1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include "gdbstub/user.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 24 #include <sys/ucontext.h> 25 #include <sys/resource.h> 26 27 #include "qemu.h" 28 #include "user-internals.h" 29 #include "strace.h" 30 #include "loader.h" 31 #include "trace.h" 32 #include "signal-common.h" 33 #include "host-signal.h" 34 #include "user/safe-syscall.h" 35 #include "tcg/tcg.h" 36 37 static struct target_sigaction sigact_table[TARGET_NSIG]; 38 39 static void host_signal_handler(int host_signum, siginfo_t *info, 40 void *puc); 41 42 /* Fallback addresses into sigtramp page. */ 43 abi_ulong default_sigreturn; 44 abi_ulong default_rt_sigreturn; 45 46 /* 47 * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel) 48 * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1. 49 * Signal number 0 is reserved for use as kill(pid, 0), to test whether 50 * a process exists without sending it a signal. 51 */ 52 #ifdef __SIGRTMAX 53 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); 54 #endif 55 static uint8_t host_to_target_signal_table[_NSIG] = { 56 #define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig, 57 MAKE_SIGNAL_LIST 58 #undef MAKE_SIG_ENTRY 59 }; 60 61 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; 62 63 /* valid sig is between 1 and _NSIG - 1 */ 64 int host_to_target_signal(int sig) 65 { 66 if (sig < 1) { 67 return sig; 68 } 69 if (sig >= _NSIG) { 70 return TARGET_NSIG + 1; 71 } 72 return host_to_target_signal_table[sig]; 73 } 74 75 /* valid sig is between 1 and TARGET_NSIG */ 76 int target_to_host_signal(int sig) 77 { 78 if (sig < 1) { 79 return sig; 80 } 81 if (sig > TARGET_NSIG) { 82 return _NSIG; 83 } 84 return target_to_host_signal_table[sig]; 85 } 86 87 static inline void target_sigaddset(target_sigset_t *set, int signum) 88 { 89 signum--; 90 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 91 set->sig[signum / TARGET_NSIG_BPW] |= mask; 92 } 93 94 static inline int target_sigismember(const target_sigset_t *set, int signum) 95 { 96 signum--; 97 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 98 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); 99 } 100 101 void host_to_target_sigset_internal(target_sigset_t *d, 102 const sigset_t *s) 103 { 104 int host_sig, target_sig; 105 target_sigemptyset(d); 106 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 107 target_sig = host_to_target_signal(host_sig); 108 if (target_sig < 1 || target_sig > TARGET_NSIG) { 109 continue; 110 } 111 if (sigismember(s, host_sig)) { 112 target_sigaddset(d, target_sig); 113 } 114 } 115 } 116 117 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 118 { 119 target_sigset_t d1; 120 int i; 121 122 host_to_target_sigset_internal(&d1, s); 123 for(i = 0;i < TARGET_NSIG_WORDS; i++) 124 d->sig[i] = tswapal(d1.sig[i]); 125 } 126 127 void target_to_host_sigset_internal(sigset_t *d, 128 const target_sigset_t *s) 129 { 130 int host_sig, target_sig; 131 sigemptyset(d); 132 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 133 host_sig = target_to_host_signal(target_sig); 134 if (host_sig < 1 || host_sig >= _NSIG) { 135 continue; 136 } 137 if (target_sigismember(s, target_sig)) { 138 sigaddset(d, host_sig); 139 } 140 } 141 } 142 143 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 144 { 145 target_sigset_t s1; 146 int i; 147 148 for(i = 0;i < TARGET_NSIG_WORDS; i++) 149 s1.sig[i] = tswapal(s->sig[i]); 150 target_to_host_sigset_internal(d, &s1); 151 } 152 153 void host_to_target_old_sigset(abi_ulong *old_sigset, 154 const sigset_t *sigset) 155 { 156 target_sigset_t d; 157 host_to_target_sigset(&d, sigset); 158 *old_sigset = d.sig[0]; 159 } 160 161 void target_to_host_old_sigset(sigset_t *sigset, 162 const abi_ulong *old_sigset) 163 { 164 target_sigset_t d; 165 int i; 166 167 d.sig[0] = *old_sigset; 168 for(i = 1;i < TARGET_NSIG_WORDS; i++) 169 d.sig[i] = 0; 170 target_to_host_sigset(sigset, &d); 171 } 172 173 int block_signals(void) 174 { 175 TaskState *ts = get_task_state(thread_cpu); 176 sigset_t set; 177 178 /* It's OK to block everything including SIGSEGV, because we won't 179 * run any further guest code before unblocking signals in 180 * process_pending_signals(). 181 */ 182 sigfillset(&set); 183 sigprocmask(SIG_SETMASK, &set, 0); 184 185 return qatomic_xchg(&ts->signal_pending, 1); 186 } 187 188 /* Wrapper for sigprocmask function 189 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset 190 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if 191 * a signal was already pending and the syscall must be restarted, or 192 * 0 on success. 