1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include "gdbstub/user.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 24 #include <sys/ucontext.h> 25 #include <sys/resource.h> 26 27 #include "qemu.h" 28 #include "user-internals.h" 29 #include "strace.h" 30 #include "loader.h" 31 #include "trace.h" 32 #include "signal-common.h" 33 #include "host-signal.h" 34 #include "user/safe-syscall.h" 35 #include "tcg/tcg.h" 36 37 /* target_siginfo_t must fit in gdbstub's siginfo save area. */ 38 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH); 39 40 static struct target_sigaction sigact_table[TARGET_NSIG]; 41 42 static void host_signal_handler(int host_signum, siginfo_t *info, 43 void *puc); 44 45 /* Fallback addresses into sigtramp page. */ 46 abi_ulong default_sigreturn; 47 abi_ulong default_rt_sigreturn; 48 49 /* 50 * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel) 51 * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1. 52 * Signal number 0 is reserved for use as kill(pid, 0), to test whether 53 * a process exists without sending it a signal. 54 */ 55 #ifdef __SIGRTMAX 56 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); 57 #endif 58 static uint8_t host_to_target_signal_table[_NSIG] = { 59 #define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig, 60 MAKE_SIGNAL_LIST 61 #undef MAKE_SIG_ENTRY 62 }; 63 64 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; 65 66 /* valid sig is between 1 and _NSIG - 1 */ 67 int host_to_target_signal(int sig) 68 { 69 if (sig < 1) { 70 return sig; 71 } 72 if (sig >= _NSIG) { 73 return TARGET_NSIG + 1; 74 } 75 return host_to_target_signal_table[sig]; 76 } 77 78 /* valid sig is between 1 and TARGET_NSIG */ 79 int target_to_host_signal(int sig) 80 { 81 if (sig < 1) { 82 return sig; 83 } 84 if (sig > TARGET_NSIG) { 85 return _NSIG; 86 } 87 return target_to_host_signal_table[sig]; 88 } 89 90 static inline void target_sigaddset(target_sigset_t *set, int signum) 91 { 92 signum--; 93 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 94 set->sig[signum / TARGET_NSIG_BPW] |= mask; 95 } 96 97 static inline int target_sigismember(const target_sigset_t *set, int signum) 98 { 99 signum--; 100 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 101 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); 102 } 103 104 void host_to_target_sigset_internal(target_sigset_t *d, 105 const sigset_t *s) 106 { 107 int host_sig, target_sig; 108 target_sigemptyset(d); 109 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 110 target_sig = host_to_target_signal(host_sig); 111 if (target_sig < 1 || target_sig > TARGET_NSIG) { 112 continue; 113 } 114 if (sigismember(s, host_sig)) { 115 target_sigaddset(d, target_sig); 116 } 117 } 118 } 119 120 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 121 { 122 target_sigset_t d1; 123 int i; 124 125 host_to_target_sigset_internal(&d1, s); 126 for(i = 0;i < TARGET_NSIG_WORDS; i++) 127 d->sig[i] = tswapal(d1.sig[i]); 128 } 129 130 void target_to_host_sigset_internal(sigset_t *d, 131 const target_sigset_t *s) 132 { 133 int host_sig, target_sig; 134 sigemptyset(d); 135 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 136 host_sig = target_to_host_signal(target_sig); 137 if (host_sig < 1 || host_sig >= _NSIG) { 138 continue; 139 } 140 if (target_sigismember(s, target_sig)) { 141 sigaddset(d, host_sig); 142 } 143 } 144 } 145 146 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 147 { 148 target_sigset_t s1; 149 int i; 150 151 for(i = 0;i < TARGET_NSIG_WORDS; i++) 152 s1.sig[i] = tswapal(s->sig[i]); 153 target_to_host_sigset_internal(d, &s1); 154 } 155 156 void host_to_target_old_sigset(abi_ulong *old_sigset, 157 const sigset_t *sigset) 158 { 159 target_sigset_t d; 160 host_to_target_sigset(&d, sigset); 161 *old_sigset = d.sig[0]; 162 } 163 164 void target_to_host_old_sigset(sigset_t *sigset, 165 const abi_ulong *old_sigset) 166 { 167 target_sigset_t d; 168 int i; 169 170 d.sig[0] = *old_sigset; 171 for(i = 1;i < TARGET_NSIG_WORDS; i++) 172 d.sig[i] = 0; 173 target_to_host_sigset(sigset, &d); 174 } 175 176 int block_signals(void) 177 { 178 TaskState *ts = get_task_state(thread_cpu); 179 sigset_t set; 180 181 /* It's OK to block everything including SIGSEGV, because we won't 182 * run any further guest code before unblocking signals in 183 * process_pending_signals(). 184 */ 185 sigfillset(&set); 186 sigprocmask(SIG_SETMASK, &set, 0); 187 188 return qatomic_xchg(&ts->signal_pending, 1); 189 } 190 191 /* Wrapper for sigprocmask function 192 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset 193 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if 194 * a signal was already pending and the syscall must be restarted, or 195 * 0 on success. 