1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include "gdbstub/user.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 24 #include <sys/ucontext.h> 25 #include <sys/resource.h> 26 27 #include "qemu.h" 28 #include "user-internals.h" 29 #include "strace.h" 30 #include "loader.h" 31 #include "trace.h" 32 #include "signal-common.h" 33 #include "host-signal.h" 34 #include "user/safe-syscall.h" 35 36 static struct target_sigaction sigact_table[TARGET_NSIG]; 37 38 static void host_signal_handler(int host_signum, siginfo_t *info, 39 void *puc); 40 41 /* Fallback addresses into sigtramp page. */ 42 abi_ulong default_sigreturn; 43 abi_ulong default_rt_sigreturn; 44 45 /* 46 * System includes define _NSIG as SIGRTMAX + 1, 47 * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX 48 * and the first signal is SIGHUP defined as 1 49 * Signal number 0 is reserved for use as kill(pid, 0), to test whether 50 * a process exists without sending it a signal. 51 */ 52 #ifdef __SIGRTMAX 53 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); 54 #endif 55 static uint8_t host_to_target_signal_table[_NSIG] = { 56 #define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig, 57 MAKE_SIGNAL_LIST 58 #undef MAKE_SIG_ENTRY 59 /* next signals stay the same */ 60 }; 61 62 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; 63 64 /* valid sig is between 1 and _NSIG - 1 */ 65 int host_to_target_signal(int sig) 66 { 67 if (sig < 1 || sig >= _NSIG) { 68 return sig; 69 } 70 return host_to_target_signal_table[sig]; 71 } 72 73 /* valid sig is between 1 and TARGET_NSIG */ 74 int target_to_host_signal(int sig) 75 { 76 if (sig < 1 || sig > TARGET_NSIG) { 77 return sig; 78 } 79 return target_to_host_signal_table[sig]; 80 } 81 82 static inline void target_sigaddset(target_sigset_t *set, int signum) 83 { 84 signum--; 85 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 86 set->sig[signum / TARGET_NSIG_BPW] |= mask; 87 } 88 89 static inline int target_sigismember(const target_sigset_t *set, int signum) 90 { 91 signum--; 92 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 93 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); 94 } 95 96 void host_to_target_sigset_internal(target_sigset_t *d, 97 const sigset_t *s) 98 { 99 int host_sig, target_sig; 100 target_sigemptyset(d); 101 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 102 target_sig = host_to_target_signal(host_sig); 103 if (target_sig < 1 || target_sig > TARGET_NSIG) { 104 continue; 105 } 106 if (sigismember(s, host_sig)) { 107 target_sigaddset(d, target_sig); 108 } 109 } 110 } 111 112 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 113 { 114 target_sigset_t d1; 115 int i; 116 117 host_to_target_sigset_internal(&d1, s); 118 for(i = 0;i < TARGET_NSIG_WORDS; i++) 119 d->sig[i] = tswapal(d1.sig[i]); 120 } 121 122 void target_to_host_sigset_internal(sigset_t *d, 123 const target_sigset_t *s) 124 { 125 int host_sig, target_sig; 126 sigemptyset(d); 127 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 128 host_sig = target_to_host_signal(target_sig); 129 if (host_sig < 1 || host_sig >= _NSIG) { 130 continue; 131 } 132 if (target_sigismember(s, target_sig)) { 133 sigaddset(d, host_sig); 134 } 135 } 136 } 137 138 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 139 { 140 target_sigset_t s1; 141 int i; 142 143 for(i = 0;i < TARGET_NSIG_WORDS; i++) 144 s1.sig[i] = tswapal(s->sig[i]); 145 target_to_host_sigset_internal(d, &s1); 146 } 147 148 void host_to_target_old_sigset(abi_ulong *old_sigset, 149 const sigset_t *sigset) 150 { 151 target_sigset_t d; 152 host_to_target_sigset(&d, sigset); 153 *old_sigset = d.sig[0]; 154 } 155 156 void target_to_host_old_sigset(sigset_t *sigset, 157 const abi_ulong *old_sigset) 158 { 159 target_sigset_t d; 160 int i; 161 162 d.sig[0] = *old_sigset; 163 for(i = 1;i < TARGET_NSIG_WORDS; i++) 164 d.sig[i] = 0; 165 target_to_host_sigset(sigset, &d); 166 } 167 168 int block_signals(void) 169 { 170 TaskState *ts = (TaskState *)thread_cpu->opaque; 171 sigset_t set; 172 173 /* It's OK to block everything including SIGSEGV, because we won't 174 * run any further guest code before unblocking signals in 175 * process_pending_signals(). 176 */ 177 sigfillset(&set); 178 sigprocmask(SIG_SETMASK, &set, 0); 179 180 return qatomic_xchg(&ts->signal_pending, 1); 181 } 182 183 /* Wrapper for sigprocmask function 184 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset 185 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if 186 * a signal was already pending and the syscall must be restarted, or 187 * 0 on success. 