193 * If set is NULL, this is guaranteed not to fail. 194 */ 195 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) 196 { 197 TaskState *ts = get_task_state(thread_cpu); 198 199 if (oldset) { 200 *oldset = ts->signal_mask; 201 } 202 203 if (set) { 204 int i; 205 206 if (block_signals()) { 207 return -QEMU_ERESTARTSYS; 208 } 209 210 switch (how) { 211 case SIG_BLOCK: 212 sigorset(&ts->signal_mask, &ts->signal_mask, set); 213 break; 214 case SIG_UNBLOCK: 215 for (i = 1; i <= NSIG; ++i) { 216 if (sigismember(set, i)) { 217 sigdelset(&ts->signal_mask, i); 218 } 219 } 220 break; 221 case SIG_SETMASK: 222 ts->signal_mask = *set; 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 228 /* Silently ignore attempts to change blocking status of KILL or STOP */ 229 sigdelset(&ts->signal_mask, SIGKILL); 230 sigdelset(&ts->signal_mask, SIGSTOP); 231 } 232 return 0; 233 } 234 235 /* Just set the guest's signal mask to the specified value; the 236 * caller is assumed to have called block_signals() already. 237 */ 238 void set_sigmask(const sigset_t *set) 239 { 240 TaskState *ts = get_task_state(thread_cpu); 241 242 ts->signal_mask = *set; 243 } 244 245 /* sigaltstack management */ 246 247 int on_sig_stack(unsigned long sp) 248 { 249 TaskState *ts = get_task_state(thread_cpu); 250 251 return (sp - ts->sigaltstack_used.ss_sp 252 < ts->sigaltstack_used.ss_size); 253 } 254 255 int sas_ss_flags(unsigned long sp) 256 { 257 TaskState *ts = get_task_state(thread_cpu); 258 259 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE 260 : on_sig_stack(sp) ? SS_ONSTACK : 0); 261 } 262 263 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) 264 { 265 /* 266 * This is the X/Open sanctioned signal stack switching. 267 */ 268 TaskState *ts = get_task_state(thread_cpu); 269 270 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 271 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 272 } 273 return sp; 274 } 275 276 void target_save_altstack(target_stack_t *uss, CPUArchState *env) 277 { 278 TaskState *ts = get_task_state(thread_cpu); 279 280 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); 281 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); 282 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); 283 } 284 285 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) 286 { 287 TaskState *ts = get_task_state(thread_cpu); 288 size_t minstacksize = TARGET_MINSIGSTKSZ; 289 target_stack_t ss; 290 291 #if defined(TARGET_PPC64) 292 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ 293 struct image_info *image = ts->info; 294 if (get_ppc64_abi(image) > 1) { 295 minstacksize = 4096; 296 } 297 #endif 298 299 __get_user(ss.ss_sp, &uss->ss_sp); 300 __get_user(ss.ss_size, &uss->ss_size); 301 __get_user(ss.ss_flags, &uss->ss_flags); 302 303 if (on_sig_stack(get_sp_from_cpustate(env))) { 304 return -TARGET_EPERM; 305 } 306 307 switch (ss.ss_flags) { 308 default: 309 return -TARGET_EINVAL; 310 311 case TARGET_SS_DISABLE: 312 ss.ss_size = 0; 313 ss.ss_sp = 0; 314 break; 315 316 case TARGET_SS_ONSTACK: 317 case 0: 318 if (ss.ss_size < minstacksize) { 319 return -TARGET_ENOMEM; 320 } 321 break; 322 } 323 324 ts->sigaltstack_used.ss_sp = ss.ss_sp; 325 ts->sigaltstack_used.ss_size = ss.ss_size; 326 return 0; 327 } 328 329 /* siginfo conversion */ 330 331 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 332 const siginfo_t *info) 333 { 334 int sig = host_to_target_signal(info->si_signo); 335 int si_code = info->si_code; 336 int si_type; 337 tinfo->si_signo = sig; 338 tinfo->si_errno = 0; 339 tinfo->si_code = info->si_code; 340 341 /* This memset serves two purposes: 342 * (1) ensure we don't leak random junk to the guest later 343 * (2) placate false positives from gcc about fields 344 * being used uninitialized if it chooses to inline both this 345 * function and tswap_siginfo() into host_to_target_siginfo(). 346 */ 347 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); 348 349 /* This is awkward, because we have to use a combination of 350 * the si_code and si_signo to figure out which of the union's 351 * members are valid. (Within the host kernel it is always possible 352 * to tell, but the kernel carefully avoids giving userspace the 353 * high 16 bits of si_code, so we don't have the information to 354 * do this the easy way...) We therefore make our best guess, 355 * bearing in mind that a guest can spoof most of the si_codes 356 * via rt_sigqueueinfo() if it likes. 357 * 358 * Once we have made our guess, we record it in the top 16 bits of 359 * the si_code, so that tswap_siginfo() later can use it. 360 * tswap_siginfo() will strip these top bits out before writing 361 * si_code to the guest (sign-extending the lower bits). 362 */ 363 364 switch (si_code) { 365 case SI_USER: 366 case SI_TKILL: 367 case SI_KERNEL: 368 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. 369 * These are the only unspoofable si_code values. 