mind that a guest can spoof most of the si_codes 351 * via rt_sigqueueinfo() if it likes. 352 * 353 * Once we have made our guess, we record it in the top 16 bits of 354 * the si_code, so that tswap_siginfo() later can use it. 355 * tswap_siginfo() will strip these top bits out before writing 356 * si_code to the guest (sign-extending the lower bits). 357 */ 358 359 switch (si_code) { 360 case SI_USER: 361 case SI_TKILL: 362 case SI_KERNEL: 363 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. 364 * These are the only unspoofable si_code values. 365 */ 366 tinfo->_sifields._kill._pid = info->si_pid; 367 tinfo->_sifields._kill._uid = info->si_uid; 368 si_type = QEMU_SI_KILL; 369 break; 370 default: 371 /* Everything else is spoofable. Make best guess based on signal */ 372 switch (sig) { 373 case TARGET_SIGCHLD: 374 tinfo->_sifields._sigchld._pid = info->si_pid; 375 tinfo->_sifields._sigchld._uid = info->si_uid; 376 if (si_code == CLD_EXITED) 377 tinfo->_sifields._sigchld._status = info->si_status; 378 else 379 tinfo->_sifields._sigchld._status 380 = host_to_target_signal(info->si_status & 0x7f) 381 | (info->si_status & ~0x7f); 382 tinfo->_sifields._sigchld._utime = info->si_utime; 383 tinfo->_sifields._sigchld._stime = info->si_stime; 384 si_type = QEMU_SI_CHLD; 385 break; 386 case TARGET_SIGIO: 387 tinfo->_sifields._sigpoll._band = info->si_band; 388 tinfo->_sifields._sigpoll._fd = info->si_fd; 389 si_type = QEMU_SI_POLL; 390 break; 391 default: 392 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ 393 tinfo->_sifields._rt._pid = info->si_pid; 394 tinfo->_sifields._rt._uid = info->si_uid; 395 /* XXX: potential problem if 64 bit */ 396 tinfo->_sifields._rt._sigval.sival_ptr 397 = (abi_ulong)(unsigned long)info->si_value.sival_ptr; 398 si_type = QEMU_SI_RT; 399 break; 400 } 401 break; 402 } 403 404 tinfo->si_code = deposit32(si_code, 16, 16, si_type); 405 } 406 407 void tswap_siginfo(target_siginfo_t *tinfo, 408 const target_siginfo_t *info) 409 { 410 int si_type = extract32(info->si_code, 16, 16); 411 int si_code = sextract32(info->si_code, 0, 16); 412 413 __put_user(info->si_signo, &tinfo->si_signo); 414 __put_user(info->si_errno, &tinfo->si_errno); 415 __put_user(si_code, &tinfo->si_code); 416 417 /* We can use our internal marker of which fields in the structure 418 * are valid, rather than duplicating the guesswork of 419 * host_to_target_siginfo_noswap() here. 420 */ 421 switch (si_type) { 422 case QEMU_SI_KILL: 423 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); 424 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); 425 break; 426 case QEMU_SI_TIMER: 427 __put_user(info->_sifields._timer._timer1, 428 &tinfo->_sifields._timer._timer1); 429 __put_user(info->_sifields._timer._timer2, 430 &tinfo->_sifields._timer._timer2); 431 break; 432 case QEMU_SI_POLL: 433 __put_user(info->_sifields._sigpoll._band, 434 &tinfo->_sifields._sigpoll._band); 435 __put_user(info->_sifields._sigpoll._fd, 436 &tinfo->_sifields._sigpoll._fd); 437 break; 438 case QEMU_SI_FAULT: 439 __put_user(info->_sifields._sigfault._addr, 440 &tinfo->_sifields._sigfault._addr); 441 break; 442 case QEMU_SI_CHLD: 443 __put_user(info->_sifields._sigchld._pid, 444 &tinfo->_sifields._sigchld._pid); 445 __put_user(info->_sifields._sigchld._uid, 446 &tinfo->_sifields._sigchld._uid); 447 __put_user(info->_sifields._sigchld._status, 448 &tinfo->_sifields._sigchld._status); 449 __put_user(info->_sifields._sigchld._utime, 450 &tinfo->_sifields._sigchld._utime); 451 __put_user(info->_sifields._sigchld._stime, 452 &tinfo->_sifields._sigchld._stime); 453 break; 454 case QEMU_SI_RT: 455 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); 456 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); 457 __put_user(info->_sifields._rt._sigval.sival_ptr, 