1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include "exec/gdbstub.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 24 #include <sys/ucontext.h> 25 #include <sys/resource.h> 26 27 #include "qemu.h" 28 #include "user-internals.h" 29 #include "strace.h" 30 #include "loader.h" 31 #include "trace.h" 32 #include "signal-common.h" 33 #include "host-signal.h" 34 #include "user/safe-syscall.h" 35 36 static struct target_sigaction sigact_table[TARGET_NSIG]; 37 38 static void host_signal_handler(int host_signum, siginfo_t *info, 39 void *puc); 40 41 /* Fallback addresses into sigtramp page. */ 42 abi_ulong default_sigreturn; 43 abi_ulong default_rt_sigreturn; 44 45 /* 46 * System includes define _NSIG as SIGRTMAX + 1, 47 * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX 48 * and the first signal is SIGHUP defined as 1 49 * Signal number 0 is reserved for use as kill(pid, 0), to test whether 50 * a process exists without sending it a signal. 51 */ 52 #ifdef __SIGRTMAX 53 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); 54 #endif 55 static uint8_t host_to_target_signal_table[_NSIG] = { 56 [SIGHUP] = TARGET_SIGHUP, 57 [SIGINT] = TARGET_SIGINT, 58 [SIGQUIT] = TARGET_SIGQUIT, 59 [SIGILL] = TARGET_SIGILL, 60 [SIGTRAP] = TARGET_SIGTRAP, 61 [SIGABRT] = TARGET_SIGABRT, 62 /* [SIGIOT] = TARGET_SIGIOT,*/ 63 [SIGBUS] = TARGET_SIGBUS, 64 [SIGFPE] = TARGET_SIGFPE, 65 [SIGKILL] = TARGET_SIGKILL, 66 [SIGUSR1] = TARGET_SIGUSR1, 67 [SIGSEGV] = TARGET_SIGSEGV, 68 [SIGUSR2] = TARGET_SIGUSR2, 69 [SIGPIPE] = TARGET_SIGPIPE, 70 [SIGALRM] = TARGET_SIGALRM, 71 [SIGTERM] = TARGET_SIGTERM, 72 #ifdef SIGSTKFLT 73 [SIGSTKFLT] = TARGET_SIGSTKFLT, 74 #endif 75 [SIGCHLD] = TARGET_SIGCHLD, 76 [SIGCONT] = TARGET_SIGCONT, 77 [SIGSTOP] = TARGET_SIGSTOP, 78 [SIGTSTP] = TARGET_SIGTSTP, 79 [SIGTTIN] = TARGET_SIGTTIN, 80 [SIGTTOU] = TARGET_SIGTTOU, 81 [SIGURG] = TARGET_SIGURG, 82 [SIGXCPU] = TARGET_SIGXCPU, 83 [SIGXFSZ] = TARGET_SIGXFSZ, 84 [SIGVTALRM] = TARGET_SIGVTALRM, 85 [SIGPROF] = TARGET_SIGPROF, 86 [SIGWINCH] = TARGET_SIGWINCH, 87 [SIGIO] = TARGET_SIGIO, 88 [SIGPWR] = TARGET_SIGPWR, 89 [SIGSYS] = TARGET_SIGSYS, 90 /* next signals stay the same */ 91 }; 92 93 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; 94 95 /* valid sig is between 1 and _NSIG - 1 */ 96 int host_to_target_signal(int sig) 97 { 98 if (sig < 1 || sig >= _NSIG) { 99 return sig; 100 } 101 return host_to_target_signal_table[sig]; 102 } 103 104 /* valid sig is between 1 and TARGET_NSIG */ 105 int target_to_host_signal(int sig) 106 { 107 if (sig < 1 || sig > TARGET_NSIG) { 108 return sig; 109 } 110 return target_to_host_signal_table[sig]; 111 } 112 113 static inline void target_sigaddset(target_sigset_t *set, int signum) 114 { 115 signum--; 116 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 117 set->sig[signum / TARGET_NSIG_BPW] |= mask; 118 } 119 120 static inline int target_sigismember(const target_sigset_t *set, int signum) 121 { 122 signum--; 123 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 124 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); 125 } 126 127 void host_to_target_sigset_internal(target_sigset_t *d, 128 const sigset_t *s) 129 { 130 int host_sig, target_sig; 131 target_sigemptyset(d); 132 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 133 target_sig = host_to_target_signal(host_sig); 134 if (target_sig < 1 || target_sig > TARGET_NSIG) { 135 continue; 136 } 137 if (sigismember(s, host_sig)) { 138 target_sigaddset(d, target_sig); 139 } 140 } 141 } 142 143 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 144 { 145 target_sigset_t d1; 146 int i; 147 148 host_to_target_sigset_internal(&d1, s); 149 for(i = 0;i < TARGET_NSIG_WORDS; i++) 150 d->sig[i] = tswapal(d1.sig[i]); 151 } 152 153 void target_to_host_sigset_internal(sigset_t *d, 154 const target_sigset_t *s) 155 { 156 int host_sig, target_sig; 157 sigemptyset(d); 158 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 159 host_sig = target_to_host_signal(target_sig); 160 if (host_sig < 