1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include "qemu/cutils.h" 22 #include "gdbstub/user.h" 23 #include "exec/page-protection.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 26 #include <sys/ucontext.h> 27 #include <sys/resource.h> 28 29 #include "qemu.h" 30 #include "user-internals.h" 31 #include "strace.h" 32 #include "loader.h" 33 #include "trace.h" 34 #include "signal-common.h" 35 #include "host-signal.h" 36 #include "user/safe-syscall.h" 37 #include "tcg/tcg.h" 38 39 /* target_siginfo_t must fit in gdbstub's siginfo save area. */ 40 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH); 41 42 static struct target_sigaction sigact_table[TARGET_NSIG]; 43 44 static void host_signal_handler(int host_signum, siginfo_t *info, 45 void *puc); 46 47 /* Fallback addresses into sigtramp page. */ 48 abi_ulong default_sigreturn; 49 abi_ulong default_rt_sigreturn; 50 51 /* 52 * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel) 53 * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1. 54 * Signal number 0 is reserved for use as kill(pid, 0), to test whether 55 * a process exists without sending it a signal. 56 */ 57 #ifdef __SIGRTMAX 58 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); 59 #endif 60 static uint8_t host_to_target_signal_table[_NSIG] = { 61 #define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig, 62 MAKE_SIGNAL_LIST 63 #undef MAKE_SIG_ENTRY 64 }; 65 66 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; 67 68 /* valid sig is between 1 and _NSIG - 1 */ 69 int host_to_target_signal(int sig) 70 { 71 if (sig < 1) { 72 return sig; 73 } 74 if (sig >= _NSIG) { 75 return TARGET_NSIG + 1; 76 } 77 return host_to_target_signal_table[sig]; 78 } 79 80 /* valid sig is between 1 and TARGET_NSIG */ 81 int target_to_host_signal(int sig) 82 { 83 if (sig < 1) { 84 return sig; 85 } 86 if (sig > TARGET_NSIG) { 87 return _NSIG; 88 } 89 return target_to_host_signal_table[sig]; 90 } 91 92 static inline void target_sigaddset(target_sigset_t *set, int signum) 93 { 94 signum--; 95 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 96 set->sig[signum / TARGET_NSIG_BPW] |= mask; 97 } 98 99 static inline int target_sigismember(const target_sigset_t *set, int signum) 100 { 101 signum--; 102 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 103 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); 104 } 105 106 void host_to_target_sigset_internal(target_sigset_t *d, 107 const sigset_t *s) 108 { 109 int host_sig, target_sig; 110 target_sigemptyset(d); 111 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 112 target_sig = host_to_target_signal(host_sig); 113 if (target_sig < 1 || target_sig > TARGET_NSIG) { 114 continue; 115 } 116 if (sigismember(s, host_sig)) { 117 target_sigaddset(d, target_sig); 118 } 119 } 120 } 121 122 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 123 { 124 target_sigset_t d1; 125 int i; 126 127 host_to_target_sigset_internal(&d1, s); 128 for(i = 0;i < TARGET_NSIG_WORDS; i++) 129 d->sig[i] = tswapal(d1.sig[i]); 130 } 131 132 void target_to_host_sigset_internal(sigset_t *d, 133 const target_sigset_t *s) 134 { 135 int host_sig, target_sig; 136 sigemptyset(d); 137 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 138 host_sig = target_to_host_signal(target_sig); 139 if (host_sig < 1 || host_sig >= _NSIG) { 140 continue; 141 } 142 if (target_sigismember(s, target_sig)) { 143 sigaddset(d, host_sig); 144 } 145 } 146 } 147 148 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 149 { 150 target_sigset_t s1; 151 int i; 152 153 for(i = 0;i < TARGET_NSIG_WORDS; i++) 154 s1.sig[i] = tswapal(s->sig[i]); 155 target_to_host_sigset_internal(d, &s1); 156 } 157 158 void host_to_target_old_sigset(abi_ulong *old_sigset, 159 const sigset_t *sigset) 160 { 161 target_sigset_t d; 162 host_to_target_sigset(&d, sigset); 163 *old_sigset = d.sig[0]; 164 } 165 166 void target_to_host_old_sigset(sigset_t *sigset, 167 const abi_ulong *old_sigset) 168 { 169 target_sigset_t d; 170 int i; 171 172 d.sig[0] = *old_sigset; 173 for(i = 1;i < TARGET_NSIG_WORDS; i++) 174 d.sig[i] = 0; 175 target_to_host_sigset(sigset, &d); 176 } 177 178 int block_signals(void) 179 { 180 TaskState *ts = get_task_state(thread_cpu); 181 sigset_t set; 182 183 /* It's OK to block everything including SIGSEGV, because we won't 184 * run any further guest code before unblocking signals in 185 * process_pending_signals(). 186 */ 187 sigfillset(&set); 188 sigprocmask(SIG_SETMASK, &set, 0); 189 190 return qatomic_xchg(&ts->signal_pending, 1); 191 } 192 193 /* Wrapper for sigprocmask function 194 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset 195 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if 196 * a signal was already pending and the syscall must be restarted, or 197 * 0 on success. 