1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include "exec/gdbstub.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 24 #include <sys/ucontext.h> 25 #include <sys/resource.h> 26 27 #include "qemu.h" 28 #include "user-internals.h" 29 #include "strace.h" 30 #include "loader.h" 31 #include "trace.h" 32 #include "signal-common.h" 33 #include "host-signal.h" 34 35 static struct target_sigaction sigact_table[TARGET_NSIG]; 36 37 static void host_signal_handler(int host_signum, siginfo_t *info, 38 void *puc); 39 40 /* Fallback addresses into sigtramp page. */ 41 abi_ulong default_sigreturn; 42 abi_ulong default_rt_sigreturn; 43 44 /* 45 * System includes define _NSIG as SIGRTMAX + 1, 46 * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX 47 * and the first signal is SIGHUP defined as 1 48 * Signal number 0 is reserved for use as kill(pid, 0), to test whether 49 * a process exists without sending it a signal. 50 */ 51 #ifdef __SIGRTMAX 52 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); 53 #endif 54 static uint8_t host_to_target_signal_table[_NSIG] = { 55 [SIGHUP] = TARGET_SIGHUP, 56 [SIGINT] = TARGET_SIGINT, 57 [SIGQUIT] = TARGET_SIGQUIT, 58 [SIGILL] = TARGET_SIGILL, 59 [SIGTRAP] = TARGET_SIGTRAP, 60 [SIGABRT] = TARGET_SIGABRT, 61 /* [SIGIOT] = TARGET_SIGIOT,*/ 62 [SIGBUS] = TARGET_SIGBUS, 63 [SIGFPE] = TARGET_SIGFPE, 64 [SIGKILL] = TARGET_SIGKILL, 65 [SIGUSR1] = TARGET_SIGUSR1, 66 [SIGSEGV] = TARGET_SIGSEGV, 67 [SIGUSR2] = TARGET_SIGUSR2, 68 [SIGPIPE] = TARGET_SIGPIPE, 69 [SIGALRM] = TARGET_SIGALRM, 70 [SIGTERM] = TARGET_SIGTERM, 71 #ifdef SIGSTKFLT 72 [SIGSTKFLT] = TARGET_SIGSTKFLT, 73 #endif 74 [SIGCHLD] = TARGET_SIGCHLD, 75 [SIGCONT] = TARGET_SIGCONT, 76 [SIGSTOP] = TARGET_SIGSTOP, 77 [SIGTSTP] = TARGET_SIGTSTP, 78 [SIGTTIN] = TARGET_SIGTTIN, 79 [SIGTTOU] = TARGET_SIGTTOU, 80 [SIGURG] = TARGET_SIGURG, 81 [SIGXCPU] = TARGET_SIGXCPU, 82 [SIGXFSZ] = TARGET_SIGXFSZ, 83 [SIGVTALRM] = TARGET_SIGVTALRM, 84 [SIGPROF] = TARGET_SIGPROF, 85 [SIGWINCH] = TARGET_SIGWINCH, 86 [SIGIO] = TARGET_SIGIO, 87 [SIGPWR] = TARGET_SIGPWR, 88 [SIGSYS] = TARGET_SIGSYS, 89 /* next signals stay the same */ 90 }; 91 92 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; 93 94 /* valid sig is between 1 and _NSIG - 1 */ 95 int host_to_target_signal(int sig) 96 { 97 if (sig < 1 || sig >= _NSIG) { 98 return sig; 99 } 100 return host_to_target_signal_table[sig]; 101 } 102 103 /* valid sig is between 1 and TARGET_NSIG */ 104 int target_to_host_signal(int sig) 105 { 106 if (sig < 1 || sig > TARGET_NSIG) { 107 return sig; 108 } 109 return target_to_host_signal_table[sig]; 110 } 111 112 static inline void target_sigaddset(target_sigset_t *set, int signum) 113 { 114 signum--; 115 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 116 set->sig[signum / TARGET_NSIG_BPW] |= mask; 117 } 118 119 static inline int target_sigismember(const target_sigset_t *set, int signum) 120 { 121 signum--; 122 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 123 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); 124 } 125 126 void host_to_target_sigset_internal(target_sigset_t *d, 127 const sigset_t *s) 128 { 129 int host_sig, target_sig; 130 target_sigemptyset(d); 131 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 132 target_sig = host_to_target_signal(host_sig); 133 if (target_sig < 1 || target_sig > TARGET_NSIG) { 134 continue; 135 } 136 if (sigismember(s, host_sig)) { 137 target_sigaddset(d, target_sig); 138 } 139 } 140 } 141 142 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 143 { 144 target_sigset_t d1; 145 int i; 146 147 host_to_target_sigset_internal(&d1, s); 148 for(i = 0;i < TARGET_NSIG_WORDS; i++) 149 d->sig[i] = tswapal(d1.sig[i]); 150 } 151 152 void target_to_host_sigset_internal(sigset_t *d, 153 const target_sigset_t *s) 154 { 155 int host_sig, target_sig; 156 sigemptyset(d); 157 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 158 host_sig = target_to_host_signal(target_sig); 159 if (host_sig < 1 || host_sig >= _NSIG) { 160 continue; 161 } 162 if (target_sigismember(s, target_sig)) { 163 sigaddset(d, host_sig); 164 } 165 } 166 } 167 168 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 169 { 170 target_sigset_t s1; 171 int i; 172 173 for(i = 0;i < TARGET_NSIG_WORDS; i++) 174 s1.sig[i] = tswapal(s->sig[i]); 175 target_to_host_sigset_internal(d, &s1); 176 } 177 178 void host_to_target_old_sigset(abi_ulong *old_sigset, 