196 * If set is NULL, this is guaranteed not to fail. 197 */ 198 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) 199 { 200 TaskState *ts = get_task_state(thread_cpu); 201 202 if (oldset) { 203 *oldset = ts->signal_mask; 204 } 205 206 if (set) { 207 int i; 208 209 if (block_signals()) { 210 return -QEMU_ERESTARTSYS; 211 } 212 213 switch (how) { 214 case SIG_BLOCK: 215 sigorset(&ts->signal_mask, &ts->signal_mask, set); 216 break; 217 case SIG_UNBLOCK: 218 for (i = 1; i <= NSIG; ++i) { 219 if (sigismember(set, i)) { 220 sigdelset(&ts->signal_mask, i); 221 } 222 } 223 break; 224 case SIG_SETMASK: 225 ts->signal_mask = *set; 226 break; 227 default: 228 g_assert_not_reached(); 229 } 230 231 /* Silently ignore attempts to change blocking status of KILL or STOP */ 232 sigdelset(&ts->signal_mask, SIGKILL); 233 sigdelset(&ts->signal_mask, SIGSTOP); 234 } 235 return 0; 236 } 237 238 /* Just set the guest's signal mask to the specified value; the 239 * caller is assumed to have called block_signals() already. 240 */ 241 void set_sigmask(const sigset_t *set) 242 { 243 TaskState *ts = get_task_state(thread_cpu); 244 245 ts->signal_mask = *set; 246 } 247 248 /* sigaltstack management */ 249 250 int on_sig_stack(unsigned long sp) 251 { 252 TaskState *ts = get_task_state(thread_cpu); 253 254 return (sp - ts->sigaltstack_used.ss_sp 255 < ts->sigaltstack_used.ss_size); 256 } 257 258 int sas_ss_flags(unsigned long sp) 259 { 260 TaskState *ts = get_task_state(thread_cpu); 261 262 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE 263 : on_sig_stack(sp) ? SS_ONSTACK : 0); 264 } 265 266 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) 267 { 268 /* 269 * This is the X/Open sanctioned signal stack switching. 270 */ 271 TaskState *ts = get_task_state(thread_cpu); 272 273 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 274 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 275 } 276 return sp; 277 } 278 279 void target_save_altstack(target_stack_t *uss, CPUArchState *env) 280 { 281 TaskState *ts = get_task_state(thread_cpu); 282 283 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); 284 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); 285 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); 286 } 287 288 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) 289 { 290 TaskState *ts = get_task_state(thread_cpu); 291 size_t minstacksize = TARGET_MINSIGSTKSZ; 292 target_stack_t ss; 293 294 #if defined(TARGET_PPC64) 295 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ 296 struct image_info *image = ts->info; 297 if (get_ppc64_abi(image) > 1) { 298 minstacksize = 4096; 299 } 300 #endif 301 302 __get_user(ss.ss_sp, &uss->ss_sp); 303 __get_user(ss.ss_size, &uss->ss_size); 304 __get_user(ss.ss_flags, &uss->ss_flags); 305 306 if (on_sig_stack(get_sp_from_cpustate(env))) { 307 return -TARGET_EPERM; 308 } 309 310 switch (ss.ss_flags) { 311 default: 312 return -TARGET_EINVAL; 313 314 case TARGET_SS_DISABLE: 315 ss.ss_size = 0; 316 ss.ss_sp = 0; 317 break; 318 319 case TARGET_SS_ONSTACK: 320 case 0: 321 if (ss.ss_size < minstacksize) { 322 return -TARGET_ENOMEM; 323 } 324 break; 325 } 326 327 ts->sigaltstack_used.ss_sp = ss.ss_sp; 328 ts->sigaltstack_used.ss_size = ss.ss_size; 329 return 0; 330 } 331 332 /* siginfo conversion */ 333 334 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 335 const siginfo_t *info) 336 { 337 int sig = host_to_target_signal(info->si_signo); 338 int si_code = info->si_code; 339 int si_type; 340 tinfo->si_signo = sig; 341 tinfo->si_errno = 0; 342 tinfo->si_code = info->si_code; 343 344 /* This memset serves two purposes: 345 * (1) ensure we don't leak random junk to the guest later 346 * (2) placate false positives from gcc about fields 347 * being used uninitialized if it chooses to inline both this 348 * function and tswap_siginfo() into host_to_target_siginfo(). 349 */ 350 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); 351 352 /* This is awkward, because we have to use a combination of 353 * the si_code and si_signo to figure out which of the union's 354 * members are valid. (Within the host kernel it is always possible 355 * to tell, but the kernel carefully avoids giving userspace the 356 * high 16 bits of si_code, so we don't have the information to 357 * do this the easy way...) We therefore make our best guess, 358 * bearing in mind that a guest can spoof most of the si_codes 359 * via rt_sigqueueinfo() if it likes. 360 * 361 * Once we have made our guess, we record it in the top 16 bits of 362 * the si_code, so that tswap_siginfo() later can use it. 363 * tswap_siginfo() will strip these top bits out before writing 364 * si_code to the guest (sign-extending the lower bits). 365 */ 366 367 switch (si_code) { 368 case SI_USER: 369 case SI_TKILL: 370 case SI_KERNEL: 371 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. 372 * These are the only unspoofable si_code values. 