198 * If set is NULL, this is guaranteed not to fail. 199 */ 200 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) 201 { 202 TaskState *ts = get_task_state(thread_cpu); 203 204 if (oldset) { 205 *oldset = ts->signal_mask; 206 } 207 208 if (set) { 209 int i; 210 211 if (block_signals()) { 212 return -QEMU_ERESTARTSYS; 213 } 214 215 switch (how) { 216 case SIG_BLOCK: 217 sigorset(&ts->signal_mask, &ts->signal_mask, set); 218 break; 219 case SIG_UNBLOCK: 220 for (i = 1; i <= NSIG; ++i) { 221 if (sigismember(set, i)) { 222 sigdelset(&ts->signal_mask, i); 223 } 224 } 225 break; 226 case SIG_SETMASK: 227 ts->signal_mask = *set; 228 break; 229 default: 230 g_assert_not_reached(); 231 } 232 233 /* Silently ignore attempts to change blocking status of KILL or STOP */ 234 sigdelset(&ts->signal_mask, SIGKILL); 235 sigdelset(&ts->signal_mask, SIGSTOP); 236 } 237 return 0; 238 } 239 240 /* Just set the guest's signal mask to the specified value; the 241 * caller is assumed to have called block_signals() already. 242 */ 243 void set_sigmask(const sigset_t *set) 244 { 245 TaskState *ts = get_task_state(thread_cpu); 246 247 ts->signal_mask = *set; 248 } 249 250 /* sigaltstack management */ 251 252 int on_sig_stack(unsigned long sp) 253 { 254 TaskState *ts = get_task_state(thread_cpu); 255 256 return (sp - ts->sigaltstack_used.ss_sp 257 < ts->sigaltstack_used.ss_size); 258 } 259 260 int sas_ss_flags(unsigned long sp) 261 { 262 TaskState *ts = get_task_state(thread_cpu); 263 264 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE 265 : on_sig_stack(sp) ? SS_ONSTACK : 0); 266 } 267 268 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) 269 { 270 /* 271 * This is the X/Open sanctioned signal stack switching. 272 */ 273 TaskState *ts = get_task_state(thread_cpu); 274 275 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 276 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 277 } 278 return sp; 279 } 280 281 void target_save_altstack(target_stack_t *uss, CPUArchState *env) 282 { 283 TaskState *ts = get_task_state(thread_cpu); 284 285 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); 286 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); 287 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); 288 } 289 290 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) 291 { 292 TaskState *ts = get_task_state(thread_cpu); 293 size_t minstacksize = TARGET_MINSIGSTKSZ; 294 target_stack_t ss; 295 296 #if defined(TARGET_PPC64) 297 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ 298 struct image_info *image = ts->info; 299 if (get_ppc64_abi(image) > 1) { 300 minstacksize = 4096; 301 } 302 #endif 303 304 __get_user(ss.ss_sp, &uss->ss_sp); 305 __get_user(ss.ss_size, &uss->ss_size); 306 __get_user(ss.ss_flags, &uss->ss_flags); 307 308 if (on_sig_stack(get_sp_from_cpustate(env))) { 309 return -TARGET_EPERM; 310 } 311 312 switch (ss.ss_flags) { 313 default: 314 return -TARGET_EINVAL; 315 316 case TARGET_SS_DISABLE: 317 ss.ss_size = 0; 318 ss.ss_sp = 0; 319 break; 320 321 case TARGET_SS_ONSTACK: 322 case 0: 323 if (ss.ss_size < minstacksize) { 324 return -TARGET_ENOMEM; 325 } 326 break; 327 } 328 329 ts->sigaltstack_used.ss_sp = ss.ss_sp; 330 ts->sigaltstack_used.ss_size = ss.ss_size; 331 return 0; 332 } 333 334 /* siginfo conversion */ 335 336 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 337 const siginfo_t *info) 338 { 339 int sig = host_to_target_signal(info->si_signo); 340 int si_code = info->si_code; 341 int si_type; 342 tinfo->si_signo = sig; 343 tinfo->si_errno = 0; 344 tinfo->si_code = info->si_code; 345 346 /* This memset serves two purposes: 347 * (1) ensure we don't leak random junk to the guest later 348 * (2) placate false positives from gcc about fields 349 * being used uninitialized if it chooses to inline both this 350 * function and tswap_siginfo() into host_to_target_siginfo(). 351 */ 352 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); 353 354 /* This is awkward, because we have to use a combination of 355 * the si_code and si_signo to figure out which of the union's 356 * members are valid. (Within the host kernel it is always possible 357 * to tell, but the kernel carefully avoids giving userspace the 358 * high 16 bits of si_code, so we don't have the information to 359 * do this the easy way...) We therefore make our best guess, 360 * bearing in mind that a guest can spoof most of the si_codes 361 * via rt_sigqueueinfo() if it likes. 362 * 363 * Once we have made our guess, we record it in the top 16 bits of 364 * the si_code, so that tswap_siginfo() later can use it. 365 * tswap_siginfo() will strip these top bits out before writing 366 * si_code to the guest (sign-extending the lower bits). 367 */ 368 369 switch (si_code) { 370 case SI_USER: 371 case SI_TKILL: 372 case SI_KERNEL: 373 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. 374 * These are the only unspoofable si_code values. 