458 &tinfo->_sifields._rt._sigval.sival_ptr); 459 break; 460 default: 461 g_assert_not_reached(); 462 } 463 } 464 465 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 466 { 467 target_siginfo_t tgt_tmp; 468 host_to_target_siginfo_noswap(&tgt_tmp, info); 469 tswap_siginfo(tinfo, &tgt_tmp); 470 } 471 472 /* XXX: we support only POSIX RT signals are used. */ 473 /* XXX: find a solution for 64 bit (additional malloced data is needed) */ 474 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) 475 { 476 /* This conversion is used only for the rt_sigqueueinfo syscall, 477 * and so we know that the _rt fields are the valid ones. 478 */ 479 abi_ulong sival_ptr; 480 481 __get_user(info->si_signo, &tinfo->si_signo); 482 __get_user(info->si_errno, &tinfo->si_errno); 483 __get_user(info->si_code, &tinfo->si_code); 484 __get_user(info->si_pid, &tinfo->_sifields._rt._pid); 485 __get_user(info->si_uid, &tinfo->_sifields._rt._uid); 486 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); 487 info->si_value.sival_ptr = (void *)(long)sival_ptr; 488 } 489 490 static int fatal_signal (int sig) 491 { 492 switch (sig) { 493 case TARGET_SIGCHLD: 494 case TARGET_SIGURG: 495 case TARGET_SIGWINCH: 496 /* Ignored by default. */ 497 return 0; 498 case TARGET_SIGCONT: 499 case TARGET_SIGSTOP: 500 case TARGET_SIGTSTP: 501 case TARGET_SIGTTIN: 502 case TARGET_SIGTTOU: 503 /* Job control signals. */ 504 return 0; 505 default: 506 return 1; 507 } 508 } 509 510 /* returns 1 if given signal should dump core if not handled */ 511 static int core_dump_signal(int sig) 512 { 513 switch (sig) { 514 case TARGET_SIGABRT: 515 case TARGET_SIGFPE: 516 case TARGET_SIGILL: 517 case TARGET_SIGQUIT: 518 case TARGET_SIGSEGV: 519 case TARGET_SIGTRAP: 520 case TARGET_SIGBUS: 521 return (1); 522 default: 523 return (0); 524 } 525 } 526 527 static void signal_table_init(void) 528 { 529 int host_sig, target_sig, count; 530 531 /* 532 * Signals are supported starting from TARGET_SIGRTMIN and going up 533 * until we run out of host realtime signals. 534 * glibc at least uses only the lower 2 rt signals and probably 535 * nobody's using the upper ones. 536 * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32) 537 * To fix this properly we need to do manual signal delivery multiplexed 538 * over a single host signal. 539 * Attempts for configure "missing" signals via sigaction will be 540 * silently ignored. 541 */ 542 for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) { 543 target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN; 544 if (target_sig <= TARGET_NSIG) { 545 host_to_target_signal_table[host_sig] = target_sig; 546 } 547 } 548 549 /* generate signal conversion tables */ 550 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 551 target_to_host_signal_table[target_sig] = _NSIG; /* poison */ 552 } 553 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 554 if (host_to_target_signal_table[host_sig] == 0) { 555 host_to_target_signal_table[host_sig] = host_sig; 556 } 557 target_sig = host_to_target_signal_table[host_sig]; 558 if (target_sig <= TARGET_NSIG) { 559 target_to_host_signal_table[target_sig] = host_sig; 560 } 561 } 562 563 if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) { 564 for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) { 565 if (target_to_host_signal_table[target_sig] == _NSIG) { 566 count++; 567 } 568 } 569 trace_signal_table_init(count); 570 } 571 } 572 573 void signal_init(void) 574 { 575 TaskState *ts = (TaskState *)thread_cpu->opaque; 576 struct sigaction act; 577 struct sigaction oact; 578 int i; 579 int host_sig; 580 581 /* initialize signal conversion tables */ 582 signal_table_init(); 583 584 /* Set the signal mask from the host mask. */ 585 sigprocmask(0, 0, &ts->signal_mask); 586 587 