179 const sigset_t *sigset) 180 { 181 target_sigset_t d; 182 host_to_target_sigset(&d, sigset); 183 *old_sigset = d.sig[0]; 184 } 185 186 void target_to_host_old_sigset(sigset_t *sigset, 187 const abi_ulong *old_sigset) 188 { 189 target_sigset_t d; 190 int i; 191 192 d.sig[0] = *old_sigset; 193 for(i = 1;i < TARGET_NSIG_WORDS; i++) 194 d.sig[i] = 0; 195 target_to_host_sigset(sigset, &d); 196 } 197 198 int block_signals(void) 199 { 200 TaskState *ts = (TaskState *)thread_cpu->opaque; 201 sigset_t set; 202 203 /* It's OK to block everything including SIGSEGV, because we won't 204 * run any further guest code before unblocking signals in 205 * process_pending_signals(). 206 */ 207 sigfillset(&set); 208 sigprocmask(SIG_SETMASK, &set, 0); 209 210 return qatomic_xchg(&ts->signal_pending, 1); 211 } 212 213 /* Wrapper for sigprocmask function 214 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset 215 * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if 216 * a signal was already pending and the syscall must be restarted, or 217 * 0 on success. 218 * If set is NULL, this is guaranteed not to fail. 219 */ 220 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) 221 { 222 TaskState *ts = (TaskState *)thread_cpu->opaque; 223 224 if (oldset) { 225 *oldset = ts->signal_mask; 226 } 227 228 if (set) { 229 int i; 230 231 if (block_signals()) { 232 return -TARGET_ERESTARTSYS; 233 } 234 235 switch (how) { 236 case SIG_BLOCK: 237 sigorset(&ts->signal_mask, &ts->signal_mask, set); 238 break; 239 case SIG_UNBLOCK: 240 for (i = 1; i <= NSIG; ++i) { 241 if (sigismember(set, i)) { 242 sigdelset(&ts->signal_mask, i); 243 } 244 } 245 break; 246 case SIG_SETMASK: 247 ts->signal_mask = *set; 248 break; 249 default: 250 g_assert_not_reached(); 251 } 252 253 /* Silently ignore attempts to change blocking status of KILL or STOP */ 254 sigdelset(&ts->signal_mask, SIGKILL); 255 sigdelset(&ts->signal_mask, SIGSTOP); 256 } 257 return 0; 258 } 259 260 #if !defined(TARGET_NIOS2) 261 /* Just set the guest's signal mask to the specified value; the 262 * caller is assumed to have called block_signals() already. 263 */ 264 void set_sigmask(const sigset_t *set) 265 { 266 TaskState *ts = (TaskState *)thread_cpu->opaque; 267 268 ts->signal_mask = *set; 269 } 270 #endif 271 272 /* sigaltstack management */ 273 274 int on_sig_stack(unsigned long sp) 275 { 276 TaskState *ts = (TaskState *)thread_cpu->opaque; 277 278 return (sp - ts->sigaltstack_used.ss_sp 279 < ts->sigaltstack_used.ss_size); 280 } 281 282 int sas_ss_flags(unsigned long sp) 283 { 284 TaskState *ts = (TaskState *)thread_cpu->opaque; 285 286 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE 287 : on_sig_stack(sp) ? SS_ONSTACK : 0); 288 } 289 290 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) 291 { 292 /* 293 * This is the X/Open sanctioned signal stack switching. 294 */ 295 TaskState *ts = (TaskState *)thread_cpu->opaque; 296 297 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 298 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 299 } 300 return sp; 301 } 302 303 void target_save_altstack(target_stack_t *uss, CPUArchState *env) 304 { 305 TaskState *ts = (TaskState *)thread_cpu->opaque; 306 307 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); 308 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); 309 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); 310 } 311 312 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) 313 { 314 TaskState *ts = (TaskState *)thread_cpu->opaque; 315 size_t minstacksize = TARGET_MINSIGSTKSZ; 316 target_stack_t ss; 317 318 #if defined(TARGET_PPC64) 319 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ 320 struct image_info *image = ts->info; 321 if (get_ppc64_abi(image) > 1) { 322 minstacksize = 4096; 323 } 324 #endif 325 326 __get_user(ss.ss_sp, &uss->ss_sp); 327 __get_user(ss.ss_size, &uss->ss_size); 328 __get_user(ss.ss_flags, &uss->ss_flags); 329 330 if (on_sig_stack(get_sp_from_cpustate(env))) { 331 return -TARGET_EPERM; 332 } 333 334 switch (ss.ss_flags) { 335 default: 336 return -TARGET_EINVAL; 337 338 case TARGET_SS_DISABLE: 339 ss.ss_size = 0; 340 ss.ss_sp = 0; 341 break; 342 343 case TARGET_SS_ONSTACK: 344 case 0: 345 if (ss.ss_size < minstacksize) { 346 return -TARGET_ENOMEM; 347 } 348 break; 349 } 350 351 ts->sigaltstack_used.ss_sp = ss.ss_sp; 352 ts->sigaltstack_used.ss_size = ss.ss_size; 353 return 0; 354 } 355 356 /* siginfo conversion */ 357 358 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 359 const siginfo_t *info) 360 { 361 int sig = host_to_target_signal(info->si_signo); 362 int si_code = info->si_code; 363 int si_type; 364 tinfo->si_signo = sig; 365 tinfo->si_errno = 0; 366 tinfo->si_code = info->si_code; 367 368 /* This memset serves two purposes: 369 * (1) ensure we don't leak random junk to the guest later 370 * (2) placate false positives from gcc about fields 371 * being used uninitialized if it chooses to inline both this 372 * function and tswap_siginfo() into host_to_target_siginfo(). 