370 */ 371 tinfo->_sifields._kill._pid = info->si_pid; 372 tinfo->_sifields._kill._uid = info->si_uid; 373 si_type = QEMU_SI_KILL; 374 break; 375 default: 376 /* Everything else is spoofable. Make best guess based on signal */ 377 switch (sig) { 378 case TARGET_SIGCHLD: 379 tinfo->_sifields._sigchld._pid = info->si_pid; 380 tinfo->_sifields._sigchld._uid = info->si_uid; 381 if (si_code == CLD_EXITED) 382 tinfo->_sifields._sigchld._status = info->si_status; 383 else 384 tinfo->_sifields._sigchld._status 385 = host_to_target_signal(info->si_status & 0x7f) 386 | (info->si_status & ~0x7f); 387 tinfo->_sifields._sigchld._utime = info->si_utime; 388 tinfo->_sifields._sigchld._stime = info->si_stime; 389 si_type = QEMU_SI_CHLD; 390 break; 391 case TARGET_SIGIO: 392 tinfo->_sifields._sigpoll._band = info->si_band; 393 tinfo->_sifields._sigpoll._fd = info->si_fd; 394 si_type = QEMU_SI_POLL; 395 break; 396 default: 397 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ 398 tinfo->_sifields._rt._pid = info->si_pid; 399 tinfo->_sifields._rt._uid = info->si_uid; 400 /* XXX: potential problem if 64 bit */ 401 tinfo->_sifields._rt._sigval.sival_ptr 402 = (abi_ulong)(unsigned long)info->si_value.sival_ptr; 403 si_type = QEMU_SI_RT; 404 break; 405 } 406 break; 407 } 408 409 tinfo->si_code = deposit32(si_code, 16, 16, si_type); 410 } 411 412 void tswap_siginfo(target_siginfo_t *tinfo, 413 const target_siginfo_t *info) 414 { 415 int si_type = extract32(info->si_code, 16, 16); 416 int si_code = sextract32(info->si_code, 0, 16); 417 418 __put_user(info->si_signo, &tinfo->si_signo); 419 __put_user(info->si_errno, &tinfo->si_errno); 420 __put_user(si_code, &tinfo->si_code); 421 422 /* We can use our internal marker of which fields in the structure 423 * are valid, rather than duplicating the guesswork of 424 * host_to_target_siginfo_noswap() here. 425 */ 426 switch (si_type) { 427 case QEMU_SI_KILL: 428 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); 429 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); 430 break; 431 case QEMU_SI_TIMER: 432 __put_user(info->_sifields._timer._timer1, 433 &tinfo->_sifields._timer._timer1); 434 __put_user(info->_sifields._timer._timer2, 435 &tinfo->_sifields._timer._timer2); 436 break; 437 case QEMU_SI_POLL: 438 __put_user(info->_sifields._sigpoll._band, 439 &tinfo->_sifields._sigpoll._band); 440 __put_user(info->_sifields._sigpoll._fd, 441 &tinfo->_sifields._sigpoll._fd); 442 break; 443 case QEMU_SI_FAULT: 444 __put_user(info->_sifields._sigfault._addr, 445 &tinfo->_sifields._sigfault._addr); 446 break; 447 case QEMU_SI_CHLD: 448 __put_user(info->_sifields._sigchld._pid, 449 &tinfo->_sifields._sigchld._pid); 450 __put_user(info->_sifields._sigchld._uid, 451 &tinfo->_sifields._sigchld._uid); 452 __put_user(info->_sifields._sigchld._status, 453 &tinfo->_sifields._sigchld._status); 454 __put_user(info->_sifields._sigchld._utime, 455 &tinfo->_sifields._sigchld._utime); 456 __put_user(info->_sifields._sigchld._stime, 457 &tinfo->_sifields._sigchld._stime); 458 break; 459 case QEMU_SI_RT: 460 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); 461 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); 462 __put_user(info->_sifields._rt._sigval.sival_ptr, 463 &tinfo->_sifields._rt._sigval.sival_ptr); 464 break; 465 default: 466 g_assert_not_reached(); 467 } 468 } 469 470 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 471 { 472 target_siginfo_t tgt_tmp; 473 host_to_target_siginfo_noswap(&tgt_tmp, info); 474 tswap_siginfo(tinfo, &tgt_tmp); 475 } 476 477 /* XXX: we support only POSIX RT signals are used. */ 478 /* XXX: find a solution for 64 bit (additional malloced data is needed) */ 479 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) 480 { 481 /* This conversion is used only for the rt_sigqueueinfo syscall, 482 * and so we know that the _rt fields are the valid ones. 483 */ 484 abi_ulong sival_ptr; 485 486 __get_user(info->si_signo, &tinfo->si_signo); 487 __get_user(info->si_errno, &tinfo->si_errno); 488 __get_user(info->si_code, &tinfo->si_code); 489 __get_user(info->si_pid, &tinfo->_sifields._rt._pid); 490 __get_user(info->si_uid, &tinfo->_sifields._rt._uid); 491 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); 492 info->si_value.sival_ptr = (void *)(long)sival_ptr; 493 } 494 495 /* returns 1 if given signal should dump core if not handled */ 496 static int core_dump_signal(int sig) 497 { 498 switch (sig) { 499 case TARGET_SIGABRT: 500 case TARGET_SIGFPE: 501 case TARGET_SIGILL: 502 case TARGET_SIGQUIT: 503 case TARGET_SIGSEGV: 504 case TARGET_SIGTRAP: 505 case TARGET_SIGBUS: 506 return (1); 507 default: 508 return (0); 509 } 510 } 511 512 static void signal_table_init(void) 513 { 514 int hsig, tsig, count; 515 516 /* 517 * Signals are supported starting from TARGET_SIGRTMIN and going up 518 * until we run out of host realtime signals. Glibc uses the lower 2 519 * RT signals and (hopefully) nobody uses the upper ones. 520 * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32). 521 * To fix this properly we would need to do manual signal delivery 522 * multiplexed over a single host signal. 