sigfillset(&act.sa_mask); 588 act.sa_flags = SA_SIGINFO; 589 act.sa_sigaction = host_signal_handler; 590 for(i = 1; i <= TARGET_NSIG; i++) { 591 #ifdef CONFIG_GPROF 592 if (i == TARGET_SIGPROF) { 593 continue; 594 } 595 #endif 596 host_sig = target_to_host_signal(i); 597 sigaction(host_sig, NULL, &oact); 598 if (oact.sa_sigaction == (void *)SIG_IGN) { 599 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 600 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 601 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 602 } 603 /* If there's already a handler installed then something has 604 gone horribly wrong, so don't even try to handle that case. */ 605 /* Install some handlers for our own use. We need at least 606 SIGSEGV and SIGBUS, to detect exceptions. We can not just 607 trap all signals because it affects syscall interrupt 608 behavior. But do trap all default-fatal signals. */ 609 if (fatal_signal (i)) 610 sigaction(host_sig, &act, NULL); 611 } 612 } 613 614 /* Force a synchronously taken signal. The kernel force_sig() function 615 * also forces the signal to "not blocked, not ignored", but for QEMU 616 * that work is done in process_pending_signals(). 617 */ 618 void force_sig(int sig) 619 { 620 CPUState *cpu = thread_cpu; 621 CPUArchState *env = cpu->env_ptr; 622 target_siginfo_t info = {}; 623 624 info.si_signo = sig; 625 info.si_errno = 0; 626 info.si_code = TARGET_SI_KERNEL; 627 info._sifields._kill._pid = 0; 628 info._sifields._kill._uid = 0; 629 queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); 630 } 631 632 /* 633 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 634 * 'force' part is handled in process_pending_signals(). 635 */ 636 void force_sig_fault(int sig, int code, abi_ulong addr) 637 { 638 CPUState *cpu = thread_cpu; 639 CPUArchState *env = cpu->env_ptr; 640 target_siginfo_t info = {}; 641 642 info.si_signo = sig; 643 info.si_errno = 0; 644 info.si_code = code; 645 info._sifields._sigfault._addr = addr; 646 queue_signal(env, sig, QEMU_SI_FAULT, &info); 647 } 648 649 /* Force a SIGSEGV if we couldn't write to memory trying to set 650 * up the signal frame. oldsig is the signal we were trying to handle 651 * at the point of failure. 652 */ 653 #if !defined(TARGET_RISCV) 654 void force_sigsegv(int oldsig) 655 { 656 if (oldsig == SIGSEGV) { 657 /* Make sure we don't try to deliver the signal again; this will 658 * end up with handle_pending_signal() calling dump_core_and_abort(). 659 */ 660 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; 661 } 662 force_sig(TARGET_SIGSEGV); 663 } 664 #endif 665 666 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 667 MMUAccessType access_type, bool maperr, uintptr_t ra) 668 { 669 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 670 671 if (tcg_ops->record_sigsegv) { 672 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 673 } 674 675 force_sig_fault(TARGET_SIGSEGV, 676 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 677 addr); 678 cpu->exception_index = EXCP_INTERRUPT; 679 cpu_loop_exit_restore(cpu, ra); 680 } 681 682 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 683 MMUAccessType access_type, uintptr_t ra) 684 { 685 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 686 687 if (tcg_ops->record_sigbus) { 688 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 689 } 690 691 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 692 cpu->exception_index = EXCP_INTERRUPT; 693 cpu_loop_exit_restore(cpu, ra); 694 } 695 696 /* abort execution with signal */ 697 static G_NORETURN 698 void dump_core_and_abort(int target_sig) 699 { 700 CPUState *cpu = thread_cpu; 701 CPUArchState *env = cpu->env_ptr; 702 TaskState *ts = (TaskState *)cpu->opaque; 703 int host_sig, core_dumped = 0; 704 struct sigaction act; 705 706 host_sig = target_to_host_signal(target_sig); 707 trace_user_dump_core_and_abort(env, target_sig, host_sig); 708 gdb_signalled(env, target_sig); 709 710 /* dump core if supported by target binary format */ 711 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 712 stop_all_tasks(); 713 core_dumped = 714 ((*ts->bprm->core_dump)(target_sig, env) == 0); 715 } 716 if (core_dumped) { 717 /* we already dumped the core of target process, we don't want 718 * a coredump of qemu itself */ 719 struct rlimit nodump; 720 getrlimit(RLIMIT_CORE, &nodump); 721 nodump.rlim_cur=0; 722 setrlimit(RLIMIT_CORE, &nodump); 723 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", 724 target_sig, strsignal(host_sig), "core dumped" ); 725 } 726 727 /* The proper exit code for dying from an uncaught signal is 728 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 729 * a negative value. To get the proper exit code we need to 730 * actually die from an uncaught signal. Here the default signal 731 * handler is installed, we send ourself a signal and we wait for 732 * it to arrive. */ 733 sigfillset(&act.sa_mask); 734 act.sa_handler = SIG_DFL; 735 act.sa_flags = 0; 736 sigaction(host_sig, &act, NULL); 737 738 /* For some reason raise(host_sig) doesn't send the signal when 739 * statically linked on x86-64. */ 740 kill(getpid(), host_sig); 741 742 /* Make sure the signal isn't masked (just reuse the mask inside 743 of act) */ 744 sigdelset(&act.sa_mask, host_sig); 745 sigsuspend(&act.sa_mask); 746 747 /* unreachable */ 748 abort(); 749 } 750 751 /* queue a signal so that it will be send to the virtual CPU as soon 752 as possible */ 753 void queue_signal(CPUArchState *env, int sig, int si_type, 754 target_siginfo_t *info) 755 { 756 CPUState *cpu = env_cpu(env); 757 TaskState *ts = cpu->opaque; 758 759 trace_user_queue_signal(env, sig); 760 761 info->si_code = deposit32(info->si_code, 16, 16, si_type); 762 763 ts->sync_signal.info = *info; 764 ts->sync_signal.pending = sig; 765 /* signal that a new signal is pending */ 766 qatomic_set(&ts->signal_pending, 1); 767 } 768 769 770 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 771 static inline void rewind_if_in_safe_syscall(void *puc) 772 { 773 host_sigcontext *uc = (host_sigcontext *)puc; 774 uintptr_t pcreg = host_signal_pc(uc); 775 776 if (pcreg > (uintptr_t)safe_syscall_start 777 && pcreg < (uintptr_t)safe_syscall_end) { 778 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 779 } 780 } 781 782 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 783 { 784 CPUArchState *env = thread_cpu->env_ptr; 785 CPUState *cpu = env_cpu(env); 786 TaskState *ts = cpu->opaque; 787 target_siginfo_t tinfo; 788 host_sigcontext *uc = puc; 789 struct emulated_sigtable *k; 790 int guest_sig; 791 uintptr_t pc = 0; 792 bool sync_sig = false; 793 void *sigmask = host_signal_mask(uc); 794 795 /* 796 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 797 * handling wrt signal blocking and unwinding. 798 */ 799 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 800 MMUAccessType access_type; 801 uintptr_t host_addr; 802 abi_ptr guest_addr; 803 bool is_write; 804 805 host_addr = (uintptr_t)info->si_addr; 806 807 /* 808 * Convert forcefully to guest address space: addresses outside 809 * reserved_va are still valid to report via SEGV_MAPERR. 810 */ 811 guest_addr = h2g_nocheck(host_addr); 812 813 pc = host_signal_pc(uc); 814 is_write = host_signal_write(info, uc); 815 access_type = adjust_signal_pc(&pc, is_write); 816 817 if (host_sig == SIGSEGV) { 818 bool maperr = true; 819 820 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 821 /* If this was a write to a TB protected page, restart. */ 822 if (is_write && 823 handle_sigsegv_accerr_write(cpu, sigmask, pc, guest_addr)) { 824 return; 825 } 826 827 /* 828 * With reserved_va, the whole address space is PROT_NONE, 829 * which means that we may get ACCERR when we want MAPERR. 