373 */ 374 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); 375 376 /* This is awkward, because we have to use a combination of 377 * the si_code and si_signo to figure out which of the union's 378 * members are valid. (Within the host kernel it is always possible 379 * to tell, but the kernel carefully avoids giving userspace the 380 * high 16 bits of si_code, so we don't have the information to 381 * do this the easy way...) We therefore make our best guess, 382 * bearing in mind that a guest can spoof most of the si_codes 383 * via rt_sigqueueinfo() if it likes. 384 * 385 * Once we have made our guess, we record it in the top 16 bits of 386 * the si_code, so that tswap_siginfo() later can use it. 387 * tswap_siginfo() will strip these top bits out before writing 388 * si_code to the guest (sign-extending the lower bits). 389 */ 390 391 switch (si_code) { 392 case SI_USER: 393 case SI_TKILL: 394 case SI_KERNEL: 395 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. 396 * These are the only unspoofable si_code values. 397 */ 398 tinfo->_sifields._kill._pid = info->si_pid; 399 tinfo->_sifields._kill._uid = info->si_uid; 400 si_type = QEMU_SI_KILL; 401 break; 402 default: 403 /* Everything else is spoofable. Make best guess based on signal */ 404 switch (sig) { 405 case TARGET_SIGCHLD: 406 tinfo->_sifields._sigchld._pid = info->si_pid; 407 tinfo->_sifields._sigchld._uid = info->si_uid; 408 tinfo->_sifields._sigchld._status = info->si_status; 409 tinfo->_sifields._sigchld._utime = info->si_utime; 410 tinfo->_sifields._sigchld._stime = info->si_stime; 411 si_type = QEMU_SI_CHLD; 412 break; 413 case TARGET_SIGIO: 414 tinfo->_sifields._sigpoll._band = info->si_band; 415 tinfo->_sifields._sigpoll._fd = info->si_fd; 416 si_type = QEMU_SI_POLL; 417 break; 418 default: 419 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ 420 tinfo->_sifields._rt._pid = info->si_pid; 421 tinfo->_sifields._rt._uid = info->si_uid; 422 /* XXX: potential problem if 64 bit */ 423 tinfo->_sifields._rt._sigval.sival_ptr 424 = (abi_ulong)(unsigned long)info->si_value.sival_ptr; 425 si_type = QEMU_SI_RT; 426 break; 427 } 428 break; 429 } 430 431 tinfo->si_code = deposit32(si_code, 16, 16, si_type); 432 } 433 434 void tswap_siginfo(target_siginfo_t *tinfo, 435 const target_siginfo_t *info) 436 { 437 int si_type = extract32(info->si_code, 16, 16); 438 int si_code = sextract32(info->si_code, 0, 16); 439 440 __put_user(info->si_signo, &tinfo->si_signo); 441 __put_user(info->si_errno, &tinfo->si_errno); 442 __put_user(si_code, &tinfo->si_code); 443 444 /* We can use our internal marker of which fields in the structure 445 * are valid, rather than duplicating the guesswork of 446 * host_to_target_siginfo_noswap() here. 447 */ 448 switch (si_type) { 449 case QEMU_SI_KILL: 450 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); 451 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); 452 break; 453 case QEMU_SI_TIMER: 454 __put_user(info->_sifields._timer._timer1, 455 &tinfo->_sifields._timer._timer1); 456 __put_user(info->_sifields._timer._timer2, 457 &tinfo->_sifields._timer._timer2); 458 break; 459 case QEMU_SI_POLL: 460 __put_user(info->_sifields._sigpoll._band, 461 &tinfo->_sifields._sigpoll._band); 462 __put_user(info->_sifields._sigpoll._fd, 463 &tinfo->_sifields._sigpoll._fd); 464 break; 465 case QEMU_SI_FAULT: 466 __put_user(info->_sifields._sigfault._addr, 467 &tinfo->_sifields._sigfault._addr); 468 break; 469 case QEMU_SI_CHLD: 470 __put_user(info->_sifields._sigchld._pid, 471 &tinfo->_sifields._sigchld._pid); 472 __put_user(info->_sifields._sigchld._uid, 473 &tinfo->_sifields._sigchld._uid); 474 __put_user(info->_sifields._sigchld._status, 475 &tinfo->_sifields._sigchld._status); 476 __put_user(info->_sifields._sigchld._utime, 477 &tinfo->_sifields._sigchld._utime); 478 __put_user(info->_sifields._sigchld._stime, 479 &tinfo->_sifields._sigchld._stime); 480 break; 481 case QEMU_SI_RT: 482 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); 483 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); 484 __put_user(info->_sifields._rt._sigval.sival_ptr, 485 &tinfo->_sifields._rt._sigval.sival_ptr); 486 break; 487 default: 488 g_assert_not_reached(); 489 } 490 } 491 492 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 493 { 494 target_siginfo_t tgt_tmp; 495 host_to_target_siginfo_noswap(&tgt_tmp, info); 496 tswap_siginfo(tinfo, &tgt_tmp); 497 } 498 499 /* XXX: we support only POSIX RT signals are used. */ 500 /* XXX: find a solution for 64 bit (additional malloced data is needed) */ 501 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) 502 { 503 /* This conversion is used only for the rt_sigqueueinfo syscall, 504 * and so we know that the _rt fields are the valid ones. 505 */ 506 abi_ulong sival_ptr; 507 508 __get_user(info->si_signo, &tinfo->si_signo); 509 __get_user(info->si_errno, &tinfo->si_errno); 510 __get_user(info->si_code, &tinfo->si_code); 511 __get_user(info->si_pid, &tinfo->_sifields._rt._pid); 512 __get_user(info->si_uid, &tinfo->_sifields._rt._uid); 513 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); 514 info->si_value.sival_ptr = (void *)(long)sival_ptr; 515 } 516 517 static int fatal_signal (int sig) 518 { 519 switch (sig) { 520 case TARGET_SIGCHLD: 521 case TARGET_SIGURG: 522 case TARGET_SIGWINCH: 523 /* Ignored by default. */ 524 return 0; 525 case TARGET_SIGCONT: 526 case TARGET_SIGSTOP: 527 case TARGET_SIGTSTP: 528 case TARGET_SIGTTIN: 529 case TARGET_SIGTTOU: 530 /* Job control signals. */ 531 return 0; 532 default: 533 return 1; 534 } 535 } 536 537 /* returns 1 if given signal should dump core if not handled */ 538 static int core_dump_signal(int sig) 539 { 540 switch (sig) { 541 case TARGET_SIGABRT: 542 case TARGET_SIGFPE: 543 case TARGET_SIGILL: 544 case TARGET_SIGQUIT: 545 case TARGET_SIGSEGV: 546 case TARGET_SIGTRAP: 547 case TARGET_SIGBUS: 548 return (1); 549 default: 550 return (0); 551 } 552 } 553 554 static void signal_table_init(void) 555 { 556 int host_sig, target_sig, count; 557 558 /* 559 * Signals are supported starting from TARGET_SIGRTMIN and going up 560 * until we run out of host realtime signals. 561 * glibc at least uses only the lower 2 rt signals and probably 562 * nobody's using the upper ones. 563 * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32) 564 * To fix this properly we need to do manual signal delivery multiplexed 565 * over a single host signal. 566 * Attempts for configure "missing" signals via sigaction will be 567 * silently ignored. 568 */ 569 for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) { 570 target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN; 571 if (target_sig <= TARGET_NSIG) { 572 host_to_target_signal_table[host_sig] = target_sig; 573 } 574 } 575 576 /* generate signal conversion tables */ 577 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 578 target_to_host_signal_table[target_sig] = _NSIG; /* poison */ 579 } 580 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 581 if (host_to_target_signal_table[host_sig] == 0) { 582 host_to_target_signal_table[host_sig] = host_sig; 583 } 584 target_sig = host_to_target_signal_table[host_sig]; 585 if (target_sig <= TARGET_NSIG) { 586 target_to_host_signal_table[target_sig] = host_sig; 587 } 588 } 589 590 if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) { 591 for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) { 592 if (target_to_host_signal_table[target_sig] == _NSIG) { 593 count++; 594 } 595 } 596 trace_signal_table_init(count); 597 } 598 } 599 600 void signal_init(void) 601 { 602 TaskState *ts = (TaskState *)thread_cpu->opaque; 603 struct sigaction act; 604 struct sigaction oact; 605 int i; 606 int host_sig; 607 608 /* initialize signal conversion tables */ 609 signal_table_init(); 610 611 /* Set the signal mask from the host mask. */ 612 sigprocmask(0, 0, &ts->signal_mask); 613 614 sigfillset(&act.sa_mask); 615 act.sa_flags = SA_SIGINFO; 616 act.sa_sigaction = host_signal_handler; 617 for(i = 1; i <= TARGET_NSIG; i++) { 618 #ifdef CONFIG_GPROF 619 if (i == TARGET_SIGPROF) { 620 continue; 621 } 622 #endif 623 host_sig = target_to_host_signal(i); 624 sigaction(host_sig, NULL, &oact); 625 if (oact.sa_sigaction == (void *)SIG_IGN) { 626 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 627 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 628 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 629 } 630 /* If there's already a handler installed then something has 631 gone horribly wrong, so don't even try to handle that case. */ 632 /* Install some handlers for our own use. We need at least 633 SIGSEGV and SIGBUS, to detect exceptions. We can not just 634 trap all signals because it affects syscall interrupt 635 behavior. But do trap all default-fatal signals. */ 636 if (fatal_signal (i)) 637 sigaction(host_sig, &act, NULL); 638 } 639 } 640 641 /* Force a synchronously taken signal. The kernel force_sig() function 642 * also forces the signal to "not blocked, not ignored", but for QEMU 643 * that work is done in process_pending_signals(). 644 */ 645 void force_sig(int sig) 646 { 647 CPUState *cpu = thread_cpu; 648 CPUArchState *env = cpu->env_ptr; 649 target_siginfo_t info = {}; 650 651 info.si_signo = sig; 652 info.si_errno = 0; 653 info.si_code = TARGET_SI_KERNEL; 654 info._sifields._kill._pid = 0; 655 info._sifields._kill._uid = 0; 656 queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); 657 } 658 659 /* 660 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 661 * 'force' part is handled in process_pending_signals(). 662 */ 663 void force_sig_fault(int sig, int code, abi_ulong addr) 664 { 665 CPUState *cpu = thread_cpu; 666 CPUArchState *env = cpu->env_ptr; 667 target_siginfo_t info = {}; 668 669 info.si_signo = sig; 670 info.si_errno = 0; 671 info.si_code = code; 672 info._sifields._sigfault._addr = addr; 673 queue_signal(env, sig, QEMU_SI_FAULT, &info); 674 } 675 676 /* Force a SIGSEGV if we couldn't write to memory trying to set 677 * up the signal frame. oldsig is the signal we were trying to handle 678 * at the point of failure. 679 */ 680 #if !defined(TARGET_RISCV) 681 void force_sigsegv(int oldsig) 682 { 683 if (oldsig == SIGSEGV) { 684 /* Make sure we don't try to deliver the signal again; this will 685 * end up with handle_pending_signal() calling dump_core_and_abort(). 686 */ 687 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; 688 } 689 force_sig(TARGET_SIGSEGV); 690 } 691 #endif 692 693 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 694 MMUAccessType access_type, bool maperr, uintptr_t ra) 695 { 696 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 697 698 if (tcg_ops->record_sigsegv) { 699 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 700 } else if (tcg_ops->tlb_fill) { 701 tcg_ops->tlb_fill(cpu, addr, 0, access_type, MMU_USER_IDX, false, ra); 702 g_assert_not_reached(); 703 } 704 705 force_sig_fault(TARGET_SIGSEGV, 706 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 707 addr); 708 cpu->exception_index = EXCP_INTERRUPT; 709 cpu_loop_exit_restore(cpu, ra); 710 } 711 712 /* abort execution with signal */ 713 static void QEMU_NORETURN dump_core_and_abort(int target_sig) 714 { 715 CPUState *cpu = thread_cpu; 716 CPUArchState *env = cpu->env_ptr; 717 TaskState *ts = (TaskState *)cpu->opaque; 718 int host_sig, core_dumped = 0; 719 struct sigaction act; 720 721 host_sig = target_to_host_signal(target_sig); 722 trace_user_force_sig(env, target_sig, host_sig); 723 gdb_signalled(env, target_sig); 724 725 /* dump core if supported by target binary format */ 726 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 727 stop_all_tasks(); 728 core_dumped = 729 ((*ts->bprm->core_dump)(target_sig, env) == 0); 730 } 731 if (core_dumped) { 732 /* we already dumped the core of target process, we don't want 733 * a coredump of qemu itself */ 734 struct rlimit nodump; 735 getrlimit(RLIMIT_CORE, &nodump); 736 nodump.rlim_cur=0; 737 setrlimit(RLIMIT_CORE, &nodump); 738 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", 739 target_sig, strsignal(host_sig), "core dumped" ); 740 } 741 742 /* The proper exit code for dying from an uncaught signal is 743 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 744 * a negative value. To get the proper exit code we need to 745 * actually die from an uncaught signal. Here the default signal 746 * handler is installed, we send ourself a signal and we wait for 747 * it to arrive. */ 748 sigfillset(&act.sa_mask); 749 act.sa_handler = SIG_DFL; 750 act.sa_flags = 0; 751 sigaction(host_sig, &act, NULL); 752 753 /* For some reason raise(host_sig) doesn't