375 */ 376 tinfo->_sifields._kill._pid = info->si_pid; 377 tinfo->_sifields._kill._uid = info->si_uid; 378 si_type = QEMU_SI_KILL; 379 break; 380 default: 381 /* Everything else is spoofable. Make best guess based on signal */ 382 switch (sig) { 383 case TARGET_SIGCHLD: 384 tinfo->_sifields._sigchld._pid = info->si_pid; 385 tinfo->_sifields._sigchld._uid = info->si_uid; 386 if (si_code == CLD_EXITED) 387 tinfo->_sifields._sigchld._status = info->si_status; 388 else 389 tinfo->_sifields._sigchld._status 390 = host_to_target_signal(info->si_status & 0x7f) 391 | (info->si_status & ~0x7f); 392 tinfo->_sifields._sigchld._utime = info->si_utime; 393 tinfo->_sifields._sigchld._stime = info->si_stime; 394 si_type = QEMU_SI_CHLD; 395 break; 396 case TARGET_SIGIO: 397 tinfo->_sifields._sigpoll._band = info->si_band; 398 tinfo->_sifields._sigpoll._fd = info->si_fd; 399 si_type = QEMU_SI_POLL; 400 break; 401 default: 402 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ 403 tinfo->_sifields._rt._pid = info->si_pid; 404 tinfo->_sifields._rt._uid = info->si_uid; 405 /* XXX: potential problem if 64 bit */ 406 tinfo->_sifields._rt._sigval.sival_ptr 407 = (abi_ulong)(unsigned long)info->si_value.sival_ptr; 408 si_type = QEMU_SI_RT; 409 break; 410 } 411 break; 412 } 413 414 tinfo->si_code = deposit32(si_code, 16, 16, si_type); 415 } 416 417 static void tswap_siginfo(target_siginfo_t *tinfo, 418 const target_siginfo_t *info) 419 { 420 int si_type = extract32(info->si_code, 16, 16); 421 int si_code = sextract32(info->si_code, 0, 16); 422 423 __put_user(info->si_signo, &tinfo->si_signo); 424 __put_user(info->si_errno, &tinfo->si_errno); 425 __put_user(si_code, &tinfo->si_code); 426 427 /* We can use our internal marker of which fields in the structure 428 * are valid, rather than duplicating the guesswork of 429 * host_to_target_siginfo_noswap() here. 430 */ 431 switch (si_type) { 432 case QEMU_SI_KILL: 433 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); 434 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); 435 break; 436 case QEMU_SI_TIMER: 437 __put_user(info->_sifields._timer._timer1, 438 &tinfo->_sifields._timer._timer1); 439 __put_user(info->_sifields._timer._timer2, 440 &tinfo->_sifields._timer._timer2); 441 break; 442 case QEMU_SI_POLL: 443 __put_user(info->_sifields._sigpoll._band, 444 &tinfo->_sifields._sigpoll._band); 445 __put_user(info->_sifields._sigpoll._fd, 446 &tinfo->_sifields._sigpoll._fd); 447 break; 448 case QEMU_SI_FAULT: 449 __put_user(info->_sifields._sigfault._addr, 450 &tinfo->_sifields._sigfault._addr); 451 break; 452 case QEMU_SI_CHLD: 453 __put_user(info->_sifields._sigchld._pid, 454 &tinfo->_sifields._sigchld._pid); 455 __put_user(info->_sifields._sigchld._uid, 456 &tinfo->_sifields._sigchld._uid); 457 __put_user(info->_sifields._sigchld._status, 458 &tinfo->_sifields._sigchld._status); 459 __put_user(info->_sifields._sigchld._utime, 460 &tinfo->_sifields._sigchld._utime); 461 __put_user(info->_sifields._sigchld._stime, 462 &tinfo->_sifields._sigchld._stime); 463 break; 464 case QEMU_SI_RT: 465 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); 466 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); 467 __put_user(info->_sifields._rt._sigval.sival_ptr, 468 &tinfo->_sifields._rt._sigval.sival_ptr); 469 break; 470 default: 471 g_assert_not_reached(); 472 } 473 } 474 475 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 476 { 477 target_siginfo_t tgt_tmp; 478 host_to_target_siginfo_noswap(&tgt_tmp, info); 479 tswap_siginfo(tinfo, &tgt_tmp); 480 } 481 482 /* XXX: we support only POSIX RT signals are used. */ 483 /* XXX: find a solution for 64 bit (additional malloced data is needed) */ 484 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) 485 { 486 /* This conversion is used only for the rt_sigqueueinfo syscall, 487 * and so we know that the _rt fields are the valid ones. 488 */ 489 abi_ulong sival_ptr; 490 491 __get_user(info->si_signo, &tinfo->si_signo); 492 __get_user(info->si_errno, &tinfo->si_errno); 493 __get_user(info->si_code, &tinfo->si_code); 494 __get_user(info->si_pid, &tinfo->_sifields._rt._pid); 495 __get_user(info->si_uid, &tinfo->_sifields._rt._uid); 496 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); 497 info->si_value.sival_ptr = (void *)(long)sival_ptr; 498 } 499 500 /* returns 1 if given signal should dump core if not handled */ 501 static int core_dump_signal(int sig) 502 { 503 switch (sig) { 504 case TARGET_SIGABRT: 505 case TARGET_SIGFPE: 506 case TARGET_SIGILL: 507 case TARGET_SIGQUIT: 508 case TARGET_SIGSEGV: 509 case TARGET_SIGTRAP: 510 case TARGET_SIGBUS: 511 return (1); 512 default: 513 return (0); 514 } 515 } 516 517 static void signal_table_init(const char *rtsig_map) 518 { 519 int hsig, tsig, count; 520 521 if (rtsig_map) { 522 /* 523 * Map host RT signals to target RT signals according to the 524 * user-provided specification. 525 */ 526 const char *s = rtsig_map; 527 528 while (true) { 529 int i; 530 531 if (qemu_strtoi(s, &s, 10, &tsig) || *s++ != ' ') { 532 fprintf(stderr, "Malformed target signal in QEMU_RTSIG_MAP\n"); 533 exit(EXIT_FAILURE); 534 } 535 if (qemu_strtoi(s, &s, 10, &hsig) || *s++ != ' ') { 536 fprintf(stderr, "Malformed host signal in QEMU_RTSIG_MAP\n"); 537 exit(EXIT_FAILURE); 538 } 539 if (qemu_strtoi(s, &s, 10, &count) || (*s && *s != ',')) { 540 fprintf(stderr, "Malformed signal count in QEMU_RTSIG_MAP\n"); 541 exit(EXIT_FAILURE); 542 } 543 544 for (i = 0; i < count; i++, tsig++, hsig++) { 545 if (tsig < TARGET_SIGRTMIN || tsig > TARGET_NSIG) { 546 fprintf(stderr, "%d is not a target rt signal\n", tsig); 547 exit(EXIT_FAILURE); 548 } 549 if (hsig < SIGRTMIN || hsig > SIGRTMAX) { 550 fprintf(stderr, "%d is not a host rt signal\n", hsig); 551 exit(EXIT_FAILURE); 552 } 553 if (host_to_target_signal_table[hsig]) { 554 fprintf(stderr, "%d already maps %d\n", 555 hsig, host_to_target_signal_table[hsig]); 556 exit(EXIT_FAILURE); 557 } 558 host_to_target_signal_table[hsig] = tsig; 559 } 560 561 if (*s) { 562 s++; 563 } else { 564 break; 565 } 566 } 567 } else { 568 /* 569 * Default host-to-target RT signal mapping. 