373 */ 374 tinfo->_sifields._kill._pid = info->si_pid; 375 tinfo->_sifields._kill._uid = info->si_uid; 376 si_type = QEMU_SI_KILL; 377 break; 378 default: 379 /* Everything else is spoofable. Make best guess based on signal */ 380 switch (sig) { 381 case TARGET_SIGCHLD: 382 tinfo->_sifields._sigchld._pid = info->si_pid; 383 tinfo->_sifields._sigchld._uid = info->si_uid; 384 if (si_code == CLD_EXITED) 385 tinfo->_sifields._sigchld._status = info->si_status; 386 else 387 tinfo->_sifields._sigchld._status 388 = host_to_target_signal(info->si_status & 0x7f) 389 | (info->si_status & ~0x7f); 390 tinfo->_sifields._sigchld._utime = info->si_utime; 391 tinfo->_sifields._sigchld._stime = info->si_stime; 392 si_type = QEMU_SI_CHLD; 393 break; 394 case TARGET_SIGIO: 395 tinfo->_sifields._sigpoll._band = info->si_band; 396 tinfo->_sifields._sigpoll._fd = info->si_fd; 397 si_type = QEMU_SI_POLL; 398 break; 399 default: 400 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ 401 tinfo->_sifields._rt._pid = info->si_pid; 402 tinfo->_sifields._rt._uid = info->si_uid; 403 /* XXX: potential problem if 64 bit */ 404 tinfo->_sifields._rt._sigval.sival_ptr 405 = (abi_ulong)(unsigned long)info->si_value.sival_ptr; 406 si_type = QEMU_SI_RT; 407 break; 408 } 409 break; 410 } 411 412 tinfo->si_code = deposit32(si_code, 16, 16, si_type); 413 } 414 415 static void tswap_siginfo(target_siginfo_t *tinfo, 416 const target_siginfo_t *info) 417 { 418 int si_type = extract32(info->si_code, 16, 16); 419 int si_code = sextract32(info->si_code, 0, 16); 420 421 __put_user(info->si_signo, &tinfo->si_signo); 422 __put_user(info->si_errno, &tinfo->si_errno); 423 __put_user(si_code, &tinfo->si_code); 424 425 /* We can use our internal marker of which fields in the structure 426 * are valid, rather than duplicating the guesswork of 427 * host_to_target_siginfo_noswap() here. 428 */ 429 switch (si_type) { 430 case QEMU_SI_KILL: 431 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); 432 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); 433 break; 434 case QEMU_SI_TIMER: 435 __put_user(info->_sifields._timer._timer1, 436 &tinfo->_sifields._timer._timer1); 437 __put_user(info->_sifields._timer._timer2, 438 &tinfo->_sifields._timer._timer2); 439 break; 440 case QEMU_SI_POLL: 441 __put_user(info->_sifields._sigpoll._band, 442 &tinfo->_sifields._sigpoll._band); 443 __put_user(info->_sifields._sigpoll._fd, 444 &tinfo->_sifields._sigpoll._fd); 445 break; 446 case QEMU_SI_FAULT: 447 __put_user(info->_sifields._sigfault._addr, 448 &tinfo->_sifields._sigfault._addr); 449 break; 450 case QEMU_SI_CHLD: 451 __put_user(info->_sifields._sigchld._pid, 452 &tinfo->_sifields._sigchld._pid); 453 __put_user(info->_sifields._sigchld._uid, 454 &tinfo->_sifields._sigchld._uid); 455 __put_user(info->_sifields._sigchld._status, 456 &tinfo->_sifields._sigchld._status); 457 __put_user(info->_sifields._sigchld._utime, 458 &tinfo->_sifields._sigchld._utime); 459 __put_user(info->_sifields._sigchld._stime, 460 &tinfo->_sifields._sigchld._stime); 461 break; 462 case QEMU_SI_RT: 463 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); 464 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); 465 __put_user(info->_sifields._rt._sigval.sival_ptr, 466 &tinfo->_sifields._rt._sigval.sival_ptr); 467 break; 468 default: 469 g_assert_not_reached(); 470 } 471 } 472 473 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 474 { 475 target_siginfo_t tgt_tmp; 476 host_to_target_siginfo_noswap(&tgt_tmp, info); 477 tswap_siginfo(tinfo, &tgt_tmp); 478 } 479 480 /* XXX: we support only POSIX RT signals are used. */ 481 /* XXX: find a solution for 64 bit (additional malloced data is needed) */ 482 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) 483 { 484 /* This conversion is used only for the rt_sigqueueinfo syscall, 485 * and so we know that the _rt fields are the valid ones. 486 */ 487 abi_ulong sival_ptr; 488 489 __get_user(info->si_signo, &tinfo->si_signo); 490 __get_user(info->si_errno, &tinfo->si_errno); 491 __get_user(info->si_code, &tinfo->si_code); 492 __get_user(info->si_pid, &tinfo->_sifields._rt._pid); 493 __get_user(info->si_uid, &tinfo->_sifields._rt._uid); 494 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); 495 info->si_value.sival_ptr = (void *)(long)sival_ptr; 496 } 497 498 /* returns 1 if given signal should dump core if not handled */ 499 static int core_dump_signal(int sig) 500 { 501 switch (sig) { 502 case TARGET_SIGABRT: 503 case TARGET_SIGFPE: 504 case TARGET_SIGILL: 505 case TARGET_SIGQUIT: 506 case TARGET_SIGSEGV: 507 case TARGET_SIGTRAP: 508 case TARGET_SIGBUS: 509 return (1); 510 default: 511 return (0); 512 } 513 } 514 515 static void signal_table_init(void) 516 { 517 int hsig, tsig, count; 518 519 /* 520 * Signals are supported starting from TARGET_SIGRTMIN and going up 521 * until we run out of host realtime signals. Glibc uses the lower 2 522 * RT signals and (hopefully) nobody uses the upper ones. 523 * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32). 524 * To fix this properly we would need to do manual signal delivery 525 * multiplexed over a single host signal. 