send the signal when 754 * statically linked on x86-64. */ 755 kill(getpid(), host_sig); 756 757 /* Make sure the signal isn't masked (just reuse the mask inside 758 of act) */ 759 sigdelset(&act.sa_mask, host_sig); 760 sigsuspend(&act.sa_mask); 761 762 /* unreachable */ 763 abort(); 764 } 765 766 /* queue a signal so that it will be send to the virtual CPU as soon 767 as possible */ 768 int queue_signal(CPUArchState *env, int sig, int si_type, 769 target_siginfo_t *info) 770 { 771 CPUState *cpu = env_cpu(env); 772 TaskState *ts = cpu->opaque; 773 774 trace_user_queue_signal(env, sig); 775 776 info->si_code = deposit32(info->si_code, 16, 16, si_type); 777 778 ts->sync_signal.info = *info; 779 ts->sync_signal.pending = sig; 780 /* signal that a new signal is pending */ 781 qatomic_set(&ts->signal_pending, 1); 782 return 1; /* indicates that the signal was queued */ 783 } 784 785 #ifndef HAVE_SAFE_SYSCALL 786 static inline void rewind_if_in_safe_syscall(void *puc) 787 { 788 /* Default version: never rewind */ 789 } 790 #endif 791 792 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 793 { 794 CPUArchState *env = thread_cpu->env_ptr; 795 CPUState *cpu = env_cpu(env); 796 TaskState *ts = cpu->opaque; 797 target_siginfo_t tinfo; 798 ucontext_t *uc = puc; 799 struct emulated_sigtable *k; 800 int guest_sig; 801 uintptr_t pc = 0; 802 bool sync_sig = false; 803 804 /* 805 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 806 * handling wrt signal blocking and unwinding. 807 */ 808 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 809 MMUAccessType access_type; 810 uintptr_t host_addr; 811 abi_ptr guest_addr; 812 bool is_write; 813 814 host_addr = (uintptr_t)info->si_addr; 815 816 /* 817 * Convert forcefully to guest address space: addresses outside 818 * reserved_va are still valid to report via SEGV_MAPERR. 819 */ 820 guest_addr = h2g_nocheck(host_addr); 821 822 pc = host_signal_pc(uc); 823 is_write = host_signal_write(info, uc); 824 access_type = adjust_signal_pc(&pc, is_write); 825 826 if (host_sig == SIGSEGV) { 827 bool maperr = true; 828 829 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 830 /* If this was a write to a TB protected page, restart. */ 831 if (is_write && 832 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, 833 pc, guest_addr)) { 834 return; 835 } 836 837 /* 838 * With reserved_va, the whole address space is PROT_NONE, 839 * which means that we may get ACCERR when we want MAPERR. 840 */ 841 if (page_get_flags(guest_addr) & PAGE_VALID) { 842 maperr = false; 843 } else { 844 info->si_code = SEGV_MAPERR; 845 } 846 } 847 848 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 849 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 850 } else { 851 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 852 } 853 854 sync_sig = true; 855 } 856 857 /* get target signal number */ 858 guest_sig = host_to_target_signal(host_sig); 859 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 860 return; 861 } 862 trace_user_host_signal(env, host_sig, guest_sig); 863 864 host_to_target_siginfo_noswap(&tinfo, info); 865 k = &ts->sigtab[guest_sig - 1]; 866 k->info = tinfo; 867 k->pending = guest_sig; 868 ts->signal_pending = 1; 869 870 /* 871 * For synchronous signals, unwind the cpu state to the faulting 872 * insn and then exit back to the main loop so that the signal 873 * is delivered immediately. 874 */ 875 if (sync_sig) { 876 cpu->exception_index = EXCP_INTERRUPT; 877 cpu_loop_exit_restore(cpu, pc); 878 } 879 880 rewind_if_in_safe_syscall(puc); 881 882 /* 883 * Block host signals until target signal handler entered. We 884 * can't block SIGSEGV or SIGBUS while we're executing guest 885 * code in case the guest code provokes one in the window between 886 * now and it getting out to the main loop. Signals will be 887 * unblocked again in process_pending_signals(). 888 * 889 * WARNING: we cannot use sigfillset() here because the uc_sigmask 890 * field is a kernel sigset_t, which is much smaller than the 891 * libc sigset_t which sigfillset() operates on. Using sigfillset() 892 * would write 0xff bytes off the end of the structure and trash 893 * data on the struct. 