188 * If set is NULL, this is guaranteed not to fail. 189 */ 190 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) 191 { 192 TaskState *ts = (TaskState *)thread_cpu->opaque; 193 194 if (oldset) { 195 *oldset = ts->signal_mask; 196 } 197 198 if (set) { 199 int i; 200 201 if (block_signals()) { 202 return -QEMU_ERESTARTSYS; 203 } 204 205 switch (how) { 206 case SIG_BLOCK: 207 sigorset(&ts->signal_mask, &ts->signal_mask, set); 208 break; 209 case SIG_UNBLOCK: 210 for (i = 1; i <= NSIG; ++i) { 211 if (sigismember(set, i)) { 212 sigdelset(&ts->signal_mask, i); 213 } 214 } 215 break; 216 case SIG_SETMASK: 217 ts->signal_mask = *set; 218 break; 219 default: 220 g_assert_not_reached(); 221 } 222 223 /* Silently ignore attempts to change blocking status of KILL or STOP */ 224 sigdelset(&ts->signal_mask, SIGKILL); 225 sigdelset(&ts->signal_mask, SIGSTOP); 226 } 227 return 0; 228 } 229 230 /* Just set the guest's signal mask to the specified value; the 231 * caller is assumed to have called block_signals() already. 232 */ 233 void set_sigmask(const sigset_t *set) 234 { 235 TaskState *ts = (TaskState *)thread_cpu->opaque; 236 237 ts->signal_mask = *set; 238 } 239 240 /* sigaltstack management */ 241 242 int on_sig_stack(unsigned long sp) 243 { 244 TaskState *ts = (TaskState *)thread_cpu->opaque; 245 246 return (sp - ts->sigaltstack_used.ss_sp 247 < ts->sigaltstack_used.ss_size); 248 } 249 250 int sas_ss_flags(unsigned long sp) 251 { 252 TaskState *ts = (TaskState *)thread_cpu->opaque; 253 254 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE 255 : on_sig_stack(sp) ? SS_ONSTACK : 0); 256 } 257 258 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) 259 { 260 /* 261 * This is the X/Open sanctioned signal stack switching. 262 */ 263 TaskState *ts = (TaskState *)thread_cpu->opaque; 264 265 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 266 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 267 } 268 return sp; 269 } 270 271 void target_save_altstack(target_stack_t *uss, CPUArchState *env) 272 { 273 TaskState *ts = (TaskState *)thread_cpu->opaque; 274 275 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); 276 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); 277 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); 278 } 279 280 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) 281 { 282 TaskState *ts = (TaskState *)thread_cpu->opaque; 283 size_t minstacksize = TARGET_MINSIGSTKSZ; 284 target_stack_t ss; 285 286 #if defined(TARGET_PPC64) 287 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ 288 struct image_info *image = ts->info; 289 if (get_ppc64_abi(image) > 1) { 290 minstacksize = 4096; 291 } 292 #endif 293 294 __get_user(ss.ss_sp, &uss->ss_sp); 295 __get_user(ss.ss_size, &uss->ss_size); 296 __get_user(ss.ss_flags, &uss->ss_flags); 297 298 if (on_sig_stack(get_sp_from_cpustate(env))) { 299 return -TARGET_EPERM; 300 } 301 302 switch (ss.ss_flags) { 303 default: 304 return -TARGET_EINVAL; 305 306 case TARGET_SS_DISABLE: 307 ss.ss_size = 0; 308 ss.ss_sp = 0; 309 break; 310 311 case TARGET_SS_ONSTACK: 312 case 0: 313 if (ss.ss_size < minstacksize) { 314 return -TARGET_ENOMEM; 315 } 316 break; 317 } 318 319 ts->sigaltstack_used.ss_sp = ss.ss_sp; 320 ts->sigaltstack_used.ss_size = ss.ss_size; 321 return 0; 322 } 323 324 /* siginfo conversion */ 325 326 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 327 const siginfo_t *info) 328 { 329 int sig = host_to_target_signal(info->si_signo); 330 int si_code = info->si_code; 331 int si_type; 332 tinfo->si_signo = sig; 333 tinfo->si_errno = 0; 334 tinfo->si_code = info->si_code; 335 336 /* This memset serves two purposes: 337 * (1) ensure we don't leak random junk to the guest later 338 * (2) placate false positives from gcc about fields 339 * being used uninitialized if it chooses to inline both this 340 * function and tswap_siginfo() into host_to_target_siginfo(). 341 */ 342 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); 343 344 /* This is awkward, because we have to use a combination of 345 * the si_code and si_signo to figure out which of the union's 346 * members are valid. (Within the host kernel it is always possible 347 * to tell, but the kernel carefully avoids giving userspace the 348 * high 16 bits of si_code, so we don't have the information to 349 * do this the easy way...) We therefore make our best guess, 350 * bearing in mind that a guest can spoof most of the si_codes 351 * via rt_sigqueueinfo() if it likes. 