526 * Attempts for configure "missing" signals via sigaction will be 527 * silently ignored. 528 * 529 * Remap the target SIGABRT, so that we can distinguish host abort 530 * from guest abort. When the guest registers a signal handler or 531 * calls raise(SIGABRT), the host will raise SIG_RTn. If the guest 532 * arrives at dump_core_and_abort(), we will map back to host SIGABRT 533 * so that the parent (native or emulated) sees the correct signal. 534 * Finally, also map host to guest SIGABRT so that the emulated 535 * parent sees the correct mapping from wait status. 536 */ 537 538 hsig = SIGRTMIN; 539 host_to_target_signal_table[SIGABRT] = 0; 540 host_to_target_signal_table[hsig++] = TARGET_SIGABRT; 541 542 for (tsig = TARGET_SIGRTMIN; 543 hsig <= SIGRTMAX && tsig <= TARGET_NSIG; 544 hsig++, tsig++) { 545 host_to_target_signal_table[hsig] = tsig; 546 } 547 548 /* Invert the mapping that has already been assigned. */ 549 for (hsig = 1; hsig < _NSIG; hsig++) { 550 tsig = host_to_target_signal_table[hsig]; 551 if (tsig) { 552 assert(target_to_host_signal_table[tsig] == 0); 553 target_to_host_signal_table[tsig] = hsig; 554 } 555 } 556 557 host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT; 558 559 /* Map everything else out-of-bounds. */ 560 for (hsig = 1; hsig < _NSIG; hsig++) { 561 if (host_to_target_signal_table[hsig] == 0) { 562 host_to_target_signal_table[hsig] = TARGET_NSIG + 1; 563 } 564 } 565 for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) { 566 if (target_to_host_signal_table[tsig] == 0) { 567 target_to_host_signal_table[tsig] = _NSIG; 568 count++; 569 } 570 } 571 572 trace_signal_table_init(count); 573 } 574 575 void signal_init(void) 576 { 577 TaskState *ts = get_task_state(thread_cpu); 578 struct sigaction act, oact; 579 580 /* initialize signal conversion tables */ 581 signal_table_init(); 582 583 /* Set the signal mask from the host mask. */ 584 sigprocmask(0, 0, &ts->signal_mask); 585 586 sigfillset(&act.sa_mask); 587 act.sa_flags = SA_SIGINFO; 588 act.sa_sigaction = host_signal_handler; 589 590 /* 591 * A parent process may configure ignored signals, but all other 592 * signals are default. For any target signals that have no host 593 * mapping, set to ignore. For all core_dump_signal, install our 594 * host signal handler so that we may invoke dump_core_and_abort. 595 * This includes SIGSEGV and SIGBUS, which are also need our signal 596 * handler for paging and exceptions. 597 */ 598 for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) { 599 int hsig = target_to_host_signal(tsig); 600 abi_ptr thand = TARGET_SIG_IGN; 601 602 if (hsig >= _NSIG) { 603 continue; 604 } 605 606 /* As we force remap SIGABRT, cannot probe and install in one step. */ 607 if (tsig == TARGET_SIGABRT) { 608 sigaction(SIGABRT, NULL, &oact); 609 sigaction(hsig, &act, NULL); 610 } else { 611 struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL; 612 sigaction(hsig, iact, &oact); 613 } 614 615 if (oact.sa_sigaction != (void *)SIG_IGN) { 616 thand = TARGET_SIG_DFL; 617 } 618 sigact_table[tsig - 1]._sa_handler = thand; 619 } 620 } 621 622 /* Force a synchronously taken signal. The kernel force_sig() function 623 * also forces the signal to "not blocked, not ignored", but for QEMU 624 * that work is done in process_pending_signals(). 625 */ 626 void force_sig(int sig) 627 { 628 CPUState *cpu = thread_cpu; 629 target_siginfo_t info = {}; 630 631 info.si_signo = sig; 632 info.si_errno = 0; 633 info.si_code = TARGET_SI_KERNEL; 634 info._sifields._kill._pid = 0; 635 info._sifields._kill._uid = 0; 636 queue_signal(cpu_env(cpu), info.si_signo, QEMU_SI_KILL, &info); 637 } 638 639 /* 640 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 641 * 'force' part is handled in process_pending_signals(). 642 */ 643 void force_sig_fault(int sig, int code, abi_ulong addr) 644 { 645 CPUState *cpu = thread_cpu; 646 target_siginfo_t info = {}; 647 648 info.si_signo = sig; 649 info.si_errno = 0; 650 info.si_code = code; 651 info._sifields._sigfault._addr = addr; 652 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info); 653 } 654 655 /* Force a SIGSEGV if we couldn't write to memory trying to set 656 * up the signal frame. oldsig is the signal we were trying to handle 657 * at the point of failure. 658 */ 659 #if !defined(TARGET_RISCV) 660 void force_sigsegv(int oldsig) 661 { 662 if (oldsig == SIGSEGV) { 663 /* Make sure we don't try to deliver the signal again; this will 664 * end up with handle_pending_signal() calling dump_core_and_abort(). 