1 || host_sig >= _NSIG) { 161 continue; 162 } 163 if (target_sigismember(s, target_sig)) { 164 sigaddset(d, host_sig); 165 } 166 } 167 } 168 169 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 170 { 171 target_sigset_t s1; 172 int i; 173 174 for(i = 0;i < TARGET_NSIG_WORDS; i++) 175 s1.sig[i] = tswapal(s->sig[i]); 176 target_to_host_sigset_internal(d, &s1); 177 } 178 179 void host_to_target_old_sigset(abi_ulong *old_sigset, 180 const sigset_t *sigset) 181 { 182 target_sigset_t d; 183 host_to_target_sigset(&d, sigset); 184 *old_sigset = d.sig[0]; 185 } 186 187 void target_to_host_old_sigset(sigset_t *sigset, 188 const abi_ulong *old_sigset) 189 { 190 target_sigset_t d; 191 int i; 192 193 d.sig[0] = *old_sigset; 194 for(i = 1;i < TARGET_NSIG_WORDS; i++) 195 d.sig[i] = 0; 196 target_to_host_sigset(sigset, &d); 197 } 198 199 int block_signals(void) 200 { 201 TaskState *ts = (TaskState *)thread_cpu->opaque; 202 sigset_t set; 203 204 /* It's OK to block everything including SIGSEGV, because we won't 205 * run any further guest code before unblocking signals in 206 * process_pending_signals(). 207 */ 208 sigfillset(&set); 209 sigprocmask(SIG_SETMASK, &set, 0); 210 211 return qatomic_xchg(&ts->signal_pending, 1); 212 } 213 214 /* Wrapper for sigprocmask function 215 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset 216 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if 217 * a signal was already pending and the syscall must be restarted, or 218 * 0 on success. 219 * If set is NULL, this is guaranteed not to fail. 220 */ 221 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) 222 { 223 TaskState *ts = (TaskState *)thread_cpu->opaque; 224 225 if (oldset) { 226 *oldset = ts->signal_mask; 227 } 228 229 if (set) { 230 int i; 231 232 if (block_signals()) { 233 return -QEMU_ERESTARTSYS; 234 } 235 236 switch (how) { 237 case SIG_BLOCK: 238 sigorset(&ts->signal_mask, &ts->signal_mask, set); 239 break; 240 case SIG_UNBLOCK: 241 for (i = 1; i <= NSIG; ++i) { 242 if (sigismember(set, i)) { 243 sigdelset(&ts->signal_mask, i); 244 } 245 } 246 break; 247 case SIG_SETMASK: 248 ts->signal_mask = *set; 249 break; 250 default: 251 g_assert_not_reached(); 252 } 253 254 /* Silently ignore attempts to change blocking status of KILL or STOP */ 255 sigdelset(&ts->signal_mask, SIGKILL); 256 sigdelset(&ts->signal_mask, SIGSTOP); 257 } 258 return 0; 259 } 260 261 /* Just set the guest's signal mask to the specified value; the 262 * caller is assumed to have called block_signals() already. 263 */ 264 void set_sigmask(const sigset_t *set) 265 { 266 TaskState *ts = (TaskState *)thread_cpu->opaque; 267 268 ts->signal_mask = *set; 269 } 270 271 /* sigaltstack management */ 272 273 int on_sig_stack(unsigned long sp) 274 { 275 TaskState *ts = (TaskState *)thread_cpu->opaque; 276 277 return (sp - ts->sigaltstack_used.ss_sp 278 < ts->sigaltstack_used.ss_size); 279 } 280 281 int sas_ss_flags(unsigned long sp) 282 { 283 TaskState *ts = (TaskState *)thread_cpu->opaque; 284 285 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE 286 : on_sig_stack(sp) ? SS_ONSTACK : 0); 287 } 288 289 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) 290 { 291 /* 292 * This is the X/Open sanctioned signal stack switching. 293 */ 294 TaskState *ts = (TaskState *)thread_cpu->opaque; 295 296 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 297 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 298 } 299 return sp; 300 } 301 302 void target_save_altstack(target_stack_t *uss, CPUArchState *env) 303 { 304 TaskState *ts = (TaskState *)thread_cpu->opaque; 305 306 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); 307 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); 308 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); 309 } 310 311 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) 312 { 313 TaskState *ts = (TaskState *)thread_cpu->opaque; 314 size_t minstacksize = TARGET_MINSIGSTKSZ; 315 target_stack_t ss; 316 317 #if defined(TARGET_PPC64) 318 