830 */ 831 if (page_get_flags(guest_addr) & PAGE_VALID) { 832 maperr = false; 833 } else { 834 info->si_code = SEGV_MAPERR; 835 } 836 } 837 838 sigprocmask(SIG_SETMASK, sigmask, NULL); 839 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 840 } else { 841 sigprocmask(SIG_SETMASK, sigmask, NULL); 842 if (info->si_code == BUS_ADRALN) { 843 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 844 } 845 } 846 847 sync_sig = true; 848 } 849 850 /* get target signal number */ 851 guest_sig = host_to_target_signal(host_sig); 852 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 853 return; 854 } 855 trace_user_host_signal(env, host_sig, guest_sig); 856 857 host_to_target_siginfo_noswap(&tinfo, info); 858 k = &ts->sigtab[guest_sig - 1]; 859 k->info = tinfo; 860 k->pending = guest_sig; 861 ts->signal_pending = 1; 862 863 /* 864 * For synchronous signals, unwind the cpu state to the faulting 865 * insn and then exit back to the main loop so that the signal 866 * is delivered immediately. 867 */ 868 if (sync_sig) { 869 cpu->exception_index = EXCP_INTERRUPT; 870 cpu_loop_exit_restore(cpu, pc); 871 } 872 873 rewind_if_in_safe_syscall(puc); 874 875 /* 876 * Block host signals until target signal handler entered. We 877 * can't block SIGSEGV or SIGBUS while we're executing guest 878 * code in case the guest code provokes one in the window between 879 * now and it getting out to the main loop. Signals will be 880 * unblocked again in process_pending_signals(). 881 * 882 * WARNING: we cannot use sigfillset() here because the sigmask 883 * field is a kernel sigset_t, which is much smaller than the 884 * libc sigset_t which sigfillset() operates on. Using sigfillset() 885 * would write 0xff bytes off the end of the structure and trash 886 * data on the struct. 887 */ 888 memset(sigmask, 0xff, SIGSET_T_SIZE); 889 sigdelset(sigmask, SIGSEGV); 890 sigdelset(sigmask, SIGBUS); 891 892 /* interrupt the virtual CPU as soon as possible */ 893 cpu_exit(thread_cpu); 894 } 895 896 /* do_sigaltstack() returns target values and errnos. */ 897 /* compare linux/kernel/signal.c:do_sigaltstack() */ 898 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, 899 CPUArchState *env) 900 { 901 target_stack_t oss, *uoss = NULL; 902 abi_long ret = -TARGET_EFAULT; 903 904 if (uoss_addr) { 905 /* Verify writability now, but do not alter user memory yet. */ 906 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { 907 goto out; 908 } 909 target_save_altstack(&oss, env); 910 } 911 912 if (uss_addr) { 913 target_stack_t *uss; 914 915 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 916 goto out; 917 } 918 ret = target_restore_altstack(uss, env); 919 if (ret) { 920 goto out; 921 } 922 } 923 924 if (uoss_addr) { 925 memcpy(uoss, &oss, sizeof(oss)); 926 unlock_user_struct(uoss, uoss_addr, 1); 927 uoss = NULL; 928 } 929 ret = 0; 930 931 out: 932 if (uoss) { 933 unlock_user_struct(uoss, uoss_addr, 0); 934 } 935 return ret; 936 } 937 938 /* do_sigaction() return target values and host errnos */ 939 int do_sigaction(int sig, const struct target_sigaction *act, 940 struct target_sigaction *oact, abi_ulong ka_restorer) 941 { 942 struct target_sigaction *k; 943 struct sigaction act1; 944 int host_sig; 945 int ret = 0; 946 947 trace_signal_do_sigaction_guest(sig, TARGET_NSIG); 948 949 if (sig < 1 || sig > TARGET_NSIG) { 950 return -TARGET_EINVAL; 951 } 952 953 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { 954 return -TARGET_EINVAL; 955 } 956 957 if (block_signals()) { 958 return -QEMU_ERESTARTSYS; 959 } 960 961 k = &sigact_table[sig - 1]; 962 if (oact) { 963 __put_user(k->_sa_handler, &oact->_sa_handler); 964 __put_user(k->sa_flags, &oact->sa_flags); 