665 */ 666 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; 667 } 668 force_sig(TARGET_SIGSEGV); 669 } 670 #endif 671 672 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 673 MMUAccessType access_type, bool maperr, uintptr_t ra) 674 { 675 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 676 677 if (tcg_ops->record_sigsegv) { 678 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 679 } 680 681 force_sig_fault(TARGET_SIGSEGV, 682 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 683 addr); 684 cpu->exception_index = EXCP_INTERRUPT; 685 cpu_loop_exit_restore(cpu, ra); 686 } 687 688 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 689 MMUAccessType access_type, uintptr_t ra) 690 { 691 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 692 693 if (tcg_ops->record_sigbus) { 694 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 695 } 696 697 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 698 cpu->exception_index = EXCP_INTERRUPT; 699 cpu_loop_exit_restore(cpu, ra); 700 } 701 702 /* abort execution with signal */ 703 static G_NORETURN 704 void die_with_signal(int host_sig) 705 { 706 struct sigaction act = { 707 .sa_handler = SIG_DFL, 708 }; 709 710 /* 711 * The proper exit code for dying from an uncaught signal is -<signal>. 712 * The kernel doesn't allow exit() or _exit() to pass a negative value. 713 * To get the proper exit code we need to actually die from an uncaught 714 * signal. Here the default signal handler is installed, we send 715 * the signal and we wait for it to arrive. 716 */ 717 sigfillset(&act.sa_mask); 718 sigaction(host_sig, &act, NULL); 719 720 kill(getpid(), host_sig); 721 722 /* Make sure the signal isn't masked (reusing the mask inside of act). */ 723 sigdelset(&act.sa_mask, host_sig); 724 sigsuspend(&act.sa_mask); 725 726 /* unreachable */ 727 _exit(EXIT_FAILURE); 728 } 729 730 static G_NORETURN 731 void dump_core_and_abort(CPUArchState *env, int target_sig) 732 { 733 CPUState *cpu = env_cpu(env); 734 TaskState *ts = get_task_state(cpu); 735 int host_sig, core_dumped = 0; 736 737 /* On exit, undo the remapping of SIGABRT. */ 738 if (target_sig == TARGET_SIGABRT) { 739 host_sig = SIGABRT; 740 } else { 741 host_sig = target_to_host_signal(target_sig); 742 } 743 trace_user_dump_core_and_abort(env, target_sig, host_sig); 744 gdb_signalled(env, target_sig); 745 746 /* dump core if supported by target binary format */ 747 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 748 stop_all_tasks(); 749 core_dumped = 750 ((*ts->bprm->core_dump)(target_sig, env) == 0); 751 } 752 if (core_dumped) { 753 /* we already dumped the core of target process, we don't want 754 * a coredump of qemu itself */ 755 struct rlimit nodump; 756 getrlimit(RLIMIT_CORE, &nodump); 757 nodump.rlim_cur=0; 758 setrlimit(RLIMIT_CORE, &nodump); 759 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", 760 target_sig, strsignal(host_sig), "core dumped" ); 761 } 762 763 preexit_cleanup(env, 128 + target_sig); 764 die_with_signal(host_sig); 765 } 766 767 /* queue a signal so that it will be send to the virtual CPU as soon 768 as possible */ 769 void queue_signal(CPUArchState *env, int sig, int si_type, 770 target_siginfo_t *info) 771 { 772 CPUState *cpu = env_cpu(env); 773 TaskState *ts = get_task_state(cpu); 774 775 trace_user_queue_signal(env, sig); 776 777 info->si_code = deposit32(info->si_code, 16, 16, si_type); 778 779 ts->sync_signal.info = *info; 780 ts->sync_signal.pending = sig; 781 /* signal that a new signal is pending */ 782 qatomic_set(&ts->signal_pending, 1); 783 } 784 785 786 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 787 static inline void rewind_if_in_safe_syscall(void *puc) 788 { 789 host_sigcontext *uc = (host_sigcontext *)puc; 790 uintptr_t pcreg = host_signal_pc(uc); 791 792 if (pcreg > (uintptr_t)safe_syscall_start 793 && pcreg < (uintptr_t)safe_syscall_end) { 794 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 795 } 796 } 797 798 static G_NORETURN 799 void die_from_signal(siginfo_t *info) 800 { 801 char sigbuf[4], codebuf[12]; 802 const char *sig, *code = NULL; 803 804 switch (info->si_signo) { 805 case SIGSEGV: 806 sig = "SEGV"; 807 switch (info->si_code) { 808 case SEGV_MAPERR: 809 code = "MAPERR"; 810 break; 811 case SEGV_ACCERR: 812 code = "ACCERR"; 813 break; 814 } 815 break; 816 case SIGBUS: 817 sig = "BUS"; 818 switch (info->si_code) { 819 case BUS_ADRALN: 820 code = "ADRALN"; 821 break; 822 case BUS_ADRERR: 823 code = "ADRERR"; 824 break; 825 } 826 break; 827 case SIGILL: 828 sig = "ILL"; 829 switch (info->si_code) { 830 case ILL_ILLOPC: 831 code = "ILLOPC"; 832 break; 833 case ILL_ILLOPN: 834 code = "ILLOPN"; 835 break; 836 case ILL_ILLADR: 837 code = "ILLADR"; 838 break; 839 case ILL_PRVOPC: 840 code = "PRVOPC"; 841 break; 842 case ILL_PRVREG: 843 code = "PRVREG"; 844 break; 845 case ILL_COPROC: 846 code = "COPROC"; 847 break; 848 } 849 break; 850 case SIGFPE: 851 sig = "FPE"; 852 switch (info->si_code) { 853 case FPE_INTDIV: 854 code = "INTDIV"; 855 break; 856 case FPE_INTOVF: 857 code = "INTOVF"; 858 break; 859 } 860 break; 861 case SIGTRAP: 862 sig = "TRAP"; 863 break; 864 default: 865 snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo); 866 sig = sigbuf; 867 break; 868 } 869 if (code == NULL) { 870 snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code); 871 code = codebuf; 872 } 873 874 error_report("QEMU internal SIG%s {code=%s, addr=%p}", 875 sig, code, info->si_addr); 876 die_with_signal(info->si_signo); 877 } 878 879 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info, 880 host_sigcontext *uc) 881 { 882 uintptr_t host_addr = (uintptr_t)info->si_addr; 883 /* 884 * Convert forcefully to guest address space: addresses outside 885 * reserved_va are still valid to report via SEGV_MAPERR. 