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ 319 struct image_info *image = ts->info; 320 if (get_ppc64_abi(image) > 1) { 321 minstacksize = 4096; 322 } 323 #endif 324 325 __get_user(ss.ss_sp, &uss->ss_sp); 326 __get_user(ss.ss_size, &uss->ss_size); 327 __get_user(ss.ss_flags, &uss->ss_flags); 328 329 if (on_sig_stack(get_sp_from_cpustate(env))) { 330 return -TARGET_EPERM; 331 } 332 333 switch (ss.ss_flags) { 334 default: 335 return -TARGET_EINVAL; 336 337 case TARGET_SS_DISABLE: 338 ss.ss_size = 0; 339 ss.ss_sp = 0; 340 break; 341 342 case TARGET_SS_ONSTACK: 343 case 0: 344 if (ss.ss_size < minstacksize) { 345 return -TARGET_ENOMEM; 346 } 347 break; 348 } 349 350 ts->sigaltstack_used.ss_sp = ss.ss_sp; 351 ts->sigaltstack_used.ss_size = ss.ss_size; 352 return 0; 353 } 354 355 /* siginfo conversion */ 356 357 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 358 const siginfo_t *info) 359 { 360 int sig = host_to_target_signal(info->si_signo); 361 int si_code = info->si_code; 362 int si_type; 363 tinfo->si_signo = sig; 364 tinfo->si_errno = 0; 365 tinfo->si_code = info->si_code; 366 367 /* This memset serves two purposes: 368 * (1) ensure we don't leak random junk to the guest later 369 * (2) placate false positives from gcc about fields 370 * being used uninitialized if it chooses to inline both this 371 * function and tswap_siginfo() into host_to_target_siginfo(). 372 */ 373 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); 374 375 /* This is awkward, because we have to use a combination of 376 * the si_code and si_signo to figure out which of the union's 377 * members are valid. (Within the host kernel it is always possible 378 * to tell, but the kernel carefully avoids giving userspace the 379 * high 16 bits of si_code, so we don't have the information to 380 * do this the easy way...) We therefore make our best guess, 381 * bearing in mind that a guest can spoof most of the si_codes 382 * via rt_sigqueueinfo() if it likes. 383 * 384 * Once we have made our guess, we record it in the top 16 bits of 385 * the si_code, so that tswap_siginfo() later can use it. 386 * tswap_siginfo() will strip these top bits out before writing 387 * si_code to the guest (sign-extending the lower bits). 388 */ 389 390 switch (si_code) { 391 case SI_USER: 392 case SI_TKILL: 393 case SI_KERNEL: 394 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. 395 * These are the only unspoofable si_code values. 396 */ 397 tinfo->_sifields._kill._pid = info->si_pid; 398 tinfo->_sifields._kill._uid = info->si_uid; 399 si_type = QEMU_SI_KILL; 400 break; 401 default: 402 /* Everything else is spoofable. Make best guess based on signal */ 403 switch (sig) { 404 case TARGET_SIGCHLD: 405 tinfo->_sifields._sigchld._pid = info->si_pid; 406 tinfo->_sifields._sigchld._uid = info->si_uid; 407 if (si_code == CLD_EXITED) 408 tinfo->_sifields._sigchld._status = info->si_status; 409 else 410 tinfo->_sifields._sigchld._status 411 = host_to_target_signal(info->si_status & 0x7f) 412 | (info->si_status & ~0x7f); 413 tinfo->_sifields._sigchld._utime = info->si_utime; 414 tinfo->_sifields._sigchld._stime = info->si_stime; 415 si_type = QEMU_SI_CHLD; 416 break; 417 case TARGET_SIGIO: 418 tinfo->_sifields._sigpoll._band = info->si_band; 419 tinfo->_sifields._sigpoll._fd = info->si_fd; 420 si_type = QEMU_SI_POLL; 421 break; 422 default: 423 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ 424 tinfo->_sifields._rt._pid = info->si_pid; 425 tinfo->_sifields._rt._uid = info->si_uid; 426 /* XXX: potential problem if 64 bit */ 427 tinfo->_sifields._rt._sigval.sival_ptr 428 = (abi_ulong)(unsigned long)info->si_value.sival_ptr; 429 si_type = QEMU_SI_RT; 430 break; 431 } 432 break; 433 } 434 435 tinfo->si_code = deposit32(si_code, 16, 16, si_type); 436 } 437 438 void tswap_siginfo(target_siginfo_t *tinfo, 439 const target_siginfo_t *info) 440 { 441 int si_type = extract32(info->si_code, 16, 16); 442 int si_code = sextract32(info->si_code, 0, 16); 443 444 __put_user(info->si_signo, &tinfo->si_signo); 