523 * Attempts for configure "missing" signals via sigaction will be 524 * silently ignored. 525 * 526 * Remap the target SIGABRT, so that we can distinguish host abort 527 * from guest abort. When the guest registers a signal handler or 528 * calls raise(SIGABRT), the host will raise SIG_RTn. If the guest 529 * arrives at dump_core_and_abort(), we will map back to host SIGABRT 530 * so that the parent (native or emulated) sees the correct signal. 531 * Finally, also map host to guest SIGABRT so that the emulated 532 * parent sees the correct mapping from wait status. 533 */ 534 535 hsig = SIGRTMIN; 536 host_to_target_signal_table[SIGABRT] = 0; 537 host_to_target_signal_table[hsig++] = TARGET_SIGABRT; 538 539 for (tsig = TARGET_SIGRTMIN; 540 hsig <= SIGRTMAX && tsig <= TARGET_NSIG; 541 hsig++, tsig++) { 542 host_to_target_signal_table[hsig] = tsig; 543 } 544 545 /* Invert the mapping that has already been assigned. */ 546 for (hsig = 1; hsig < _NSIG; hsig++) { 547 tsig = host_to_target_signal_table[hsig]; 548 if (tsig) { 549 assert(target_to_host_signal_table[tsig] == 0); 550 target_to_host_signal_table[tsig] = hsig; 551 } 552 } 553 554 host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT; 555 556 /* Map everything else out-of-bounds. */ 557 for (hsig = 1; hsig < _NSIG; hsig++) { 558 if (host_to_target_signal_table[hsig] == 0) { 559 host_to_target_signal_table[hsig] = TARGET_NSIG + 1; 560 } 561 } 562 for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) { 563 if (target_to_host_signal_table[tsig] == 0) { 564 target_to_host_signal_table[tsig] = _NSIG; 565 count++; 566 } 567 } 568 569 trace_signal_table_init(count); 570 } 571 572 void signal_init(void) 573 { 574 TaskState *ts = get_task_state(thread_cpu); 575 struct sigaction act, oact; 576 577 /* initialize signal conversion tables */ 578 signal_table_init(); 579 580 /* Set the signal mask from the host mask. */ 581 sigprocmask(0, 0, &ts->signal_mask); 582 583 sigfillset(&act.sa_mask); 584 act.sa_flags = SA_SIGINFO; 585 act.sa_sigaction = host_signal_handler; 586 587 /* 588 * A parent process may configure ignored signals, but all other 589 * signals are default. For any target signals that have no host 590 * mapping, set to ignore. For all core_dump_signal, install our 591 * host signal handler so that we may invoke dump_core_and_abort. 592 * This includes SIGSEGV and SIGBUS, which are also need our signal 593 * handler for paging and exceptions. 594 */ 595 for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) { 596 int hsig = target_to_host_signal(tsig); 597 abi_ptr thand = TARGET_SIG_IGN; 598 599 if (hsig >= _NSIG) { 600 continue; 601 } 602 603 /* As we force remap SIGABRT, cannot probe and install in one step. */ 604 if (tsig == TARGET_SIGABRT) { 605 sigaction(SIGABRT, NULL, &oact); 606 sigaction(hsig, &act, NULL); 607 } else { 608 struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL; 609 sigaction(hsig, iact, &oact); 610 } 611 612 if (oact.sa_sigaction != (void *)SIG_IGN) { 613 thand = TARGET_SIG_DFL; 614 } 615 sigact_table[tsig - 1]._sa_handler = thand; 616 } 617 } 618 619 /* Force a synchronously taken signal. The kernel force_sig() function 620 * also forces the signal to "not blocked, not ignored", but for QEMU 621 * that work is done in process_pending_signals(). 622 */ 623 void force_sig(int sig) 624 { 625 CPUState *cpu = thread_cpu; 626 CPUArchState *env = cpu_env(cpu); 627 target_siginfo_t info = {}; 628 629 info.si_signo = sig; 630 info.si_errno = 0; 631 info.si_code = TARGET_SI_KERNEL; 632 info._sifields._kill._pid = 0; 633 info._sifields._kill._uid = 0; 634 queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); 635 } 636 637 /* 638 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 639 * 'force' part is handled in process_pending_signals(). 640 */ 641 void force_sig_fault(int sig, int code, abi_ulong addr) 642 { 643 CPUState *cpu = thread_cpu; 644 CPUArchState *env = cpu_env(cpu); 645 target_siginfo_t info = {}; 646 647 info.si_signo = sig; 648 info.si_errno = 0; 649 info.si_code = code; 650 info._sifields._sigfault._addr = addr; 651 queue_signal(env, sig, QEMU_SI_FAULT, &info); 652 } 653 654 /* Force a SIGSEGV if we couldn't write to memory trying to set 655 * up the signal frame. oldsig is the signal we were trying to handle 656 * at the point of failure. 657 */ 658 #if !defined(TARGET_RISCV) 659 void force_sigsegv(int oldsig) 660 { 661 if (oldsig == SIGSEGV) { 662 /* Make sure we don't try to deliver the signal again; this will 663 * end up with handle_pending_signal() calling dump_core_and_abort(). 