886 */ 887 bool is_valid = h2g_valid(host_addr); 888 abi_ptr guest_addr = h2g_nocheck(host_addr); 889 uintptr_t pc = host_signal_pc(uc); 890 bool is_write = host_signal_write(info, uc); 891 MMUAccessType access_type = adjust_signal_pc(&pc, is_write); 892 bool maperr; 893 894 /* If this was a write to a TB protected page, restart. */ 895 if (is_write 896 && is_valid 897 && info->si_code == SEGV_ACCERR 898 && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc), 899 pc, guest_addr)) { 900 return; 901 } 902 903 /* 904 * If the access was not on behalf of the guest, within the executable 905 * mapping of the generated code buffer, then it is a host bug. 906 */ 907 if (access_type != MMU_INST_FETCH 908 && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) { 909 die_from_signal(info); 910 } 911 912 maperr = true; 913 if (is_valid && info->si_code == SEGV_ACCERR) { 914 /* 915 * With reserved_va, the whole address space is PROT_NONE, 916 * which means that we may get ACCERR when we want MAPERR. 917 */ 918 if (page_get_flags(guest_addr) & PAGE_VALID) { 919 maperr = false; 920 } else { 921 info->si_code = SEGV_MAPERR; 922 } 923 } 924 925 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL); 926 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 927 } 928 929 static uintptr_t host_sigbus_handler(CPUState *cpu, siginfo_t *info, 930 host_sigcontext *uc) 931 { 932 uintptr_t pc = host_signal_pc(uc); 933 bool is_write = host_signal_write(info, uc); 934 MMUAccessType access_type = adjust_signal_pc(&pc, is_write); 935 936 /* 937 * If the access was not on behalf of the guest, within the executable 938 * mapping of the generated code buffer, then it is a host bug. 939 */ 940 if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) { 941 die_from_signal(info); 942 } 943 944 if (info->si_code == BUS_ADRALN) { 945 uintptr_t host_addr = (uintptr_t)info->si_addr; 946 abi_ptr guest_addr = h2g_nocheck(host_addr); 947 948 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL); 949 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 950 } 951 return pc; 952 } 953 954 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 955 { 956 CPUState *cpu = thread_cpu; 957 CPUArchState *env = cpu_env(cpu); 958 TaskState *ts = get_task_state(cpu); 959 target_siginfo_t tinfo; 960 host_sigcontext *uc = puc; 961 struct emulated_sigtable *k; 962 int guest_sig; 963 uintptr_t pc = 0; 964 bool sync_sig = false; 965 void *sigmask; 966 967 /* 968 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 969 * handling wrt signal blocking and unwinding. Non-spoofed SIGILL, 970 * SIGFPE, SIGTRAP are always host bugs. 971 */ 972 if (info->si_code > 0) { 973 switch (host_sig) { 974 case SIGSEGV: 975 /* Only returns on handle_sigsegv_accerr_write success. */ 976 host_sigsegv_handler(cpu, info, uc); 977 return; 978 case SIGBUS: 979 pc = host_sigbus_handler(cpu, info, uc); 980 sync_sig = true; 981 break; 982 case SIGILL: 983 case SIGFPE: 984 case SIGTRAP: 985 die_from_signal(info); 986 } 987 } 988 989 /* get target signal number */ 990 guest_sig = host_to_target_signal(host_sig); 991 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 992 return; 993 } 994 trace_user_host_signal(env, host_sig, guest_sig); 995 996 host_to_target_siginfo_noswap(&tinfo, info); 997 k = &ts->sigtab[guest_sig - 1]; 998 k->info = tinfo; 999 k->pending = guest_sig; 1000 ts->signal_pending = 1; 1001 1002 /* 1003 * For synchronous signals, unwind the cpu state to the faulting 1004 * insn and then exit back to the main loop so that the signal 1005 * is delivered immediately. 1006 */ 1007 if (sync_sig) { 1008 cpu->exception_index = EXCP_INTERRUPT; 1009 cpu_loop_exit_restore(cpu, pc); 1010 } 1011 1012 rewind_if_in_safe_syscall(puc); 1013 1014 /* 1015 * Block host signals until target signal handler entered. We 1016 * can't block SIGSEGV or SIGBUS while we're executing guest 1017 * code in case the guest code provokes one in the window between 1018 * now and it getting out to the main loop. Signals will be 1019 * unblocked again in process_pending_signals(). 1020 * 1021 * WARNING: we cannot use sigfillset() here because the sigmask 1022 * field is a kernel sigset_t, which is much smaller than the 1023 * libc sigset_t which sigfillset() operates on. Using sigfillset() 1024 * would write 0xff bytes off the end of the structure and trash 1025 * data on the struct. 