570 * 571 * Signals are supported starting from TARGET_SIGRTMIN and going up 572 * until we run out of host realtime signals. Glibc uses the lower 2 573 * RT signals and (hopefully) nobody uses the upper ones. 574 * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32). 575 * To fix this properly we would need to do manual signal delivery 576 * multiplexed over a single host signal. 577 * Attempts for configure "missing" signals via sigaction will be 578 * silently ignored. 579 * 580 * Reserve one signal for internal usage (see below). 581 */ 582 583 hsig = SIGRTMIN + 1; 584 for (tsig = TARGET_SIGRTMIN; 585 hsig <= SIGRTMAX && tsig <= TARGET_NSIG; 586 hsig++, tsig++) { 587 host_to_target_signal_table[hsig] = tsig; 588 } 589 } 590 591 /* 592 * Remap the target SIGABRT, so that we can distinguish host abort 593 * from guest abort. When the guest registers a signal handler or 594 * calls raise(SIGABRT), the host will raise SIG_RTn. If the guest 595 * arrives at dump_core_and_abort(), we will map back to host SIGABRT 596 * so that the parent (native or emulated) sees the correct signal. 597 * Finally, also map host to guest SIGABRT so that the emulated 598 * parent sees the correct mapping from wait status. 599 */ 600 601 host_to_target_signal_table[SIGABRT] = 0; 602 for (hsig = SIGRTMIN; hsig <= SIGRTMAX; hsig++) { 603 if (!host_to_target_signal_table[hsig]) { 604 host_to_target_signal_table[hsig] = TARGET_SIGABRT; 605 break; 606 } 607 } 608 if (hsig > SIGRTMAX) { 609 fprintf(stderr, "No rt signals left for SIGABRT mapping\n"); 610 exit(EXIT_FAILURE); 611 } 612 613 /* Invert the mapping that has already been assigned. */ 614 for (hsig = 1; hsig < _NSIG; hsig++) { 615 tsig = host_to_target_signal_table[hsig]; 616 if (tsig) { 617 if (target_to_host_signal_table[tsig]) { 618 fprintf(stderr, "%d is already mapped to %d\n", 619 tsig, target_to_host_signal_table[tsig]); 620 exit(EXIT_FAILURE); 621 } 622 target_to_host_signal_table[tsig] = hsig; 623 } 624 } 625 626 host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT; 627 628 /* Map everything else out-of-bounds. */ 629 for (hsig = 1; hsig < _NSIG; hsig++) { 630 if (host_to_target_signal_table[hsig] == 0) { 631 host_to_target_signal_table[hsig] = TARGET_NSIG + 1; 632 } 633 } 634 for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) { 635 if (target_to_host_signal_table[tsig] == 0) { 636 target_to_host_signal_table[tsig] = _NSIG; 637 count++; 638 } 639 } 640 641 trace_signal_table_init(count); 642 } 643 644 void signal_init(const char *rtsig_map) 645 { 646 TaskState *ts = get_task_state(thread_cpu); 647 struct sigaction act, oact; 648 649 /* initialize signal conversion tables */ 650 signal_table_init(rtsig_map); 651 652 /* Set the signal mask from the host mask. */ 653 sigprocmask(0, 0, &ts->signal_mask); 654 655 sigfillset(&act.sa_mask); 656 act.sa_flags = SA_SIGINFO; 657 act.sa_sigaction = host_signal_handler; 658 659 /* 660 * A parent process may configure ignored signals, but all other 661 * signals are default. For any target signals that have no host 662 * mapping, set to ignore. For all core_dump_signal, install our 663 * host signal handler so that we may invoke dump_core_and_abort. 664 * This includes SIGSEGV and SIGBUS, which are also need our signal 665 * handler for paging and exceptions. 666 */ 667 for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) { 668 int hsig = target_to_host_signal(tsig); 669 abi_ptr thand = TARGET_SIG_IGN; 670 671 if (hsig >= _NSIG) { 672 continue; 673 } 674 675 /* As we force remap SIGABRT, cannot probe and install in one step. */ 676 if (tsig == TARGET_SIGABRT) { 677 sigaction(SIGABRT, NULL, &oact); 678 sigaction(hsig, &act, NULL); 679 } else { 680 struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL; 681 sigaction(hsig, iact, &oact); 682 } 683 684 if (oact.sa_sigaction != (void *)SIG_IGN) { 685 thand = TARGET_SIG_DFL; 686 } 687 sigact_table[tsig - 1]._sa_handler = thand; 688 } 689 } 690 691 /* Force a synchronously taken signal. The kernel force_sig() function 692 * also forces the signal to "not blocked, not ignored", but for QEMU 693 * that work is done in process_pending_signals(). 694 */ 695 void force_sig(int sig) 696 { 697 CPUState *cpu = thread_cpu; 698 target_siginfo_t info = {}; 699 700 info.si_signo = sig; 701 info.si_errno = 0; 702 info.si_code = TARGET_SI_KERNEL; 703 info._sifields._kill._pid = 0; 704 info._sifields._kill._uid = 0; 705 queue_signal(cpu_env(cpu), info.si_signo, QEMU_SI_KILL, &info); 706 } 707 708 /* 709 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 710 * 'force' part is handled in process_pending_signals(). 711 */ 712 void force_sig_fault(int sig, int code, abi_ulong addr) 713 { 714 CPUState *cpu = thread_cpu; 715 target_siginfo_t info = {}; 716 717 info.si_signo = sig; 718 info.si_errno = 0; 719 info.si_code = code; 720 info._sifields._sigfault._addr = addr; 721 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info); 722 } 723 724 /* Force a SIGSEGV if we couldn't write to memory trying to set 725 * up the signal frame. oldsig is the signal we were trying to handle 726 * at the point of failure. 