664 */ 665 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; 666 } 667 force_sig(TARGET_SIGSEGV); 668 } 669 #endif 670 671 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 672 MMUAccessType access_type, bool maperr, uintptr_t ra) 673 { 674 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 675 676 if (tcg_ops->record_sigsegv) { 677 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 678 } 679 680 force_sig_fault(TARGET_SIGSEGV, 681 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 682 addr); 683 cpu->exception_index = EXCP_INTERRUPT; 684 cpu_loop_exit_restore(cpu, ra); 685 } 686 687 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 688 MMUAccessType access_type, uintptr_t ra) 689 { 690 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 691 692 if (tcg_ops->record_sigbus) { 693 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 694 } 695 696 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 697 cpu->exception_index = EXCP_INTERRUPT; 698 cpu_loop_exit_restore(cpu, ra); 699 } 700 701 /* abort execution with signal */ 702 static G_NORETURN 703 void die_with_signal(int host_sig) 704 { 705 struct sigaction act = { 706 .sa_handler = SIG_DFL, 707 }; 708 709 /* 710 * The proper exit code for dying from an uncaught signal is -<signal>. 711 * The kernel doesn't allow exit() or _exit() to pass a negative value. 712 * To get the proper exit code we need to actually die from an uncaught 713 * signal. Here the default signal handler is installed, we send 714 * the signal and we wait for it to arrive. 715 */ 716 sigfillset(&act.sa_mask); 717 sigaction(host_sig, &act, NULL); 718 719 kill(getpid(), host_sig); 720 721 /* Make sure the signal isn't masked (reusing the mask inside of act). */ 722 sigdelset(&act.sa_mask, host_sig); 723 sigsuspend(&act.sa_mask); 724 725 /* unreachable */ 726 _exit(EXIT_FAILURE); 727 } 728 729 static G_NORETURN 730 void dump_core_and_abort(CPUArchState *env, int target_sig) 731 { 732 CPUState *cpu = env_cpu(env); 733 TaskState *ts = get_task_state(cpu); 734 int host_sig, core_dumped = 0; 735 736 /* On exit, undo the remapping of SIGABRT. */ 737 if (target_sig == TARGET_SIGABRT) { 738 host_sig = SIGABRT; 739 } else { 740 host_sig = target_to_host_signal(target_sig); 741 } 742 trace_user_dump_core_and_abort(env, target_sig, host_sig); 743 gdb_signalled(env, target_sig); 744 745 /* dump core if supported by target binary format */ 746 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 747 stop_all_tasks(); 748 core_dumped = 749 ((*ts->bprm->core_dump)(target_sig, env) == 0); 750 } 751 if (core_dumped) { 752 /* we already dumped the core of target process, we don't want 753 * a coredump of qemu itself */ 754 struct rlimit nodump; 755 getrlimit(RLIMIT_CORE, &nodump); 756 nodump.rlim_cur=0; 757 setrlimit(RLIMIT_CORE, &nodump); 758 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", 759 target_sig, strsignal(host_sig), "core dumped" ); 760 } 761 762 preexit_cleanup(env, 128 + target_sig); 763 die_with_signal(host_sig); 764 } 765 766 /* queue a signal so that it will be send to the virtual CPU as soon 767 as possible */ 768 void queue_signal(CPUArchState *env, int sig, int si_type, 769 target_siginfo_t *info) 770 { 771 CPUState *cpu = env_cpu(env); 772 TaskState *ts = get_task_state(cpu); 773 774 trace_user_queue_signal(env, sig); 775 776 info->si_code = deposit32(info->si_code, 16, 16, si_type); 777 778 ts->sync_signal.info = *info; 779 ts->sync_signal.pending = sig; 780 /* signal that a new signal is pending */ 781 qatomic_set(&ts->signal_pending, 1); 782 } 783 784 785 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 786 static inline void rewind_if_in_safe_syscall(void *puc) 787 { 788 host_sigcontext *uc = (host_sigcontext *)puc; 789 uintptr_t pcreg = host_signal_pc(uc); 790 791 if (pcreg > (uintptr_t)safe_syscall_start 792 && pcreg < (uintptr_t)safe_syscall_end) { 793 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 794 } 795 } 796 797 static G_NORETURN 798 void die_from_signal(siginfo_t *info) 799 { 800 char sigbuf[4], codebuf[12]; 801 const char *sig, *code = NULL; 802 803 switch (info->si_signo) { 804 case SIGSEGV: 805 sig = "SEGV"; 806 switch (info->si_code) { 807 case SEGV_MAPERR: 808 code = "MAPERR"; 809 break; 810 case SEGV_ACCERR: 811 code = "ACCERR"; 812 break; 813 } 814 break; 815 case SIGBUS: 816 sig = "BUS"; 817 switch (info->si_code) { 818 case BUS_ADRALN: 819 code = "ADRALN"; 820 break; 821 case BUS_ADRERR: 822 code = "ADRERR"; 823 break; 824 } 825 break; 826 case SIGILL: 827 sig = "ILL"; 828 switch (info->si_code) { 829 case ILL_ILLOPC: 830 code = "ILLOPC"; 831 break; 832 case ILL_ILLOPN: 833 code = "ILLOPN"; 834 break; 835 case ILL_ILLADR: 836 code = "ILLADR"; 837 break; 838 case ILL_PRVOPC: 839 code = "PRVOPC"; 840 break; 841 case ILL_PRVREG: 842 code = "PRVREG"; 843 break; 844 case ILL_COPROC: 845 code = "COPROC"; 846 break; 847 } 848 break; 849 case SIGFPE: 850 sig = "FPE"; 851 switch (info->si_code) { 852 case FPE_INTDIV: 853 code = "INTDIV"; 854 break; 855 case FPE_INTOVF: 856 code = "INTOVF"; 857 break; 858 } 859 break; 860 case SIGTRAP: 861 sig = "TRAP"; 862 break; 863 default: 864 snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo); 865 sig = sigbuf; 866 break; 867 } 868 if (code == NULL) { 869 snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code); 870 code = codebuf; 871 } 872 873 error_report("QEMU internal SIG%s {code=%s, addr=%p}", 874 sig, code, info->si_addr); 875 die_with_signal(info->si_signo); 876 } 877 878 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info, 879 host_sigcontext *uc) 880 { 881 uintptr_t host_addr = (uintptr_t)info->si_addr; 882 /* 883 * Convert forcefully to guest address space: addresses outside 884 * reserved_va are still valid to report via SEGV_MAPERR. 