1026 */ 1027 sigmask = host_signal_mask(uc); 1028 memset(sigmask, 0xff, SIGSET_T_SIZE); 1029 sigdelset(sigmask, SIGSEGV); 1030 sigdelset(sigmask, SIGBUS); 1031 1032 /* interrupt the virtual CPU as soon as possible */ 1033 cpu_exit(thread_cpu); 1034 } 1035 1036 /* do_sigaltstack() returns target values and errnos. */ 1037 /* compare linux/kernel/signal.c:do_sigaltstack() */ 1038 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, 1039 CPUArchState *env) 1040 { 1041 target_stack_t oss, *uoss = NULL; 1042 abi_long ret = -TARGET_EFAULT; 1043 1044 if (uoss_addr) { 1045 /* Verify writability now, but do not alter user memory yet. */ 1046 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { 1047 goto out; 1048 } 1049 target_save_altstack(&oss, env); 1050 } 1051 1052 if (uss_addr) { 1053 target_stack_t *uss; 1054 1055 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 1056 goto out; 1057 } 1058 ret = target_restore_altstack(uss, env); 1059 if (ret) { 1060 goto out; 1061 } 1062 } 1063 1064 if (uoss_addr) { 1065 memcpy(uoss, &oss, sizeof(oss)); 1066 unlock_user_struct(uoss, uoss_addr, 1); 1067 uoss = NULL; 1068 } 1069 ret = 0; 1070 1071 out: 1072 if (uoss) { 1073 unlock_user_struct(uoss, uoss_addr, 0); 1074 } 1075 return ret; 1076 } 1077 1078 /* do_sigaction() return target values and host errnos */ 1079 int do_sigaction(int sig, const struct target_sigaction *act, 1080 struct target_sigaction *oact, abi_ulong ka_restorer) 1081 { 1082 struct target_sigaction *k; 1083 int host_sig; 1084 int ret = 0; 1085 1086 trace_signal_do_sigaction_guest(sig, TARGET_NSIG); 1087 1088 if (sig < 1 || sig > TARGET_NSIG) { 1089 return -TARGET_EINVAL; 1090 } 1091 1092 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { 1093 return -TARGET_EINVAL; 1094 } 1095 1096 if (block_signals()) { 1097 return -QEMU_ERESTARTSYS; 1098 } 1099 1100 k = &sigact_table[sig - 1]; 1101 if (oact) { 1102 __put_user(k->_sa_handler, &oact->_sa_handler); 1103 __put_user(k->sa_flags, &oact->sa_flags); 1104 #ifdef TARGET_ARCH_HAS_SA_RESTORER 1105 __put_user(k->sa_restorer, &oact->sa_restorer); 1106 #endif 1107 /* Not swapped. */ 1108 oact->sa_mask = k->sa_mask; 1109 } 1110 if (act) { 1111 __get_user(k->_sa_handler, &act->_sa_handler); 1112 __get_user(k->sa_flags, &act->sa_flags); 1113 #ifdef TARGET_ARCH_HAS_SA_RESTORER 1114 __get_user(k->sa_restorer, &act->sa_restorer); 1115 #endif 1116 #ifdef TARGET_ARCH_HAS_KA_RESTORER 1117 k->ka_restorer = ka_restorer; 1118 #endif 1119 /* To be swapped in target_to_host_sigset. */ 1120 k->sa_mask = act->sa_mask; 1121 1122 /* we update the host linux signal state */ 1123 host_sig = target_to_host_signal(sig); 1124 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); 1125 if (host_sig > SIGRTMAX) { 1126 /* we don't have enough host signals to map all target signals */ 1127 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", 1128 sig); 1129 /* 1130 * we don't return an error here because some programs try to 1131 * register an handler for all possible rt signals even if they 1132 * don't need it. 1133 * An error here can abort them whereas there can be no problem 1134 * to not have the signal available later. 1135 * This is the case for golang, 1136 * See https://github.com/golang/go/issues/33746 1137 * So we silently ignore the error. 1138 */ 1139 return 0; 1140 } 1141 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 1142 struct sigaction act1; 1143 1144 sigfillset(&act1.sa_mask); 1145 act1.sa_flags = SA_SIGINFO; 1146 if (k->_sa_handler == TARGET_SIG_IGN) { 1147 /* 1148 * It is important to update the host kernel signal ignore 1149 * state to avoid getting unexpected interrupted syscalls. 1150 */ 1151 act1.sa_sigaction = (void *)SIG_IGN; 1152 } else if (k->_sa_handler == TARGET_SIG_DFL) { 1153 if (core_dump_signal(sig)) { 1154 act1.sa_sigaction = host_signal_handler; 1155 } else { 1156 act1.sa_sigaction = (void *)SIG_DFL; 1157 } 1158 } else { 1159 act1.sa_sigaction = host_signal_handler; 1160 if (k->sa_flags & TARGET_SA_RESTART) { 1161 act1.sa_flags |= SA_RESTART; 1162 } 1163 } 1164 ret = sigaction(host_sig, &act1, NULL); 1165 } 1166 } 1167 return ret; 1168 } 1169 1170 static void handle_pending_signal(CPUArchState *cpu_env, int sig, 1171 struct emulated_sigtable *k) 1172 { 1173 CPUState *cpu = env_cpu(cpu_env); 1174 abi_ulong handler; 1175 sigset_t set; 1176 target_sigset_t target_old_set; 1177 struct target_sigaction *sa; 1178 TaskState *ts = get_task_state(cpu); 1179 1180 trace_user_handle_signal(cpu_env, sig); 1181 /* dequeue signal */ 1182 k->pending = 0; 1183 1184 /* 1185 * Writes out siginfo values byteswapped, accordingly to the target. It also 1186 * cleans the si_type from si_code making it correct for the target. 