727 */ 728 #if !defined(TARGET_RISCV) 729 void force_sigsegv(int oldsig) 730 { 731 if (oldsig == SIGSEGV) { 732 /* Make sure we don't try to deliver the signal again; this will 733 * end up with handle_pending_signal() calling dump_core_and_abort(). 734 */ 735 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; 736 } 737 force_sig(TARGET_SIGSEGV); 738 } 739 #endif 740 741 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 742 MMUAccessType access_type, bool maperr, uintptr_t ra) 743 { 744 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 745 746 if (tcg_ops->record_sigsegv) { 747 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 748 } 749 750 force_sig_fault(TARGET_SIGSEGV, 751 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 752 addr); 753 cpu->exception_index = EXCP_INTERRUPT; 754 cpu_loop_exit_restore(cpu, ra); 755 } 756 757 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 758 MMUAccessType access_type, uintptr_t ra) 759 { 760 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 761 762 if (tcg_ops->record_sigbus) { 763 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 764 } 765 766 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 767 cpu->exception_index = EXCP_INTERRUPT; 768 cpu_loop_exit_restore(cpu, ra); 769 } 770 771 /* abort execution with signal */ 772 static G_NORETURN 773 void die_with_signal(int host_sig) 774 { 775 struct sigaction act = { 776 .sa_handler = SIG_DFL, 777 }; 778 779 /* 780 * The proper exit code for dying from an uncaught signal is -<signal>. 781 * The kernel doesn't allow exit() or _exit() to pass a negative value. 782 * To get the proper exit code we need to actually die from an uncaught 783 * signal. Here the default signal handler is installed, we send 784 * the signal and we wait for it to arrive. 785 */ 786 sigfillset(&act.sa_mask); 787 sigaction(host_sig, &act, NULL); 788 789 kill(getpid(), host_sig); 790 791 /* Make sure the signal isn't masked (reusing the mask inside of act). */ 792 sigdelset(&act.sa_mask, host_sig); 793 sigsuspend(&act.sa_mask); 794 795 /* unreachable */ 796 _exit(EXIT_FAILURE); 797 } 798 799 static G_NORETURN 800 void dump_core_and_abort(CPUArchState *env, int target_sig) 801 { 802 CPUState *cpu = env_cpu(env); 803 TaskState *ts = get_task_state(cpu); 804 int host_sig, core_dumped = 0; 805 806 /* On exit, undo the remapping of SIGABRT. */ 807 if (target_sig == TARGET_SIGABRT) { 808 host_sig = SIGABRT; 809 } else { 810 host_sig = target_to_host_signal(target_sig); 811 } 812 trace_user_dump_core_and_abort(env, target_sig, host_sig); 813 gdb_signalled(env, target_sig); 814 815 /* dump core if supported by target binary format */ 816 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 817 stop_all_tasks(); 818 core_dumped = 819 ((*ts->bprm->core_dump)(target_sig, env) == 0); 820 } 821 if (core_dumped) { 822 /* we already dumped the core of target process, we don't want 823 * a coredump of qemu itself */ 824 struct rlimit nodump; 825 getrlimit(RLIMIT_CORE, &nodump); 826 nodump.rlim_cur=0; 827 setrlimit(RLIMIT_CORE, &nodump); 828 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", 829 target_sig, strsignal(host_sig), "core dumped" ); 830 } 831 832 preexit_cleanup(env, 128 + target_sig); 833 die_with_signal(host_sig); 834 } 835 836 /* queue a signal so that it will be send to the virtual CPU as soon 837 as possible */ 838 void queue_signal(CPUArchState *env, int sig, int si_type, 839 target_siginfo_t *info) 840 { 841 CPUState *cpu = env_cpu(env); 842 TaskState *ts = get_task_state(cpu); 843 844 trace_user_queue_signal(env, sig); 845 846 info->si_code = deposit32(info->si_code, 16, 16, si_type); 847 848 ts->sync_signal.info = *info; 849 ts->sync_signal.pending = sig; 850 /* signal that a new signal is pending */ 851 qatomic_set(&ts->signal_pending, 1); 852 } 853 854 855 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 856 static inline void rewind_if_in_safe_syscall(void *puc) 857 { 858 host_sigcontext *uc = (host_sigcontext *)puc; 859 uintptr_t pcreg = host_signal_pc(uc); 860 861 if (pcreg > (uintptr_t)safe_syscall_start 862 && pcreg < (uintptr_t)safe_syscall_end) { 863 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 864 } 865 } 866 867 static G_NORETURN 868 void die_from_signal(siginfo_t *info) 869 { 870 char sigbuf[4], codebuf[12]; 871 const char *sig, *code = NULL; 872 873 switch (info->si_signo) { 874 case SIGSEGV: 875 sig = "SEGV"; 876 switch (info->si_code) { 877 case SEGV_MAPERR: 878 code = "MAPERR"; 879 break; 880 case SEGV_ACCERR: 881 code = "ACCERR"; 882 break; 883 } 884 break; 885 case SIGBUS: 886 sig = "BUS"; 887 switch (info->si_code) { 888 case BUS_ADRALN: 889 code = "ADRALN"; 890 break; 891 case BUS_ADRERR: 892 code = "ADRERR"; 893 break; 894 } 895 break; 896 case SIGILL: 897 sig = "ILL"; 898 switch (info->si_code) { 899 case ILL_ILLOPC: 900 code = "ILLOPC"; 901 break; 902 case ILL_ILLOPN: 903 code = "ILLOPN"; 904 break; 905 case ILL_ILLADR: 906 code = "ILLADR"; 907 break; 908 case ILL_PRVOPC: 909 code = "PRVOPC"; 910 break; 