352 * 353 * Once we have made our guess, we record it in the top 16 bits of 354 * the si_code, so that tswap_siginfo() later can use it. 355 * tswap_siginfo() will strip these top bits out before writing 356 * si_code to the guest (sign-extending the lower bits). 357 */ 358 359 switch (si_code) { 360 case SI_USER: 361 case SI_TKILL: 362 case SI_KERNEL: 363 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. 364 * These are the only unspoofable si_code values. 365 */ 366 tinfo->_sifields._kill._pid = info->si_pid; 367 tinfo->_sifields._kill._uid = info->si_uid; 368 si_type = QEMU_SI_KILL; 369 break; 370 default: 371 /* Everything else is spoofable. Make best guess based on signal */ 372 switch (sig) { 373 case TARGET_SIGCHLD: 374 tinfo->_sifields._sigchld._pid = info->si_pid; 375 tinfo->_sifields._sigchld._uid = info->si_uid; 376 if (si_code == CLD_EXITED) 377 tinfo->_sifields._sigchld._status = info->si_status; 378 else 379 tinfo->_sifields._sigchld._status 380 = host_to_target_signal(info->si_status & 0x7f) 381 | (info->si_status & ~0x7f); 382 tinfo->_sifields._sigchld._utime = info->si_utime; 383 tinfo->_sifields._sigchld._stime = info->si_stime; 384 si_type = QEMU_SI_CHLD; 385 break; 386 case TARGET_SIGIO: 387 tinfo->_sifields._sigpoll._band = info->si_band; 388 tinfo->_sifields._sigpoll._fd = info->si_fd; 389 si_type = QEMU_SI_POLL; 390 break; 391 default: 392 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ 393 tinfo->_sifields._rt._pid = info->si_pid; 394 tinfo->_sifields._rt._uid = info->si_uid; 395 /* XXX: potential problem if 64 bit */ 396 tinfo->_sifields._rt._sigval.sival_ptr 397 = (abi_ulong)(unsigned long)info->si_value.sival_ptr; 398 si_type = QEMU_SI_RT; 399 break; 400 } 401 break; 402 } 403 404 tinfo->si_code = deposit32(si_code, 16, 16, si_type); 405 } 406 407 void tswap_siginfo(target_siginfo_t *tinfo, 408 const target_siginfo_t *info) 409 { 410 int si_type = extract32(info->si_code, 16, 16); 411 int si_code = sextract32(info->si_code, 0, 16); 412 413 __put_user(info->si_signo, &tinfo->si_signo); 414 __put_user(info->si_errno, &tinfo->si_errno); 415 __put_user(si_code, &tinfo->si_code); 416 417 /* We can use our internal marker of which fields in the structure 418 * are valid, rather than duplicating the guesswork of 419 * host_to_target_siginfo_noswap() here. 420 */ 421 switch (si_type) { 422 case QEMU_SI_KILL: 423 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); 424 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); 425 break; 426 case QEMU_SI_TIMER: 427 __put_user(info->_sifields._timer._timer1, 428 &tinfo->_sifields._timer._timer1); 429 __put_user(info->_sifields._timer._timer2, 430 &tinfo->_sifields._timer._timer2); 431 break; 432 case QEMU_SI_POLL: 433 __put_user(info->_sifields._sigpoll._band, 434 &tinfo->_sifields._sigpoll._band); 435 __put_user(info->_sifields._sigpoll._fd, 436 &tinfo->_sifields._sigpoll._fd); 437 break; 438 case QEMU_SI_FAULT: 439 __put_user(info->_sifields._sigfault._addr, 440 &tinfo->_sifields._sigfault._addr); 441 break; 442 case QEMU_SI_CHLD: 443 __put_user(info->_sifields._sigchld._pid, 444 &tinfo->_sifields._sigchld._pid); 445 __put_user(info->_sifields._sigchld._uid, 446 &tinfo->_sifields._sigchld._uid); 447 __put_user(info->_sifields._sigchld._status, 448 &tinfo->_sifields._sigchld._status); 449 __put_user(info->_sifields._sigchld._utime, 450 &tinfo->_sifields._sigchld._utime); 451 __put_user(info->_sifields._sigchld._stime, 452 &tinfo->_sifields._sigchld._stime); 453 break; 454 case QEMU_SI_RT: 455 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); 456 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); 457 __put_user(info->_sifields._rt._sigval.sival_ptr, 458 &tinfo->_sifields._rt._sigval.sival_ptr); 459 break; 460 default: 461 g_assert_not_reached(); 462 } 463 } 464 465 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 466 { 467 target_siginfo_t tgt_tmp; 468 host_to_target_siginfo_noswap(&tgt_tmp, info); 469 tswap_siginfo(tinfo, &tgt_tmp); 470 } 471 472 /* XXX: we support only POSIX RT signals are used. */ 473 /* XXX: find a solution for 64 bit (additional malloced data is needed) */ 474 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) 475 { 476 /* This