885 */ 886 bool is_valid = h2g_valid(host_addr); 887 abi_ptr guest_addr = h2g_nocheck(host_addr); 888 uintptr_t pc = host_signal_pc(uc); 889 bool is_write = host_signal_write(info, uc); 890 MMUAccessType access_type = adjust_signal_pc(&pc, is_write); 891 bool maperr; 892 893 /* If this was a write to a TB protected page, restart. */ 894 if (is_write 895 && is_valid 896 && info->si_code == SEGV_ACCERR 897 && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc), 898 pc, guest_addr)) { 899 return; 900 } 901 902 /* 903 * If the access was not on behalf of the guest, within the executable 904 * mapping of the generated code buffer, then it is a host bug. 905 */ 906 if (access_type != MMU_INST_FETCH 907 && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) { 908 die_from_signal(info); 909 } 910 911 maperr = true; 912 if (is_valid && info->si_code == SEGV_ACCERR) { 913 /* 914 * With reserved_va, the whole address space is PROT_NONE, 915 * which means that we may get ACCERR when we want MAPERR. 916 */ 917 if (page_get_flags(guest_addr) & PAGE_VALID) { 918 maperr = false; 919 } else { 920 info->si_code = SEGV_MAPERR; 921 } 922 } 923 924 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL); 925 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 926 } 927 928 static uintptr_t host_sigbus_handler(CPUState *cpu, siginfo_t *info, 929 host_sigcontext *uc) 930 { 931 uintptr_t pc = host_signal_pc(uc); 932 bool is_write = host_signal_write(info, uc); 933 MMUAccessType access_type = adjust_signal_pc(&pc, is_write); 934 935 /* 936 * If the access was not on behalf of the guest, within the executable 937 * mapping of the generated code buffer, then it is a host bug. 938 */ 939 if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) { 940 die_from_signal(info); 941 } 942 943 if (info->si_code == BUS_ADRALN) { 944 uintptr_t host_addr = (uintptr_t)info->si_addr; 945 abi_ptr guest_addr = h2g_nocheck(host_addr); 946 947 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL); 948 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 949 } 950 return pc; 951 } 952 953 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 954 { 955 CPUState *cpu = thread_cpu; 956 CPUArchState *env = cpu_env(cpu); 957 TaskState *ts = get_task_state(cpu); 958 target_siginfo_t tinfo; 959 host_sigcontext *uc = puc; 960 struct emulated_sigtable *k; 961 int guest_sig; 962 uintptr_t pc = 0; 963 bool sync_sig = false; 964 void *sigmask; 965 966 /* 967 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 968 * handling wrt signal blocking and unwinding. Non-spoofed SIGILL, 969 * SIGFPE, SIGTRAP are always host bugs. 970 */ 971 if (info->si_code > 0) { 972 switch (host_sig) { 973 case SIGSEGV: 974 /* Only returns on handle_sigsegv_accerr_write success. */ 975 host_sigsegv_handler(cpu, info, uc); 976 return; 977 case SIGBUS: 978 pc = host_sigbus_handler(cpu, info, uc); 979 sync_sig = true; 980 break; 981 case SIGILL: 982 case SIGFPE: 983 case SIGTRAP: 984 die_from_signal(info); 985 } 986 } 987 988 /* get target signal number */ 989 guest_sig = host_to_target_signal(host_sig); 990 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 991 return; 992 } 993 trace_user_host_signal(env, host_sig, guest_sig); 994 995 host_to_target_siginfo_noswap(&tinfo, info); 996 k = &ts->sigtab[guest_sig - 1]; 997 k->info = tinfo; 998 k->pending = guest_sig; 999 ts->signal_pending = 1; 1000 1001 /* 1002 * For synchronous signals, unwind the cpu state to the faulting 1003 * insn and then exit back to the main loop so that the signal 1004 * is delivered immediately. 1005 */ 1006 if (sync_sig) { 1007 cpu->exception_index = EXCP_INTERRUPT; 1008 cpu_loop_exit_restore(cpu, pc); 1009 } 1010 1011 rewind_if_in_safe_syscall(puc); 1012 1013 /* 1014 * Block host signals until target signal handler entered. We 1015 * can't block SIGSEGV or SIGBUS while we're executing guest 1016 * code in case the guest code provokes one in the window between 1017 * now and it getting out to the main loop. Signals will be 1018 * unblocked again in process_pending_signals(). 1019 * 1020 * WARNING: we cannot use sigfillset() here because the sigmask 1021 * field is a kernel sigset_t, which is much smaller than the 1022 * libc sigset_t which sigfillset() operates on. Using sigfillset() 1023 * would write 0xff bytes off the end of the structure and trash 1024 * data on the struct. 