911 case ILL_PRVREG: 912 code = "PRVREG"; 913 break; 914 case ILL_COPROC: 915 code = "COPROC"; 916 break; 917 } 918 break; 919 case SIGFPE: 920 sig = "FPE"; 921 switch (info->si_code) { 922 case FPE_INTDIV: 923 code = "INTDIV"; 924 break; 925 case FPE_INTOVF: 926 code = "INTOVF"; 927 break; 928 } 929 break; 930 case SIGTRAP: 931 sig = "TRAP"; 932 break; 933 default: 934 snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo); 935 sig = sigbuf; 936 break; 937 } 938 if (code == NULL) { 939 snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code); 940 code = codebuf; 941 } 942 943 error_report("QEMU internal SIG%s {code=%s, addr=%p}", 944 sig, code, info->si_addr); 945 die_with_signal(info->si_signo); 946 } 947 948 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info, 949 host_sigcontext *uc) 950 { 951 uintptr_t host_addr = (uintptr_t)info->si_addr; 952 /* 953 * Convert forcefully to guest address space: addresses outside 954 * reserved_va are still valid to report via SEGV_MAPERR. 955 */ 956 bool is_valid = h2g_valid(host_addr); 957 abi_ptr guest_addr = h2g_nocheck(host_addr); 958 uintptr_t pc = host_signal_pc(uc); 959 bool is_write = host_signal_write(info, uc); 960 MMUAccessType access_type = adjust_signal_pc(&pc, is_write); 961 bool maperr; 962 963 /* If this was a write to a TB protected page, restart. */ 964 if (is_write 965 && is_valid 966 && info->si_code == SEGV_ACCERR 967 && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc), 968 pc, guest_addr)) { 969 return; 970 } 971 972 /* 973 * If the access was not on behalf of the guest, within the executable 974 * mapping of the generated code buffer, then it is a host bug. 975 */ 976 if (access_type != MMU_INST_FETCH 977 && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) { 978 die_from_signal(info); 979 } 980 981 maperr = true; 982 if (is_valid && info->si_code == SEGV_ACCERR) { 983 /* 984 * With reserved_va, the whole address space is PROT_NONE, 985 * which means that we may get ACCERR when we want MAPERR. 986 */ 987 if (page_get_flags(guest_addr) & PAGE_VALID) { 988 maperr = false; 989 } else { 990 info->si_code = SEGV_MAPERR; 991 } 992 } 993 994 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL); 995 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 996 } 997 998 static uintptr_t host_sigbus_handler(CPUState *cpu, siginfo_t *info, 999 host_sigcontext *uc) 1000 { 1001 uintptr_t pc = host_signal_pc(uc); 1002 bool is_write = host_signal_write(info, uc); 1003 MMUAccessType access_type = adjust_signal_pc(&pc, is_write); 1004 1005 /* 1006 * If the access was not on behalf of the guest, within the executable 1007 * mapping of the generated code buffer, then it is a host bug. 1008 */ 1009 if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) { 1010 die_from_signal(info); 1011 } 1012 1013 if (info->si_code == BUS_ADRALN) { 1014 uintptr_t host_addr = (uintptr_t)info->si_addr; 1015 abi_ptr guest_addr = h2g_nocheck(host_addr); 1016 1017 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL); 1018 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 1019 } 1020 return pc; 1021 } 1022 1023 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 1024 { 1025 CPUState *cpu = thread_cpu; 1026 CPUArchState *env = cpu_env(cpu); 1027 TaskState *ts = get_task_state(cpu); 1028 target_siginfo_t tinfo; 1029 host_sigcontext *uc = puc; 1030 struct emulated_sigtable *k; 1031 int guest_sig; 1032 uintptr_t pc = 0; 1033 bool sync_sig = false; 1034 void *sigmask; 1035 1036 /* 1037 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 1038 * handling wrt signal blocking and unwinding. Non-spoofed SIGILL, 1039 * SIGFPE, SIGTRAP are always host bugs. 1040 */ 1041 if (info->si_code > 0) { 1042 switch (host_sig) { 1043 case SIGSEGV: 1044 /* Only returns on handle_sigsegv_accerr_write success. */ 1045 host_sigsegv_handler(cpu, info, uc); 1046 return; 1047 case SIGBUS: 1048 pc = host_sigbus_handler(cpu, info, uc); 1049 sync_sig = true; 1050 break; 1051 case SIGILL: 1052 case SIGFPE: 1053 case SIGTRAP: 1054 die_from_signal(info); 1055 } 1056 } 1057 1058 /* get target signal number */ 1059 guest_sig = host_to_target_signal(host_sig); 1060 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 1061 return; 1062 } 1063 trace_user_host_signal(env, host_sig, guest_sig); 1064 1065 host_to_target_siginfo_noswap(&tinfo, info); 1066 k = &ts->sigtab[guest_sig - 1]; 1067 k->info = tinfo; 1068 k->pending = guest_sig; 1069 ts->signal_pending = 1; 1070 1071 /* 1072 * For synchronous signals, unwind the cpu state to the faulting 1073 * insn and then exit back to the main loop so that the signal 1074 * is delivered immediately. 1075 */ 1076 if (sync_sig) { 1077 cpu->exception_index = EXCP_INTERRUPT; 1078 cpu_loop_exit_restore(cpu, pc); 1079 } 1080 1081 rewind_if_in_safe_syscall(puc); 1082 1083 /* 1084 * Block host signals until target signal handler entered. We 1085 * can't block SIGSEGV or SIGBUS while we're executing guest 1086 * code in case the guest code provokes one in the window between 1087 * now and it getting out to the main loop. Signals will be 1088 * unblocked again in process_pending_signals(). 