conversion is used only for the rt_sigqueueinfo syscall, 477 * and so we know that the _rt fields are the valid ones. 478 */ 479 abi_ulong sival_ptr; 480 481 __get_user(info->si_signo, &tinfo->si_signo); 482 __get_user(info->si_errno, &tinfo->si_errno); 483 __get_user(info->si_code, &tinfo->si_code); 484 __get_user(info->si_pid, &tinfo->_sifields._rt._pid); 485 __get_user(info->si_uid, &tinfo->_sifields._rt._uid); 486 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); 487 info->si_value.sival_ptr = (void *)(long)sival_ptr; 488 } 489 490 static int fatal_signal (int sig) 491 { 492 switch (sig) { 493 case TARGET_SIGCHLD: 494 case TARGET_SIGURG: 495 case TARGET_SIGWINCH: 496 /* Ignored by default. */ 497 return 0; 498 case TARGET_SIGCONT: 499 case TARGET_SIGSTOP: 500 case TARGET_SIGTSTP: 501 case TARGET_SIGTTIN: 502 case TARGET_SIGTTOU: 503 /* Job control signals. */ 504 return 0; 505 default: 506 return 1; 507 } 508 } 509 510 /* returns 1 if given signal should dump core if not handled */ 511 static int core_dump_signal(int sig) 512 { 513 switch (sig) { 514 case TARGET_SIGABRT: 515 case TARGET_SIGFPE: 516 case TARGET_SIGILL: 517 case TARGET_SIGQUIT: 518 case TARGET_SIGSEGV: 519 case TARGET_SIGTRAP: 520 case TARGET_SIGBUS: 521 return (1); 522 default: 523 return (0); 524 } 525 } 526 527 static void signal_table_init(void) 528 { 529 int host_sig, target_sig, count; 530 531 /* 532 * Signals are supported starting from TARGET_SIGRTMIN and going up 533 * until we run out of host realtime signals. 534 * glibc at least uses only the lower 2 rt signals and probably 535 * nobody's using the upper ones. 536 * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32) 537 * To fix this properly we need to do manual signal delivery multiplexed 538 * over a single host signal. 539 * Attempts for configure "missing" signals via sigaction will be 540 * silently ignored. 541 */ 542 for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) { 543 target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN; 544 if (target_sig <= TARGET_NSIG) { 545 host_to_target_signal_table[host_sig] = target_sig; 546 } 547 } 548 549 /* generate signal conversion tables */ 550 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 551 target_to_host_signal_table[target_sig] = _NSIG; /* poison */ 552 } 553 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 554 if (host_to_target_signal_table[host_sig] == 0) { 555 host_to_target_signal_table[host_sig] = host_sig; 556 } 557 target_sig = host_to_target_signal_table[host_sig]; 558 if (target_sig <= TARGET_NSIG) { 559 target_to_host_signal_table[target_sig] = host_sig; 560 } 561 } 562 563 if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) { 564 for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) { 565 if (target_to_host_signal_table[target_sig] == _NSIG) { 566 count++; 567 } 568 } 569 trace_signal_table_init(count); 570 } 571 } 572 573 void signal_init(void) 574 { 575 TaskState *ts = (TaskState *)thread_cpu->opaque; 576 struct sigaction act; 577 struct sigaction oact; 578 int i; 579 int host_sig; 580 581 /* initialize signal conversion tables */ 582 signal_table_init(); 583 584 /* Set the signal mask from the host mask. */ 585 sigprocmask(0, 0, &ts->signal_mask); 586 587 sigfillset(&act.sa_mask); 588 act.sa_flags = SA_SIGINFO; 589 act.sa_sigaction = host_signal_handler; 590 for(i = 1; i <= TARGET_NSIG; i++) { 591 host_sig = target_to_host_signal(i); 592 sigaction(host_sig, NULL, &oact); 593 if (oact.sa_sigaction == (void *)SIG_IGN) { 594 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 595 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 596 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 597 } 598 /* If there's already a handler installed then something has 599 gone horribly wrong, so don't even try to handle that case. */ 600 /* Install some handlers for our own use. We need at least 601 SIGSEGV and SIGBUS, to detect exceptions. We can not just 602 trap all signals because it affects syscall interrupt 603 behavior. But do trap all default-fatal signals. */ 604 if (fatal_signal (i)) 605 sigaction(host_sig, &act, NULL); 606 } 607 } 608 609 /* Force a synchronously taken signal. The kernel force_sig() function 610 * also forces the signal to "not blocked, not ignored", but for QEMU 611 * that work is done in process_pending_signals(). 