1025 */ 1026 sigmask = host_signal_mask(uc); 1027 memset(sigmask, 0xff, SIGSET_T_SIZE); 1028 sigdelset(sigmask, SIGSEGV); 1029 sigdelset(sigmask, SIGBUS); 1030 1031 /* interrupt the virtual CPU as soon as possible */ 1032 cpu_exit(thread_cpu); 1033 } 1034 1035 /* do_sigaltstack() returns target values and errnos. */ 1036 /* compare linux/kernel/signal.c:do_sigaltstack() */ 1037 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, 1038 CPUArchState *env) 1039 { 1040 target_stack_t oss, *uoss = NULL; 1041 abi_long ret = -TARGET_EFAULT; 1042 1043 if (uoss_addr) { 1044 /* Verify writability now, but do not alter user memory yet. */ 1045 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { 1046 goto out; 1047 } 1048 target_save_altstack(&oss, env); 1049 } 1050 1051 if (uss_addr) { 1052 target_stack_t *uss; 1053 1054 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 1055 goto out; 1056 } 1057 ret = target_restore_altstack(uss, env); 1058 if (ret) { 1059 goto out; 1060 } 1061 } 1062 1063 if (uoss_addr) { 1064 memcpy(uoss, &oss, sizeof(oss)); 1065 unlock_user_struct(uoss, uoss_addr, 1); 1066 uoss = NULL; 1067 } 1068 ret = 0; 1069 1070 out: 1071 if (uoss) { 1072 unlock_user_struct(uoss, uoss_addr, 0); 1073 } 1074 return ret; 1075 } 1076 1077 /* do_sigaction() return target values and host errnos */ 1078 int do_sigaction(int sig, const struct target_sigaction *act, 1079 struct target_sigaction *oact, abi_ulong ka_restorer) 1080 { 1081 struct target_sigaction *k; 1082 int host_sig; 1083 int ret = 0; 1084 1085 trace_signal_do_sigaction_guest(sig, TARGET_NSIG); 1086 1087 if (sig < 1 || sig > TARGET_NSIG) { 1088 return -TARGET_EINVAL; 1089 } 1090 1091 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { 1092 return -TARGET_EINVAL; 1093 } 1094 1095 if (block_signals()) { 1096 return -QEMU_ERESTARTSYS; 1097 } 1098 1099 k = &sigact_table[sig - 1]; 1100 if (oact) { 1101 __put_user(k->_sa_handler, &oact->_sa_handler); 1102 __put_user(k->sa_flags, &oact->sa_flags); 1103 #ifdef TARGET_ARCH_HAS_SA_RESTORER 1104 __put_user(k->sa_restorer, &oact->sa_restorer); 1105 #endif 1106 /* Not swapped. */ 1107 oact->sa_mask = k->sa_mask; 1108 } 1109 if (act) { 1110 __get_user(k->_sa_handler, &act->_sa_handler); 1111 __get_user(k->sa_flags, &act->sa_flags); 1112 #ifdef TARGET_ARCH_HAS_SA_RESTORER 1113 __get_user(k->sa_restorer, &act->sa_restorer); 1114 #endif 1115 #ifdef TARGET_ARCH_HAS_KA_RESTORER 1116 k->ka_restorer = ka_restorer; 1117 #endif 1118 /* To be swapped in target_to_host_sigset. */ 1119 k->sa_mask = act->sa_mask; 1120 1121 /* we update the host linux signal state */ 1122 host_sig = target_to_host_signal(sig); 1123 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); 1124 if (host_sig > SIGRTMAX) { 1125 /* we don't have enough host signals to map all target signals */ 1126 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", 1127 sig); 1128 /* 1129 * we don't return an error here because some programs try to 1130 * register an handler for all possible rt signals even if they 1131 * don't need it. 1132 * An error here can abort them whereas there can be no problem 1133 * to not have the signal available later. 1134 * This is the case for golang, 1135 * See https://github.com/golang/go/issues/33746 1136 * So we silently ignore the error. 1137 */ 1138 return 0; 1139 } 1140 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 1141 struct sigaction act1; 1142 1143 sigfillset(&act1.sa_mask); 1144 act1.sa_flags = SA_SIGINFO; 1145 if (k->_sa_handler == TARGET_SIG_IGN) { 1146 /* 1147 * It is important to update the host kernel signal ignore 1148 * state to avoid getting unexpected interrupted syscalls. 1149 */ 1150 act1.sa_sigaction = (void *)SIG_IGN; 1151 } else if (k->_sa_handler == TARGET_SIG_DFL) { 1152 if (core_dump_signal(sig)) { 1153 act1.sa_sigaction = host_signal_handler; 1154 } else { 1155 act1.sa_sigaction = (void *)SIG_DFL; 1156 } 1157 } else { 1158 act1.sa_sigaction = host_signal_handler; 1159 if (k->sa_flags & TARGET_SA_RESTART) { 1160 act1.sa_flags |= SA_RESTART; 1161 } 1162 } 1163 ret = sigaction(host_sig, &act1, NULL); 1164 } 1165 } 1166 return ret; 1167 } 1168 1169 static void handle_pending_signal(CPUArchState *cpu_env, int sig, 1170 struct emulated_sigtable *k) 1171 { 1172 CPUState *cpu = env_cpu(cpu_env); 1173 abi_ulong handler; 1174 sigset_t set; 1175 target_sigset_t target_old_set; 1176 struct target_sigaction *sa; 1177 TaskState *ts = get_task_state(cpu); 1178 1179 trace_user_handle_signal(cpu_env, sig); 1180 /* dequeue signal */ 1181 k->pending = 0; 1182 1183 sig = gdb_handlesig(cpu, sig); 1184 if (!sig) { 1185 sa = NULL; 1186 handler = TARGET_SIG_IGN; 1187 } else { 1188 sa = &sigact_table[sig - 1]; 1189 handler = sa->_sa_handler; 1190 } 1191 1192 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 