1089 * 1090 * WARNING: we cannot use sigfillset() here because the sigmask 1091 * field is a kernel sigset_t, which is much smaller than the 1092 * libc sigset_t which sigfillset() operates on. Using sigfillset() 1093 * would write 0xff bytes off the end of the structure and trash 1094 * data on the struct. 1095 */ 1096 sigmask = host_signal_mask(uc); 1097 memset(sigmask, 0xff, SIGSET_T_SIZE); 1098 sigdelset(sigmask, SIGSEGV); 1099 sigdelset(sigmask, SIGBUS); 1100 1101 /* interrupt the virtual CPU as soon as possible */ 1102 cpu_exit(thread_cpu); 1103 } 1104 1105 /* do_sigaltstack() returns target values and errnos. */ 1106 /* compare linux/kernel/signal.c:do_sigaltstack() */ 1107 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, 1108 CPUArchState *env) 1109 { 1110 target_stack_t oss, *uoss = NULL; 1111 abi_long ret = -TARGET_EFAULT; 1112 1113 if (uoss_addr) { 1114 /* Verify writability now, but do not alter user memory yet. */ 1115 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { 1116 goto out; 1117 } 1118 target_save_altstack(&oss, env); 1119 } 1120 1121 if (uss_addr) { 1122 target_stack_t *uss; 1123 1124 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 1125 goto out; 1126 } 1127 ret = target_restore_altstack(uss, env); 1128 if (ret) { 1129 goto out; 1130 } 1131 } 1132 1133 if (uoss_addr) { 1134 memcpy(uoss, &oss, sizeof(oss)); 1135 unlock_user_struct(uoss, uoss_addr, 1); 1136 uoss = NULL; 1137 } 1138 ret = 0; 1139 1140 out: 1141 if (uoss) { 1142 unlock_user_struct(uoss, uoss_addr, 0); 1143 } 1144 return ret; 1145 } 1146 1147 /* do_sigaction() return target values and host errnos */ 1148 int do_sigaction(int sig, const struct target_sigaction *act, 1149 struct target_sigaction *oact, abi_ulong ka_restorer) 1150 { 1151 struct target_sigaction *k; 1152 int host_sig; 1153 int ret = 0; 1154 1155 trace_signal_do_sigaction_guest(sig, TARGET_NSIG); 1156 1157 if (sig < 1 || sig > TARGET_NSIG) { 1158 return -TARGET_EINVAL; 1159 } 1160 1161 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { 1162 return -TARGET_EINVAL; 1163 } 1164 1165 if (block_signals()) { 1166 return -QEMU_ERESTARTSYS; 1167 } 1168 1169 k = &sigact_table[sig - 1]; 1170 if (oact) { 1171 __put_user(k->_sa_handler, &oact->_sa_handler); 1172 __put_user(k->sa_flags, &oact->sa_flags); 1173 #ifdef TARGET_ARCH_HAS_SA_RESTORER 1174 __put_user(k->sa_restorer, &oact->sa_restorer); 1175 #endif 1176 /* Not swapped. */ 1177 oact->sa_mask = k->sa_mask; 1178 } 1179 if (act) { 1180 __get_user(k->_sa_handler, &act->_sa_handler); 1181 __get_user(k->sa_flags, &act->sa_flags); 1182 #ifdef TARGET_ARCH_HAS_SA_RESTORER 1183 __get_user(k->sa_restorer, &act->sa_restorer); 1184 #endif 1185 #ifdef TARGET_ARCH_HAS_KA_RESTORER 1186 k->ka_restorer = ka_restorer; 1187 #endif 1188 /* To be swapped in target_to_host_sigset. */ 1189 k->sa_mask = act->sa_mask; 1190 1191 /* we update the host linux signal state */ 1192 host_sig = target_to_host_signal(sig); 1193 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); 1194 if (host_sig > SIGRTMAX) { 1195 /* we don't have enough host signals to map all target signals */ 1196 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", 1197 sig); 1198 /* 1199 * we don't return an error here because some programs try to 1200 * register an handler for all possible rt signals even if they 1201 * don't need it. 1202 * An error here can abort them whereas there can be no problem 1203 * to not have the signal available later. 1204 * This is the case for golang, 1205 * See https://github.com/golang/go/issues/33746 1206 * So we silently ignore the error. 1207 */ 1208 return 0; 1209 } 1210 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 1211 struct sigaction act1; 1212 1213 sigfillset(&act1.sa_mask); 1214 act1.sa_flags = SA_SIGINFO; 1215 if (k->_sa_handler == TARGET_SIG_IGN) { 1216 /* 1217 * It is important to update the host kernel signal ignore 1218 * state to avoid getting unexpected interrupted syscalls. 1219 */ 1220 act1.sa_sigaction = (void *)SIG_IGN; 1221 } else if (k->_sa_handler == TARGET_SIG_DFL) { 1222 if (core_dump_signal(sig)) { 1223 act1.sa_sigaction = host_signal_handler; 1224 } else { 1225 act1.sa_sigaction = (void *)SIG_DFL; 1226 } 1227 } else { 1228 act1.sa_sigaction = host_signal_handler; 1229 if (k->sa_flags & TARGET_SA_RESTART) { 1230 act1.sa_flags |= SA_RESTART; 1231 } 1232 } 1233 ret = sigaction(host_sig, &act1, NULL); 1234 } 1235 } 1236 return ret; 1237 } 1238 1239 static void handle_pending_signal(CPUArchState *cpu_env, int sig, 1240 struct emulated_sigtable *k) 1241 { 1242 CPUState *cpu = env_cpu(cpu_env); 1243 abi_ulong handler; 1244 sigset_t set; 1245 target_siginfo_t unswapped; 1246 target_sigset_t target_old_set; 1247 struct target_sigaction *sa; 1248 TaskState *ts = get_task_state(cpu); 1249 1250 trace_user_handle_signal(cpu_env, sig); 1251 /* dequeue signal */ 1252 k->pending = 0; 1253 1254 /* 1255 * Writes out siginfo values byteswapped, accordingly to the target. 1256 * It also cleans the si_type from si_code making it correct for 1257 * the target. We must hold on to the original unswapped copy for 1258 * strace below, because si_type is still required there. 