612 */ 613 void force_sig(int sig) 614 { 615 CPUState *cpu = thread_cpu; 616 CPUArchState *env = cpu_env(cpu); 617 target_siginfo_t info = {}; 618 619 info.si_signo = sig; 620 info.si_errno = 0; 621 info.si_code = TARGET_SI_KERNEL; 622 info._sifields._kill._pid = 0; 623 info._sifields._kill._uid = 0; 624 queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); 625 } 626 627 /* 628 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 629 * 'force' part is handled in process_pending_signals(). 630 */ 631 void force_sig_fault(int sig, int code, abi_ulong addr) 632 { 633 CPUState *cpu = thread_cpu; 634 CPUArchState *env = cpu_env(cpu); 635 target_siginfo_t info = {}; 636 637 info.si_signo = sig; 638 info.si_errno = 0; 639 info.si_code = code; 640 info._sifields._sigfault._addr = addr; 641 queue_signal(env, sig, QEMU_SI_FAULT, &info); 642 } 643 644 /* Force a SIGSEGV if we couldn't write to memory trying to set 645 * up the signal frame. oldsig is the signal we were trying to handle 646 * at the point of failure. 647 */ 648 #if !defined(TARGET_RISCV) 649 void force_sigsegv(int oldsig) 650 { 651 if (oldsig == SIGSEGV) { 652 /* Make sure we don't try to deliver the signal again; this will 653 * end up with handle_pending_signal() calling dump_core_and_abort(). 654 */ 655 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; 656 } 657 force_sig(TARGET_SIGSEGV); 658 } 659 #endif 660 661 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 662 MMUAccessType access_type, bool maperr, uintptr_t ra) 663 { 664 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 665 666 if (tcg_ops->record_sigsegv) { 667 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 668 } 669 670 force_sig_fault(TARGET_SIGSEGV, 671 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 672 addr); 673 cpu->exception_index = EXCP_INTERRUPT; 674 cpu_loop_exit_restore(cpu, ra); 675 } 676 677 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 678 MMUAccessType access_type, uintptr_t ra) 679 { 680 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 681 682 if (tcg_ops->record_sigbus) { 683 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 684 } 685 686 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 687 cpu->exception_index = EXCP_INTERRUPT; 688 cpu_loop_exit_restore(cpu, ra); 689 } 690 691 /* abort execution with signal */ 692 static G_NORETURN 693 void dump_core_and_abort(CPUArchState *env, int target_sig) 694 { 695 CPUState *cpu = env_cpu(env); 696 TaskState *ts = (TaskState *)cpu->opaque; 697 int host_sig, core_dumped = 0; 698 struct sigaction act; 699 700 host_sig = target_to_host_signal(target_sig); 701 trace_user_dump_core_and_abort(env, target_sig, host_sig); 702 gdb_signalled(env, target_sig); 703 704 /* dump core if supported by target binary format */ 705 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 706 stop_all_tasks(); 707 core_dumped = 708 ((*ts->bprm->core_dump)(target_sig, env) == 0); 709 } 710 if (core_dumped) { 711 /* we already dumped the core of target process, we don't want 712 * a coredump of qemu itself */ 713 struct rlimit nodump; 714 getrlimit(RLIMIT_CORE, &nodump); 715 nodump.rlim_cur=0; 716 setrlimit(RLIMIT_CORE, &nodump); 717 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", 718 target_sig, strsignal(host_sig), "core dumped" ); 719 } 720 721 preexit_cleanup(env, 128 + target_sig); 722 723 /* The proper exit code for dying from an uncaught signal is 724 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 725 * a negative value. To get the proper exit code we need to 726 * actually die from an uncaught signal. Here the default signal 727 * handler is installed, we send ourself a signal and we wait for 728 * it to arrive. */ 729 sigfillset(&act.sa_mask); 730 act.sa_handler = SIG_DFL; 731 act.sa_flags = 0; 732 sigaction(host_sig, &act, NULL); 733 734 /* For some reason raise(host_sig) doesn't send the signal when 735 * statically linked on x86-64. */ 736 kill(getpid(), host_sig); 737 738 /* Make sure the signal isn't masked (just reuse the mask inside 739 of act) */ 740 sigdelset(&act.sa_mask, host_sig); 741 sigsuspend(&act.sa_mask); 742 743 /* unreachable */ 744 abort(); 745 } 746 747 /* queue a signal so that it will be send to the virtual CPU as soon 748 as possible */ 749 void queue_signal(CPUArchState *env, int sig, int si_type, 750 target_siginfo_t *info) 751 { 752 CPUState *cpu = env_cpu(env); 753 TaskState *ts = cpu->opaque; 754 755 trace_user_queue_signal(env, sig); 756 757 info->si_code = deposit32(info->si_code, 16, 16, si_type); 758 759 ts->sync_signal.info = *info; 760 ts->sync_signal.pending = sig; 761 /* signal that a new signal is pending */ 762 qatomic_set(&ts->signal_pending, 1); 763 } 764 765 766 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 767 static inline void rewind_if_in_safe_syscall(void *puc) 768 { 769 host_sigcontext *uc = (host_sigcontext *)puc; 770 uintptr_t pcreg = host_signal_pc(uc); 771 772 if (pcreg > (uintptr_t)safe_syscall_start 773 && pcreg < (uintptr_t)safe_syscall_end) { 774 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 775 } 776 } 777 778 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 779 { 780 CPUState *cpu = thread_cpu; 781 CPUArchState *env = cpu_env(cpu); 782 TaskState *ts = cpu->opaque; 783 target_siginfo_t tinfo; 784 host_sigcontext *uc = puc; 785 struct emulated_sigtable *k; 786 int guest_sig; 787 uintptr_t pc = 0; 788 bool sync_sig = false; 789 void *sigmask = host_signal_mask(uc); 790 791 /* 792 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 793 * handling wrt signal blocking and unwinding. 794 */ 795 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 796 MMUAccessType access_type; 797 uintptr_t host_addr; 798 abi_ptr guest_addr; 799 bool is_write; 800 801 host_addr = (uintptr_t)info->si_addr; 802 803 /* 804 * Convert forcefully to guest address space: addresses outside 805 * reserved_va are still valid to report via SEGV_MAPERR. 806 */ 807 guest_addr = h2g_nocheck(host_addr); 808 809 pc = host_signal_pc(uc); 810 is_write = host_signal_write(info, uc); 811 access_type = adjust_signal_pc(&pc, is_write); 812 813 if (host_sig == SIGSEGV) { 814 bool maperr = true; 815 816 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 817 /* If this was a write to a TB protected page, restart. */ 818 if (is_write && 819 handle_sigsegv_accerr_write(cpu, sigmask, pc, guest_addr)) { 820 return; 821 } 822 823 /* 824 * With reserved_va, the whole address space is PROT_NONE, 825 * which means that we may get ACCERR when we want MAPERR. 826 */ 827 if (page_get_flags(guest_addr) & PAGE_VALID) { 828 maperr = false; 829 } else { 830 info->si_code = SEGV_MAPERR; 831 } 832 } 833 834 sigprocmask(SIG_SETMASK, sigmask, NULL); 835 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 836 } else { 837 sigprocmask(SIG_SETMASK, sigmask, NULL); 838 if (info->si_code == BUS_ADRALN) { 839 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 840 } 841 } 842 843 sync_sig = true; 844 } 845 846 /* get target signal number */ 847 guest_sig = host_to_target_signal(host_sig); 848 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 849 return; 850 } 851 trace_user_host_signal(env, host_sig, guest_sig); 852 853 host_to_target_siginfo_noswap(&tinfo, info); 854 k = &ts->sigtab[guest_sig - 1]; 855 k->info = tinfo; 856 k->pending = guest_sig; 857 ts->signal_pending = 1; 858 859 /* 860 * For synchronous signals, unwind the cpu state to the faulting 861 * insn and then exit back to the main loop so that the signal 862 * is delivered immediately. 863 */ 864 if (sync_sig) { 865 cpu->exception_index = EXCP_INTERRUPT; 866 cpu_loop_exit_restore(cpu, pc); 867 } 868 869 rewind_if_in_safe_syscall(puc); 870 871 /* 872 * Block host signals until target signal handler entered. We 873 * can't block SIGSEGV or SIGBUS while we're executing guest 874 * code in case the guest code provokes one in the window between 875 * now and it getting out to the main loop. Signals will be 876 * unblocked again in process_pending_signals(). 877 * 878 * WARNING: we cannot use sigfillset() here because the sigmask 879 * field is a kernel sigset_t, which is much smaller than the 880 * libc sigset_t which sigfillset() operates on. Using sigfillset() 881 * would write 0xff bytes off the end of the structure and trash 882 * data on the struct. 