894 * We can't use sizeof(uc->uc_sigmask) either, because the libc 895 * headers define the struct field with the wrong (too large) type. 896 */ 897 memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE); 898 sigdelset(&uc->uc_sigmask, SIGSEGV); 899 sigdelset(&uc->uc_sigmask, SIGBUS); 900 901 /* interrupt the virtual CPU as soon as possible */ 902 cpu_exit(thread_cpu); 903 } 904 905 /* do_sigaltstack() returns target values and errnos. */ 906 /* compare linux/kernel/signal.c:do_sigaltstack() */ 907 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, 908 CPUArchState *env) 909 { 910 target_stack_t oss, *uoss = NULL; 911 abi_long ret = -TARGET_EFAULT; 912 913 if (uoss_addr) { 914 /* Verify writability now, but do not alter user memory yet. */ 915 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { 916 goto out; 917 } 918 target_save_altstack(&oss, env); 919 } 920 921 if (uss_addr) { 922 target_stack_t *uss; 923 924 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 925 goto out; 926 } 927 ret = target_restore_altstack(uss, env); 928 if (ret) { 929 goto out; 930 } 931 } 932 933 if (uoss_addr) { 934 memcpy(uoss, &oss, sizeof(oss)); 935 unlock_user_struct(uoss, uoss_addr, 1); 936 uoss = NULL; 937 } 938 ret = 0; 939 940 out: 941 if (uoss) { 942 unlock_user_struct(uoss, uoss_addr, 0); 943 } 944 return ret; 945 } 946 947 /* do_sigaction() return target values and host errnos */ 948 int do_sigaction(int sig, const struct target_sigaction *act, 949 struct target_sigaction *oact, abi_ulong ka_restorer) 950 { 951 struct target_sigaction *k; 952 struct sigaction act1; 953 int host_sig; 954 int ret = 0; 955 956 trace_signal_do_sigaction_guest(sig, TARGET_NSIG); 957 958 if (sig < 1 || sig > TARGET_NSIG) { 959 return -TARGET_EINVAL; 960 } 961 962 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { 963 return -TARGET_EINVAL; 964 } 965 966 if (block_signals()) { 967 return -TARGET_ERESTARTSYS; 968 } 969 970 k = &sigact_table[sig - 1]; 971 if (oact) { 972 __put_user(k->_sa_handler, &oact->_sa_handler); 973 __put_user(k->sa_flags, &oact->sa_flags); 974 #ifdef TARGET_ARCH_HAS_SA_RESTORER 975 __put_user(k->sa_restorer, &oact->sa_restorer); 976 #endif 977 /* Not swapped. */ 978 oact->sa_mask = k->sa_mask; 979 } 980 if (act) { 981 /* FIXME: This is not threadsafe. */ 982 __get_user(k->_sa_handler, &act->_sa_handler); 983 __get_user(k->sa_flags, &act->sa_flags); 984 #ifdef TARGET_ARCH_HAS_SA_RESTORER 985 __get_user(k->sa_restorer, &act->sa_restorer); 986 #endif 987 #ifdef TARGET_ARCH_HAS_KA_RESTORER 988 k->ka_restorer = ka_restorer; 989 #endif 990 /* To be swapped in target_to_host_sigset. */ 991 k->sa_mask = act->sa_mask; 992 993 /* we update the host linux signal state */ 994 host_sig = target_to_host_signal(sig); 995 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); 996 if (host_sig > SIGRTMAX) { 997 /* we don't have enough host signals to map all target signals */ 998 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", 999 sig); 1000 /* 1001 * we don't return an error here because some programs try to 1002 * register an handler for all possible rt signals even if they 1003 * don't need it. 1004 * An error here can abort them whereas there can be no problem 1005 * to not have the signal available later. 1006 * This is the case for golang, 1007 * See https://github.com/golang/go/issues/33746 1008 * So we silently ignore the error. 1009 */ 1010 return 0; 1011 } 1012 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 1013 sigfillset(&act1.sa_mask); 1014 act1.sa_flags = SA_SIGINFO; 1015 if (k->sa_flags & TARGET_SA_RESTART) 1016 act1.sa_flags |= SA_RESTART; 1017 /* NOTE: it is important to update the host kernel signal 1018 ignore state to avoid getting unexpected interrupted 1019 syscalls */ 1020 if (k->_sa_handler == TARGET_SIG_IGN) { 1021 act1.sa_sigaction = (void *)SIG_IGN; 1022 } else if (k->_sa_handler == TARGET_SIG_DFL) { 1023 if (fatal_signal (sig)) 1024 act1.sa_sigaction = host_signal_handler; 1025 else 1026 act1.sa_sigaction = (void *)SIG_DFL; 1027 } else { 1028 act1.sa_sigaction = host_signal_handler; 1029 } 1030 ret = sigaction(host_sig, &act1, NULL); 1031 } 1032 } 1033 return ret; 1034 } 1035 1036 static void handle_pending_signal(CPUArchState *cpu_env, int sig, 1037 struct emulated_sigtable *k) 1038 { 1039 CPUState *cpu = env_cpu(cpu_env); 1040 abi_ulong handler; 1041 sigset_t set; 1042 target_sigset_t target_old_set; 1043 struct target_sigaction *sa; 1044 TaskState *ts = cpu->opaque; 1045 1046 trace_user_handle_signal(cpu_env, sig); 1047 /* dequeue signal */ 1048 k->pending = 0; 1049 1050 sig = gdb_handlesig(cpu, sig); 1051 if (!sig) { 1052 sa = NULL; 1053 handler = TARGET_SIG_IGN; 1054 } else { 1055 sa = &sigact_table[sig - 1]; 1056 handler = sa->_sa_handler; 1057 } 1058 1059 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 1060 print_taken_signal(sig, &k->info); 1061 } 1062 1063 if (handler == TARGET_SIG_DFL) { 1064 /* default handler : ignore some signal. The other are job control or fatal */ 1065 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { 1066 kill(getpid(),SIGSTOP); 1067 } else if (sig != TARGET_SIGCHLD && 1068 sig != TARGET_SIGURG && 1069 sig != TARGET_SIGWINCH && 1070 sig != TARGET_SIGCONT) { 1071 dump_core_and_abort(sig); 1072 } 1073 } else if (handler == TARGET_SIG_IGN) { 1074 /* ignore sig */ 1075 } else if (handler == TARGET_SIG_ERR) { 1076 dump_core_and_abort(sig); 1077 } else { 1078 /* compute the blocked signals during the handler execution */ 1079 sigset_t *blocked_set; 1080 1081 target_to_host_sigset(&set, &sa->sa_mask); 1082 /* SA_NODEFER indicates that the current signal should not be 1083 blocked during the handler */ 1084 if (!(sa->sa_flags & TARGET_SA_NODEFER)) 1085 sigaddset(&set, target_to_host_signal(sig)); 1086 1087 /* save the previous blocked signal state to restore it at the 1088 end of the signal execution (see do_sigreturn) */ 1089 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 1090 1091 /* block signals in the handler */ 1092 blocked_set = ts->in_sigsuspend ? 1093 &ts->sigsuspend_mask : &ts->signal_mask; 1094 sigorset(&ts->signal_mask, blocked_set, &set); 1095 ts->in_sigsuspend = 0; 1096 1097 /* if the CPU is in VM86 mode, we restore the 32 bit values */ 1098 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 1099 { 1100 CPUX86State *env = cpu_env; 1101 if (env->eflags & VM_MASK) 1102 save_v86_state(env); 1103 } 1104 #endif 1105 /* prepare the stack frame of the virtual CPU */ 1106 #if defined(TARGET_ARCH_HAS_SETUP_FRAME) 1107 if (sa->sa_flags & TARGET_SA_SIGINFO) { 1108 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1109 } else { 1110 setup_frame(sig, sa, &target_old_set, cpu_env); 1111 } 1112 #else 1113 /* These targets do not have traditional signals. */ 1114 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1115 #endif 1116 if (sa->sa_flags & TARGET_SA_RESETHAND) { 1117 sa->_sa_handler = TARGET_SIG_DFL; 1118 } 1119 } 1120 } 1121 1122 void process_pending_signals(CPUArchState *cpu_env) 1123 { 1124 CPUState *cpu = env_cpu(cpu_env); 1125 int sig; 1126 TaskState *ts = cpu->opaque; 1127 sigset_t set; 1128 sigset_t *blocked_set; 1129 1130 while (qatomic_read(&ts->signal_pending)) { 1131 /* FIXME: This is not threadsafe. */ 1132 sigfillset(&set); 1133 sigprocmask(SIG_SETMASK, &set, 0); 1134 1135 restart_scan: 1136 sig = ts->sync_signal.pending; 1137 if (sig) { 1138 /* Synchronous signals are forced, 1139 * see force_sig_info() and callers in Linux 1140 * Note that not all of our queue_signal() calls in QEMU correspond 1141 * to force_sig_info() calls in Linux (some are send_sig_info()). 1142 * However it seems like a kernel bug to me to allow the process 1143 * to block a synchronous signal since it could then just end up 1144 * looping round and round indefinitely. 1145 */ 1146 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) 1147 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 1148 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); 1149 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 1150 } 1151 1152 handle_pending_signal(cpu_env, sig, &ts->sync_signal); 1153 } 1154 1155 for (sig = 1; sig <= TARGET_NSIG; sig++) { 1156 blocked_set = ts->in_sigsuspend ? 1157 &ts->sigsuspend_mask : &ts->signal_mask; 1158 1159 if (ts->sigtab[sig - 1].pending && 1160 (!sigismember(blocked_set, 1161 target_to_host_signal_table[sig]))) { 1162 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); 1163 /* Restart scan from the beginning, as handle_pending_signal 1164 * might have resulted in a new synchronous signal (eg SIGSEGV). 1165 */ 1166 goto restart_scan; 1167 } 1168 } 1169 1170 /* if no signal is pending, unblock signals and recheck (the act 1171 * of unblocking might cause us to take another host signal which 1172 * will set signal_pending again). 1173 */ 1174 qatomic_set(&ts->signal_pending, 0); 1175 ts->in_sigsuspend = 0; 1176 set = ts->signal_mask; 1177 sigdelset(&set, SIGSEGV); 1178 sigdelset(&set, SIGBUS); 1179 sigprocmask(SIG_SETMASK, &set, 0); 1180 } 1181 ts->in_sigsuspend = 0; 1182 } 1183