445 __put_user(info->si_errno, &tinfo->si_errno); 446 __put_user(si_code, &tinfo->si_code); 447 448 /* We can use our internal marker of which fields in the structure 449 * are valid, rather than duplicating the guesswork of 450 * host_to_target_siginfo_noswap() here. 451 */ 452 switch (si_type) { 453 case QEMU_SI_KILL: 454 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); 455 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); 456 break; 457 case QEMU_SI_TIMER: 458 __put_user(info->_sifields._timer._timer1, 459 &tinfo->_sifields._timer._timer1); 460 __put_user(info->_sifields._timer._timer2, 461 &tinfo->_sifields._timer._timer2); 462 break; 463 case QEMU_SI_POLL: 464 __put_user(info->_sifields._sigpoll._band, 465 &tinfo->_sifields._sigpoll._band); 466 __put_user(info->_sifields._sigpoll._fd, 467 &tinfo->_sifields._sigpoll._fd); 468 break; 469 case QEMU_SI_FAULT: 470 __put_user(info->_sifields._sigfault._addr, 471 &tinfo->_sifields._sigfault._addr); 472 break; 473 case QEMU_SI_CHLD: 474 __put_user(info->_sifields._sigchld._pid, 475 &tinfo->_sifields._sigchld._pid); 476 __put_user(info->_sifields._sigchld._uid, 477 &tinfo->_sifields._sigchld._uid); 478 __put_user(info->_sifields._sigchld._status, 479 &tinfo->_sifields._sigchld._status); 480 __put_user(info->_sifields._sigchld._utime, 481 &tinfo->_sifields._sigchld._utime); 482 __put_user(info->_sifields._sigchld._stime, 483 &tinfo->_sifields._sigchld._stime); 484 break; 485 case QEMU_SI_RT: 486 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); 487 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); 488 __put_user(info->_sifields._rt._sigval.sival_ptr, 489 &tinfo->_sifields._rt._sigval.sival_ptr); 490 break; 491 default: 492 g_assert_not_reached(); 493 } 494 } 495 496 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 497 { 498 target_siginfo_t tgt_tmp; 499 host_to_target_siginfo_noswap(&tgt_tmp, info); 500 tswap_siginfo(tinfo, &tgt_tmp); 501 } 502 503 /* XXX: we support only POSIX RT signals are used. */ 504 /* XXX: find a solution for 64 bit (additional malloced data is needed) */ 505 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) 506 { 507 /* This conversion is used only for the rt_sigqueueinfo syscall, 508 * and so we know that the _rt fields are the valid ones. 509 */ 510 abi_ulong sival_ptr; 511 512 __get_user(info->si_signo, &tinfo->si_signo); 513 __get_user(info->si_errno, &tinfo->si_errno); 514 __get_user(info->si_code, &tinfo->si_code); 515 __get_user(info->si_pid, &tinfo->_sifields._rt._pid); 516 __get_user(info->si_uid, &tinfo->_sifields._rt._uid); 517 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); 518 info->si_value.sival_ptr = (void *)(long)sival_ptr; 519 } 520 521 static int fatal_signal (int sig) 522 { 523 switch (sig) { 524 case TARGET_SIGCHLD: 525 case TARGET_SIGURG: 526 case TARGET_SIGWINCH: 527 /* Ignored by default. */ 528 return 0; 529 case TARGET_SIGCONT: 530 case TARGET_SIGSTOP: 531 case TARGET_SIGTSTP: 532 case TARGET_SIGTTIN: 533 case TARGET_SIGTTOU: 534 /* Job control signals. */ 535 return 0; 536 default: 537 return 1; 538 } 539 } 540 541 /* returns 1 if given signal should dump core if not handled */ 542 static int core_dump_signal(int sig) 543 { 544 switch (sig) { 545 case TARGET_SIGABRT: 546 case TARGET_SIGFPE: 547 case TARGET_SIGILL: 548 case TARGET_SIGQUIT: 549 case TARGET_SIGSEGV: 550 case TARGET_SIGTRAP: 551 case TARGET_SIGBUS: 552 return (1); 553 default: 554 return (0); 555 } 556 } 557 558 static void signal_table_init(void) 559 { 560 int host_sig, target_sig, count; 561 562 /* 563 * Signals are supported starting from TARGET_SIGRTMIN and going up 564 * until we run out of host realtime signals. 565 * glibc at least uses only the lower 2 rt signals and probably 566 * nobody's using the upper ones. 567 * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32) 568 * To fix this properly we need to do manual signal delivery multiplexed 569 * over a single host signal. 