1187 */ 1188 tswap_siginfo(&k->info, &k->info); 1189 1190 sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info)); 1191 if (!sig) { 1192 sa = NULL; 1193 handler = TARGET_SIG_IGN; 1194 } else { 1195 sa = &sigact_table[sig - 1]; 1196 handler = sa->_sa_handler; 1197 } 1198 1199 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 1200 print_taken_signal(sig, &k->info); 1201 } 1202 1203 if (handler == TARGET_SIG_DFL) { 1204 /* default handler : ignore some signal. The other are job control or fatal */ 1205 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { 1206 kill(getpid(),SIGSTOP); 1207 } else if (sig != TARGET_SIGCHLD && 1208 sig != TARGET_SIGURG && 1209 sig != TARGET_SIGWINCH && 1210 sig != TARGET_SIGCONT) { 1211 dump_core_and_abort(cpu_env, sig); 1212 } 1213 } else if (handler == TARGET_SIG_IGN) { 1214 /* ignore sig */ 1215 } else if (handler == TARGET_SIG_ERR) { 1216 dump_core_and_abort(cpu_env, sig); 1217 } else { 1218 /* compute the blocked signals during the handler execution */ 1219 sigset_t *blocked_set; 1220 1221 target_to_host_sigset(&set, &sa->sa_mask); 1222 /* SA_NODEFER indicates that the current signal should not be 1223 blocked during the handler */ 1224 if (!(sa->sa_flags & TARGET_SA_NODEFER)) 1225 sigaddset(&set, target_to_host_signal(sig)); 1226 1227 /* save the previous blocked signal state to restore it at the 1228 end of the signal execution (see do_sigreturn) */ 1229 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 1230 1231 /* block signals in the handler */ 1232 blocked_set = ts->in_sigsuspend ? 1233 &ts->sigsuspend_mask : &ts->signal_mask; 1234 sigorset(&ts->signal_mask, blocked_set, &set); 1235 ts->in_sigsuspend = 0; 1236 1237 /* if the CPU is in VM86 mode, we restore the 32 bit values */ 1238 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 1239 { 1240 CPUX86State *env = cpu_env; 1241 if (env->eflags & VM_MASK) 1242 save_v86_state(env); 1243 } 1244 #endif 1245 /* prepare the stack frame of the virtual CPU */ 1246 #if defined(TARGET_ARCH_HAS_SETUP_FRAME) 1247 if (sa->sa_flags & TARGET_SA_SIGINFO) { 1248 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1249 } else { 1250 setup_frame(sig, sa, &target_old_set, cpu_env); 1251 } 1252 #else 1253 /* These targets do not have traditional signals. */ 1254 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1255 #endif 1256 if (sa->sa_flags & TARGET_SA_RESETHAND) { 1257 sa->_sa_handler = TARGET_SIG_DFL; 1258 } 1259 } 1260 } 1261 1262 void process_pending_signals(CPUArchState *cpu_env) 1263 { 1264 CPUState *cpu = env_cpu(cpu_env); 1265 int sig; 1266 TaskState *ts = get_task_state(cpu); 1267 sigset_t set; 1268 sigset_t *blocked_set; 1269 1270 while (qatomic_read(&ts->signal_pending)) { 1271 sigfillset(&set); 1272 sigprocmask(SIG_SETMASK, &set, 0); 1273 1274 restart_scan: 1275 sig = ts->sync_signal.pending; 1276 if (sig) { 1277 /* Synchronous signals are forced, 1278 * see force_sig_info() and callers in Linux 1279 * Note that not all of our queue_signal() calls in QEMU correspond 1280 * to force_sig_info() calls in Linux (some are send_sig_info()). 1281 * However it seems like a kernel bug to me to allow the process 1282 * to block a synchronous signal since it could then just end up 1283 * looping round and round indefinitely. 1284 */ 1285 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) 1286 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 1287 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); 1288 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 1289 } 1290 1291 handle_pending_signal(cpu_env, sig, &ts->sync_signal); 1292 } 1293 1294 for (sig = 1; sig <= TARGET_NSIG; sig++) { 1295 blocked_set = ts->in_sigsuspend ? 1296 &ts->sigsuspend_mask : &ts->signal_mask; 1297 1298 if (ts->sigtab[sig - 1].pending && 1299 (!sigismember(blocked_set, 1300 target_to_host_signal_table[sig]))) { 1301 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); 1302 /* Restart scan from the beginning, as handle_pending_signal 1303 * might have resulted in a new synchronous signal (eg SIGSEGV). 1304 */ 1305 goto restart_scan; 1306 } 1307 } 1308 1309 /* if no signal is pending, unblock signals and recheck (the act 1310 * of unblocking might cause us to take another host signal which 1311 * will set signal_pending again). 1312 */ 1313 qatomic_set(&ts->signal_pending, 0); 1314 ts->in_sigsuspend = 0; 1315 set = ts->signal_mask; 1316 sigdelset(&set, SIGSEGV); 1317 sigdelset(&set, SIGBUS); 1318 sigprocmask(SIG_SETMASK, &set, 0); 1319 } 1320 ts->in_sigsuspend = 0; 1321 } 1322 1323 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset, 1324 target_ulong sigsize) 1325 { 1326 TaskState *ts = get_task_state(thread_cpu); 1327 sigset_t *host_set = &ts->sigsuspend_mask; 1328 target_sigset_t *target_sigset; 1329 1330 if (sigsize != sizeof(*target_sigset)) { 1331 /* Like the kernel, we enforce correct size sigsets */ 1332 return -TARGET_EINVAL; 1333 } 1334 1335 target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1); 1336 if (!target_sigset) { 1337 return -TARGET_EFAULT; 1338 } 1339 target_to_host_sigset(host_set, target_sigset); 1340 unlock_user(target_sigset, sigset, 0); 1341 1342 *pset = host_set; 1343 return 0; 1344 } 1345