1259 */ 1260 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 1261 unswapped = k->info; 1262 } 1263 tswap_siginfo(&k->info, &k->info); 1264 1265 sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info)); 1266 if (!sig) { 1267 sa = NULL; 1268 handler = TARGET_SIG_IGN; 1269 } else { 1270 sa = &sigact_table[sig - 1]; 1271 handler = sa->_sa_handler; 1272 } 1273 1274 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 1275 print_taken_signal(sig, &unswapped); 1276 } 1277 1278 if (handler == TARGET_SIG_DFL) { 1279 /* default handler : ignore some signal. The other are job control or fatal */ 1280 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { 1281 kill(getpid(),SIGSTOP); 1282 } else if (sig != TARGET_SIGCHLD && 1283 sig != TARGET_SIGURG && 1284 sig != TARGET_SIGWINCH && 1285 sig != TARGET_SIGCONT) { 1286 dump_core_and_abort(cpu_env, sig); 1287 } 1288 } else if (handler == TARGET_SIG_IGN) { 1289 /* ignore sig */ 1290 } else if (handler == TARGET_SIG_ERR) { 1291 dump_core_and_abort(cpu_env, sig); 1292 } else { 1293 /* compute the blocked signals during the handler execution */ 1294 sigset_t *blocked_set; 1295 1296 target_to_host_sigset(&set, &sa->sa_mask); 1297 /* SA_NODEFER indicates that the current signal should not be 1298 blocked during the handler */ 1299 if (!(sa->sa_flags & TARGET_SA_NODEFER)) 1300 sigaddset(&set, target_to_host_signal(sig)); 1301 1302 /* save the previous blocked signal state to restore it at the 1303 end of the signal execution (see do_sigreturn) */ 1304 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 1305 1306 /* block signals in the handler */ 1307 blocked_set = ts->in_sigsuspend ? 1308 &ts->sigsuspend_mask : &ts->signal_mask; 1309 sigorset(&ts->signal_mask, blocked_set, &set); 1310 ts->in_sigsuspend = 0; 1311 1312 /* if the CPU is in VM86 mode, we restore the 32 bit values */ 1313 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 1314 { 1315 CPUX86State *env = cpu_env; 1316 if (env->eflags & VM_MASK) 1317 save_v86_state(env); 1318 } 1319 #endif 1320 /* prepare the stack frame of the virtual CPU */ 1321 #if defined(TARGET_ARCH_HAS_SETUP_FRAME) 1322 if (sa->sa_flags & TARGET_SA_SIGINFO) { 1323 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1324 } else { 1325 setup_frame(sig, sa, &target_old_set, cpu_env); 1326 } 1327 #else 1328 /* These targets do not have traditional signals. */ 1329 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1330 #endif 1331 if (sa->sa_flags & TARGET_SA_RESETHAND) { 1332 sa->_sa_handler = TARGET_SIG_DFL; 1333 } 1334 } 1335 } 1336 1337 void process_pending_signals(CPUArchState *cpu_env) 1338 { 1339 CPUState *cpu = env_cpu(cpu_env); 1340 int sig; 1341 TaskState *ts = get_task_state(cpu); 1342 sigset_t set; 1343 sigset_t *blocked_set; 1344 1345 while (qatomic_read(&ts->signal_pending)) { 1346 sigfillset(&set); 1347 sigprocmask(SIG_SETMASK, &set, 0); 1348 1349 restart_scan: 1350 sig = ts->sync_signal.pending; 1351 if (sig) { 1352 /* Synchronous signals are forced, 1353 * see force_sig_info() and callers in Linux 1354 * Note that not all of our queue_signal() calls in QEMU correspond 1355 * to force_sig_info() calls in Linux (some are send_sig_info()). 1356 * However it seems like a kernel bug to me to allow the process 1357 * to block a synchronous signal since it could then just end up 1358 * looping round and round indefinitely. 1359 */ 1360 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) 1361 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 1362 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); 1363 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 1364 } 1365 1366 handle_pending_signal(cpu_env, sig, &ts->sync_signal); 1367 } 1368 1369 for (sig = 1; sig <= TARGET_NSIG; sig++) { 1370 blocked_set = ts->in_sigsuspend ? 1371 &ts->sigsuspend_mask : &ts->signal_mask; 1372 1373 if (ts->sigtab[sig - 1].pending && 1374 (!sigismember(blocked_set, 1375 target_to_host_signal_table[sig]))) { 1376 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); 1377 /* Restart scan from the beginning, as handle_pending_signal 1378 * might have resulted in a new synchronous signal (eg SIGSEGV). 1379 */ 1380 goto restart_scan; 1381 } 1382 } 1383 1384 /* if no signal is pending, unblock signals and recheck (the act 1385 * of unblocking might cause us to take another host signal which 1386 * will set signal_pending again). 1387 */ 1388 qatomic_set(&ts->signal_pending, 0); 1389 ts->in_sigsuspend = 0; 1390 set = ts->signal_mask; 1391 sigdelset(&set, SIGSEGV); 1392 sigdelset(&set, SIGBUS); 1393 sigprocmask(SIG_SETMASK, &set, 0); 1394 } 1395 ts->in_sigsuspend = 0; 1396 } 1397 1398 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset, 1399 target_ulong sigsize) 1400 { 1401 TaskState *ts = get_task_state(thread_cpu); 1402 sigset_t *host_set = &ts->sigsuspend_mask; 1403 target_sigset_t *target_sigset; 1404 1405 if (sigsize != sizeof(*target_sigset)) { 1406 /* Like the kernel, we enforce correct size sigsets */ 1407 return -TARGET_EINVAL; 1408 } 1409 1410 target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1); 1411 if (!target_sigset) { 1412 return -TARGET_EFAULT; 1413 } 1414 target_to_host_sigset(host_set, target_sigset); 1415 unlock_user(target_sigset, sigset, 0); 1416 1417 *pset = host_set; 1418 return 0; 1419 } 1420