965 #ifdef TARGET_ARCH_HAS_SA_RESTORER 966 __put_user(k->sa_restorer, &oact->sa_restorer); 967 #endif 968 /* Not swapped. */ 969 oact->sa_mask = k->sa_mask; 970 } 971 if (act) { 972 __get_user(k->_sa_handler, &act->_sa_handler); 973 __get_user(k->sa_flags, &act->sa_flags); 974 #ifdef TARGET_ARCH_HAS_SA_RESTORER 975 __get_user(k->sa_restorer, &act->sa_restorer); 976 #endif 977 #ifdef TARGET_ARCH_HAS_KA_RESTORER 978 k->ka_restorer = ka_restorer; 979 #endif 980 /* To be swapped in target_to_host_sigset. */ 981 k->sa_mask = act->sa_mask; 982 983 /* we update the host linux signal state */ 984 host_sig = target_to_host_signal(sig); 985 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); 986 if (host_sig > SIGRTMAX) { 987 /* we don't have enough host signals to map all target signals */ 988 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", 989 sig); 990 /* 991 * we don't return an error here because some programs try to 992 * register an handler for all possible rt signals even if they 993 * don't need it. 994 * An error here can abort them whereas there can be no problem 995 * to not have the signal available later. 996 * This is the case for golang, 997 * See https://github.com/golang/go/issues/33746 998 * So we silently ignore the error. 999 */ 1000 return 0; 1001 } 1002 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 1003 sigfillset(&act1.sa_mask); 1004 act1.sa_flags = SA_SIGINFO; 1005 if (k->sa_flags & TARGET_SA_RESTART) 1006 act1.sa_flags |= SA_RESTART; 1007 /* NOTE: it is important to update the host kernel signal 1008 ignore state to avoid getting unexpected interrupted 1009 syscalls */ 1010 if (k->_sa_handler == TARGET_SIG_IGN) { 1011 act1.sa_sigaction = (void *)SIG_IGN; 1012 } else if (k->_sa_handler == TARGET_SIG_DFL) { 1013 if (fatal_signal (sig)) 1014 act1.sa_sigaction = host_signal_handler; 1015 else 1016 act1.sa_sigaction = (void *)SIG_DFL; 1017 } else { 1018 act1.sa_sigaction = host_signal_handler; 1019 } 1020 ret = sigaction(host_sig, &act1, NULL); 1021 } 1022 } 1023 return ret; 1024 } 1025 1026 static void handle_pending_signal(CPUArchState *cpu_env, int sig, 1027 struct emulated_sigtable *k) 1028 { 1029 CPUState *cpu = env_cpu(cpu_env); 1030 abi_ulong handler; 1031 sigset_t set; 1032 target_sigset_t target_old_set; 1033 struct target_sigaction *sa; 1034 TaskState *ts = cpu->opaque; 1035 1036 trace_user_handle_signal(cpu_env, sig); 1037 /* dequeue signal */ 1038 k->pending = 0; 1039 1040 sig = gdb_handlesig(cpu, sig); 1041 if (!sig) { 1042 sa = NULL; 1043 handler = TARGET_SIG_IGN; 1044 } else { 1045 sa = &sigact_table[sig - 1]; 1046 handler = sa->_sa_handler; 1047 } 1048 1049 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 1050 print_taken_signal(sig, &k->info); 1051 } 1052 1053 if (handler == TARGET_SIG_DFL) { 1054 /* default handler : ignore some signal. The other are job control or fatal */ 1055 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { 1056 kill(getpid(),SIGSTOP); 1057 } else if (sig != TARGET_SIGCHLD && 1058 sig != TARGET_SIGURG && 1059 sig != TARGET_SIGWINCH && 1060 sig != TARGET_SIGCONT) { 1061 dump_core_and_abort(sig); 1062 } 1063 } else if (handler == TARGET_SIG_IGN) { 1064 /* ignore sig */ 1065 } else if (handler == TARGET_SIG_ERR) { 1066 dump_core_and_abort(sig); 1067 } else { 1068 /* compute the blocked signals during the handler execution */ 1069 sigset_t *blocked_set; 1070 1071 target_to_host_sigset(&set, &sa->sa_mask); 1072 /* SA_NODEFER indicates that the current signal should not be 1073 blocked during the handler */ 1074 if (!(sa->sa_flags & TARGET_SA_NODEFER)) 1075 sigaddset(&set, target_to_host_signal(sig)); 1076 1077 /* save the previous blocked signal state to restore it at the 1078 end of the signal execution (see do_sigreturn) */ 1079 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 1080 1081 /* block signals in the handler */ 1082 blocked_set = ts->in_sigsuspend ? 