1193 print_taken_signal(sig, &k->info); 1194 } 1195 1196 if (handler == TARGET_SIG_DFL) { 1197 /* default handler : ignore some signal. The other are job control or fatal */ 1198 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { 1199 kill(getpid(),SIGSTOP); 1200 } else if (sig != TARGET_SIGCHLD && 1201 sig != TARGET_SIGURG && 1202 sig != TARGET_SIGWINCH && 1203 sig != TARGET_SIGCONT) { 1204 dump_core_and_abort(cpu_env, sig); 1205 } 1206 } else if (handler == TARGET_SIG_IGN) { 1207 /* ignore sig */ 1208 } else if (handler == TARGET_SIG_ERR) { 1209 dump_core_and_abort(cpu_env, sig); 1210 } else { 1211 /* compute the blocked signals during the handler execution */ 1212 sigset_t *blocked_set; 1213 1214 target_to_host_sigset(&set, &sa->sa_mask); 1215 /* SA_NODEFER indicates that the current signal should not be 1216 blocked during the handler */ 1217 if (!(sa->sa_flags & TARGET_SA_NODEFER)) 1218 sigaddset(&set, target_to_host_signal(sig)); 1219 1220 /* save the previous blocked signal state to restore it at the 1221 end of the signal execution (see do_sigreturn) */ 1222 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 1223 1224 /* block signals in the handler */ 1225 blocked_set = ts->in_sigsuspend ? 1226 &ts->sigsuspend_mask : &ts->signal_mask; 1227 sigorset(&ts->signal_mask, blocked_set, &set); 1228 ts->in_sigsuspend = 0; 1229 1230 /* if the CPU is in VM86 mode, we restore the 32 bit values */ 1231 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 1232 { 1233 CPUX86State *env = cpu_env; 1234 if (env->eflags & VM_MASK) 1235 save_v86_state(env); 1236 } 1237 #endif 1238 /* prepare the stack frame of the virtual CPU */ 1239 #if defined(TARGET_ARCH_HAS_SETUP_FRAME) 1240 if (sa->sa_flags & TARGET_SA_SIGINFO) { 1241 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1242 } else { 1243 setup_frame(sig, sa, &target_old_set, cpu_env); 1244 } 1245 #else 1246 /* These targets do not have traditional signals. */ 1247 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1248 #endif 1249 if (sa->sa_flags & TARGET_SA_RESETHAND) { 1250 sa->_sa_handler = TARGET_SIG_DFL; 1251 } 1252 } 1253 } 1254 1255 void process_pending_signals(CPUArchState *cpu_env) 1256 { 1257 CPUState *cpu = env_cpu(cpu_env); 1258 int sig; 1259 TaskState *ts = get_task_state(cpu); 1260 sigset_t set; 1261 sigset_t *blocked_set; 1262 1263 while (qatomic_read(&ts->signal_pending)) { 1264 sigfillset(&set); 1265 sigprocmask(SIG_SETMASK, &set, 0); 1266 1267 restart_scan: 1268 sig = ts->sync_signal.pending; 1269 if (sig) { 1270 /* Synchronous signals are forced, 1271 * see force_sig_info() and callers in Linux 1272 * Note that not all of our queue_signal() calls in QEMU correspond 1273 * to force_sig_info() calls in Linux (some are send_sig_info()). 1274 * However it seems like a kernel bug to me to allow the process 1275 * to block a synchronous signal since it could then just end up 1276 * looping round and round indefinitely. 1277 */ 1278 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) 1279 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 1280 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); 1281 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 1282 } 1283 1284 handle_pending_signal(cpu_env, sig, &ts->sync_signal); 1285 } 1286 1287 for (sig = 1; sig <= TARGET_NSIG; sig++) { 1288 blocked_set = ts->in_sigsuspend ? 1289 &ts->sigsuspend_mask : &ts->signal_mask; 1290 1291 if (ts->sigtab[sig - 1].pending && 1292 (!sigismember(blocked_set, 1293 target_to_host_signal_table[sig]))) { 1294 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); 1295 /* Restart scan from the beginning, as handle_pending_signal 1296 * might have resulted in a new synchronous signal (eg SIGSEGV). 1297 */ 1298 goto restart_scan; 1299 } 1300 } 1301 1302 /* if no signal is pending, unblock signals and recheck (the act 1303 * of unblocking might cause us to take another host signal which 1304 * will set signal_pending again). 1305 */ 1306 qatomic_set(&ts->signal_pending, 0); 1307 ts->in_sigsuspend = 0; 1308 set = ts->signal_mask; 1309 sigdelset(&set, SIGSEGV); 1310 sigdelset(&set, SIGBUS); 1311 sigprocmask(SIG_SETMASK, &set, 0); 1312 } 1313 ts->in_sigsuspend = 0; 1314 } 1315 1316 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset, 1317 target_ulong sigsize) 1318 { 1319 TaskState *ts = get_task_state(thread_cpu); 1320 sigset_t *host_set = &ts->sigsuspend_mask; 1321 target_sigset_t *target_sigset; 1322 1323 if (sigsize != sizeof(*target_sigset)) { 1324 /* Like the kernel, we enforce correct size sigsets */ 1325 return -TARGET_EINVAL; 1326 } 1327 1328 target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1); 1329 if (!target_sigset) { 1330 return -TARGET_EFAULT; 1331 } 1332 target_to_host_sigset(host_set, target_sigset); 1333 unlock_user(target_sigset, sigset, 0); 1334 1335 *pset = host_set; 1336 return 0; 1337 } 1338