883 */ 884 memset(sigmask, 0xff, SIGSET_T_SIZE); 885 sigdelset(sigmask, SIGSEGV); 886 sigdelset(sigmask, SIGBUS); 887 888 /* interrupt the virtual CPU as soon as possible */ 889 cpu_exit(thread_cpu); 890 } 891 892 /* do_sigaltstack() returns target values and errnos. */ 893 /* compare linux/kernel/signal.c:do_sigaltstack() */ 894 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, 895 CPUArchState *env) 896 { 897 target_stack_t oss, *uoss = NULL; 898 abi_long ret = -TARGET_EFAULT; 899 900 if (uoss_addr) { 901 /* Verify writability now, but do not alter user memory yet. */ 902 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { 903 goto out; 904 } 905 target_save_altstack(&oss, env); 906 } 907 908 if (uss_addr) { 909 target_stack_t *uss; 910 911 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 912 goto out; 913 } 914 ret = target_restore_altstack(uss, env); 915 if (ret) { 916 goto out; 917 } 918 } 919 920 if (uoss_addr) { 921 memcpy(uoss, &oss, sizeof(oss)); 922 unlock_user_struct(uoss, uoss_addr, 1); 923 uoss = NULL; 924 } 925 ret = 0; 926 927 out: 928 if (uoss) { 929 unlock_user_struct(uoss, uoss_addr, 0); 930 } 931 return ret; 932 } 933 934 /* do_sigaction() return target values and host errnos */ 935 int do_sigaction(int sig, const struct target_sigaction *act, 936 struct target_sigaction *oact, abi_ulong ka_restorer) 937 { 938 struct target_sigaction *k; 939 struct sigaction act1; 940 int host_sig; 941 int ret = 0; 942 943 trace_signal_do_sigaction_guest(sig, TARGET_NSIG); 944 945 if (sig < 1 || sig > TARGET_NSIG) { 946 return -TARGET_EINVAL; 947 } 948 949 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { 950 return -TARGET_EINVAL; 951 } 952 953 if (block_signals()) { 954 return -QEMU_ERESTARTSYS; 955 } 956 957 k = &sigact_table[sig - 1]; 958 if (oact) { 959 __put_user(k->_sa_handler, &oact->_sa_handler); 960 __put_user(k->sa_flags, &oact->sa_flags); 961 #ifdef TARGET_ARCH_HAS_SA_RESTORER 962 __put_user(k->sa_restorer, &oact->sa_restorer); 963 #endif 964 /* Not swapped. */ 965 oact->sa_mask = k->sa_mask; 966 } 967 if (act) { 968 __get_user(k->_sa_handler, &act->_sa_handler); 969 __get_user(k->sa_flags, &act->sa_flags); 970 #ifdef TARGET_ARCH_HAS_SA_RESTORER 971 __get_user(k->sa_restorer, &act->sa_restorer); 972 #endif 973 #ifdef TARGET_ARCH_HAS_KA_RESTORER 974 k->ka_restorer = ka_restorer; 975 #endif 976 /* To be swapped in target_to_host_sigset. */ 977 k->sa_mask = act->sa_mask; 978 979 /* we update the host linux signal state */ 980 host_sig = target_to_host_signal(sig); 981 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); 982 if (host_sig > SIGRTMAX) { 983 /* we don't have enough host signals to map all target signals */ 984 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", 985 sig); 986 /* 987 * we don't return an error here because some programs try to 988 * register an handler for all possible rt signals even if they 989 * don't need it. 990 * An error here can abort them whereas there can be no problem 991 * to not have the signal available later. 992 * This is the case for golang, 993 * See https://github.com/golang/go/issues/33746 994 * So we silently ignore the error. 995 */ 996 return 0; 997 } 998 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 999 sigfillset(&act1.sa_mask); 1000 act1.sa_flags = SA_SIGINFO; 1001 if (k->sa_flags & TARGET_SA_RESTART) 1002 act1.sa_flags |= SA_RESTART; 1003 /* NOTE: it is important to update the host kernel signal 1004 ignore state to avoid getting unexpected interrupted 1005 syscalls */ 1006 if (k->_sa_handler == TARGET_SIG_IGN) { 1007 act1.sa_sigaction = (void *)SIG_IGN; 1008 } else if (k->_sa_handler == TARGET_SIG_DFL) { 1009 if (fatal_signal (sig)) 1010 act1.sa_sigaction = host_signal_handler; 1011 else 1012 act1.sa_sigaction = (void *)SIG_DFL; 1013 } else { 1014 act1.sa_sigaction = host_signal_handler; 1015 } 1016 ret = sigaction(host_sig, &act1, NULL); 1017 } 1018 } 1019 return ret; 1020 } 1021 1022 static void handle_pending_signal(CPUArchState *cpu_env, int sig, 1023 struct emulated_sigtable *k) 1024 { 1025 CPUState *cpu = env_cpu(cpu_env); 1026 abi_ulong handler; 1027 sigset_t set; 1028 target_sigset_t target_old_set; 1029 struct target_sigaction *sa; 1030 TaskState *ts = cpu->opaque; 1031 1032 trace_user_handle_signal(cpu_env, sig); 1033 /* dequeue signal */ 1034 k->pending = 0; 1035 1036 sig = gdb_handlesig(cpu, sig); 1037 if (!sig) { 1038 sa = NULL; 1039 handler = TARGET_SIG_IGN; 1040 } else { 1041 sa = &sigact_table[sig - 1]; 1042 handler = sa->_sa_handler; 1043 } 1044 1045 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 1046 print_taken_signal(sig, &k->info); 1047 } 1048 1049 if (handler == TARGET_SIG_DFL) { 1050 /* default handler : ignore some signal. The other are job control or fatal */ 1051 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { 1052 kill(getpid(),SIGSTOP); 1053 } else if (sig != TARGET_SIGCHLD && 1054 sig != TARGET_SIGURG && 1055 sig != TARGET_SIGWINCH && 1056 sig != TARGET_SIGCONT) { 1057 dump_core_and_abort(cpu_env, sig); 1058 } 1059 } else if (handler == TARGET_SIG_IGN) { 1060 /* ignore sig */ 1061 } else if (handler == TARGET_SIG_ERR) { 1062 dump_core_and_abort(cpu_env, sig); 1063 } else { 1064 /* compute the blocked signals during the handler execution */ 1065 sigset_t *blocked_set; 1066 1067 target_to_host_sigset(&set, &sa->sa_mask); 1068 /* SA_NODEFER indicates that the current signal should not be 1069 blocked during the handler */ 1070 if (!