1083 &ts->sigsuspend_mask : &ts->signal_mask; 1084 sigorset(&ts->signal_mask, blocked_set, &set); 1085 ts->in_sigsuspend = 0; 1086 1087 /* if the CPU is in VM86 mode, we restore the 32 bit values */ 1088 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 1089 { 1090 CPUX86State *env = cpu_env; 1091 if (env->eflags & VM_MASK) 1092 save_v86_state(env); 1093 } 1094 #endif 1095 /* prepare the stack frame of the virtual CPU */ 1096 #if defined(TARGET_ARCH_HAS_SETUP_FRAME) 1097 if (sa->sa_flags & TARGET_SA_SIGINFO) { 1098 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1099 } else { 1100 setup_frame(sig, sa, &target_old_set, cpu_env); 1101 } 1102 #else 1103 /* These targets do not have traditional signals. */ 1104 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1105 #endif 1106 if (sa->sa_flags & TARGET_SA_RESETHAND) { 1107 sa->_sa_handler = TARGET_SIG_DFL; 1108 } 1109 } 1110 } 1111 1112 void process_pending_signals(CPUArchState *cpu_env) 1113 { 1114 CPUState *cpu = env_cpu(cpu_env); 1115 int sig; 1116 TaskState *ts = cpu->opaque; 1117 sigset_t set; 1118 sigset_t *blocked_set; 1119 1120 while (qatomic_read(&ts->signal_pending)) { 1121 sigfillset(&set); 1122 sigprocmask(SIG_SETMASK, &set, 0); 1123 1124 restart_scan: 1125 sig = ts->sync_signal.pending; 1126 if (sig) { 1127 /* Synchronous signals are forced, 1128 * see force_sig_info() and callers in Linux 1129 * Note that not all of our queue_signal() calls in QEMU correspond 1130 * to force_sig_info() calls in Linux (some are send_sig_info()). 1131 * However it seems like a kernel bug to me to allow the process 1132 * to block a synchronous signal since it could then just end up 1133 * looping round and round indefinitely. 1134 */ 1135 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) 1136 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 1137 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); 1138 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 1139 } 1140 1141 handle_pending_signal(cpu_env, sig, &ts->sync_signal); 1142 } 1143 1144 for (sig = 1; sig <= TARGET_NSIG; sig++) { 1145 blocked_set = ts->in_sigsuspend ? 1146 &ts->sigsuspend_mask : &ts->signal_mask; 1147 1148 if (ts->sigtab[sig - 1].pending && 1149 (!sigismember(blocked_set, 1150 target_to_host_signal_table[sig]))) { 1151 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); 1152 /* Restart scan from the beginning, as handle_pending_signal 1153 * might have resulted in a new synchronous signal (eg SIGSEGV). 1154 */ 1155 goto restart_scan; 1156 } 1157 } 1158 1159 /* if no signal is pending, unblock signals and recheck (the act 1160 * of unblocking might cause us to take another host signal which 1161 * will set signal_pending again). 1162 */ 1163 qatomic_set(&ts->signal_pending, 0); 1164 ts->in_sigsuspend = 0; 1165 set = ts->signal_mask; 1166 sigdelset(&set, SIGSEGV); 1167 sigdelset(&set, SIGBUS); 1168 sigprocmask(SIG_SETMASK, &set, 0); 1169 } 1170 ts->in_sigsuspend = 0; 1171 } 1172 1173 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset, 1174 target_ulong sigsize) 1175 { 1176 TaskState *ts = (TaskState *)thread_cpu->opaque; 1177 sigset_t *host_set = &ts->sigsuspend_mask; 1178 target_sigset_t *target_sigset; 1179 1180 if (sigsize != sizeof(*target_sigset)) { 1181 /* Like the kernel, we enforce correct size sigsets */ 1182 return -TARGET_EINVAL; 1183 } 1184 1185 target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1); 1186 if (!target_sigset) { 1187 return -TARGET_EFAULT; 1188 } 1189 target_to_host_sigset(host_set, target_sigset); 1190 unlock_user(target_sigset, sigset, 0); 1191 1192 *pset = host_set; 1193 return 0; 1194 } 1195