(sa->sa_flags & TARGET_SA_NODEFER)) 1071 sigaddset(&set, target_to_host_signal(sig)); 1072 1073 /* save the previous blocked signal state to restore it at the 1074 end of the signal execution (see do_sigreturn) */ 1075 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 1076 1077 /* block signals in the handler */ 1078 blocked_set = ts->in_sigsuspend ? 1079 &ts->sigsuspend_mask : &ts->signal_mask; 1080 sigorset(&ts->signal_mask, blocked_set, &set); 1081 ts->in_sigsuspend = 0; 1082 1083 /* if the CPU is in VM86 mode, we restore the 32 bit values */ 1084 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 1085 { 1086 CPUX86State *env = cpu_env; 1087 if (env->eflags & VM_MASK) 1088 save_v86_state(env); 1089 } 1090 #endif 1091 /* prepare the stack frame of the virtual CPU */ 1092 #if defined(TARGET_ARCH_HAS_SETUP_FRAME) 1093 if (sa->sa_flags & TARGET_SA_SIGINFO) { 1094 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1095 } else { 1096 setup_frame(sig, sa, &target_old_set, cpu_env); 1097 } 1098 #else 1099 /* These targets do not have traditional signals. */ 1100 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1101 #endif 1102 if (sa->sa_flags & TARGET_SA_RESETHAND) { 1103 sa->_sa_handler = TARGET_SIG_DFL; 1104 } 1105 } 1106 } 1107 1108 void process_pending_signals(CPUArchState *cpu_env) 1109 { 1110 CPUState *cpu = env_cpu(cpu_env); 1111 int sig; 1112 TaskState *ts = cpu->opaque; 1113 sigset_t set; 1114 sigset_t *blocked_set; 1115 1116 while (qatomic_read(&ts->signal_pending)) { 1117 sigfillset(&set); 1118 sigprocmask(SIG_SETMASK, &set, 0); 1119 1120 restart_scan: 1121 sig = ts->sync_signal.pending; 1122 if (sig) { 1123 /* Synchronous signals are forced, 1124 * see force_sig_info() and callers in Linux 1125 * Note that not all of our queue_signal() calls in QEMU correspond 1126 * to force_sig_info() calls in Linux (some are send_sig_info()). 1127 * However it seems like a kernel bug to me to allow the process 1128 * to block a synchronous signal since it could then just end up 1129 * looping round and round indefinitely. 1130 */ 1131 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) 1132 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 1133 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); 1134 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 1135 } 1136 1137 handle_pending_signal(cpu_env, sig, &ts->sync_signal); 1138 } 1139 1140 for (sig = 1; sig <= TARGET_NSIG; sig++) { 1141 blocked_set = ts->in_sigsuspend ? 1142 &ts->sigsuspend_mask : &ts->signal_mask; 1143 1144 if (ts->sigtab[sig - 1].pending && 1145 (!sigismember(blocked_set, 1146 target_to_host_signal_table[sig]))) { 1147 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); 1148 /* Restart scan from the beginning, as handle_pending_signal 1149 * might have resulted in a new synchronous signal (eg SIGSEGV). 1150 */ 1151 goto restart_scan; 1152 } 1153 } 1154 1155 /* if no signal is pending, unblock signals and recheck (the act 1156 * of unblocking might cause us to take another host signal which 1157 * will set signal_pending again). 1158 */ 1159 qatomic_set(&ts->signal_pending, 0); 1160 ts->in_sigsuspend = 0; 1161 set = ts->signal_mask; 1162 sigdelset(&set, SIGSEGV); 1163 sigdelset(&set, SIGBUS); 1164 sigprocmask(SIG_SETMASK, &set, 0); 1165 } 1166 ts->in_sigsuspend = 0; 1167 } 1168 1169 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset, 1170 target_ulong sigsize) 1171 { 1172 TaskState *ts = (TaskState *)thread_cpu->opaque; 1173 sigset_t *host_set = &ts->sigsuspend_mask; 1174 target_sigset_t *target_sigset; 1175 1176 if (sigsize != sizeof(*target_sigset)) { 1177 /* Like the kernel, we enforce correct size sigsets */ 1178 return -TARGET_EINVAL; 1179 } 1180 1181 target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1); 1182 if (!target_sigset) { 1183 return -TARGET_EFAULT; 1184 } 1185 target_to_host_sigset(host_set, target_sigset); 1186 unlock_user(target_sigset, sigset, 0); 1187 1188 *pset = host_set; 1189 return 0; 1190 } 1191