570 * Attempts for configure "missing" signals via sigaction will be 571 * silently ignored. 572 */ 573 for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) { 574 target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN; 575 if (target_sig <= TARGET_NSIG) { 576 host_to_target_signal_table[host_sig] = target_sig; 577 } 578 } 579 580 /* generate signal conversion tables */ 581 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 582 target_to_host_signal_table[target_sig] = _NSIG; /* poison */ 583 } 584 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 585 if (host_to_target_signal_table[host_sig] == 0) { 586 host_to_target_signal_table[host_sig] = host_sig; 587 } 588 target_sig = host_to_target_signal_table[host_sig]; 589 if (target_sig <= TARGET_NSIG) { 590 target_to_host_signal_table[target_sig] = host_sig; 591 } 592 } 593 594 if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) { 595 for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) { 596 if (target_to_host_signal_table[target_sig] == _NSIG) { 597 count++; 598 } 599 } 600 trace_signal_table_init(count); 601 } 602 } 603 604 void signal_init(void) 605 { 606 TaskState *ts = (TaskState *)thread_cpu->opaque; 607 struct sigaction act; 608 struct sigaction oact; 609 int i; 610 int host_sig; 611 612 /* initialize signal conversion tables */ 613 signal_table_init(); 614 615 /* Set the signal mask from the host mask. */ 616 sigprocmask(0, 0, &ts->signal_mask); 617 618 sigfillset(&act.sa_mask); 619 act.sa_flags = SA_SIGINFO; 620 act.sa_sigaction = host_signal_handler; 621 for(i = 1; i <= TARGET_NSIG; i++) { 622 #ifdef CONFIG_GPROF 623 if (i == TARGET_SIGPROF) { 624 continue; 625 } 626 #endif 627 host_sig = target_to_host_signal(i); 628 sigaction(host_sig, NULL, &oact); 629 if (oact.sa_sigaction == (void *)SIG_IGN) { 630 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 631 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 632 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 633 } 634 /* If there's already a handler installed then something has 635 gone horribly wrong, so don't even try to handle that case. */ 636 /* Install some handlers for our own use. We need at least 637 SIGSEGV and SIGBUS, to detect exceptions. We can not just 638 trap all signals because it affects syscall interrupt 639 behavior. But do trap all default-fatal signals. */ 640 if (fatal_signal (i)) 641 sigaction(host_sig, &act, NULL); 642 } 643 } 644 645 /* Force a synchronously taken signal. The kernel force_sig() function 646 * also forces the signal to "not blocked, not ignored", but for QEMU 647 * that work is done in process_pending_signals(). 648 */ 649 void force_sig(int sig) 650 { 651 CPUState *cpu = thread_cpu; 652 CPUArchState *env = cpu->env_ptr; 653 target_siginfo_t info = {}; 654 655 info.si_signo = sig; 656 info.si_errno = 0; 657 info.si_code = TARGET_SI_KERNEL; 658 info._sifields._kill._pid = 0; 659 info._sifields._kill._uid = 0; 660 queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); 661 } 662 663 /* 664 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 665 * 'force' part is handled in process_pending_signals(). 666 */ 667 void force_sig_fault(int sig, int code, abi_ulong addr) 668 { 669 CPUState *cpu = thread_cpu; 670 CPUArchState *env = cpu->env_ptr; 671 target_siginfo_t info = {}; 672 673 info.si_signo = sig; 674 info.si_errno = 0; 675 info.si_code = code; 676 info._sifields._sigfault._addr = addr; 677 queue_signal(env, sig, QEMU_SI_FAULT, &info); 678 } 679 680 /* Force a SIGSEGV if we couldn't write to memory trying to set 681 * up the signal frame. oldsig is the signal we were trying to handle 682 * at the point of failure. 683 */ 684 #if !defined(TARGET_RISCV) 685 void force_sigsegv(int oldsig) 686 { 687 if (oldsig == SIGSEGV) { 688 /* Make sure we don't try to deliver the signal again; this will 689 * end up with handle_pending_signal() calling dump_core_and_abort(). 690 */ 691 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; 692 } 693 force_sig(TARGET_SIGSEGV); 694 } 695 #endif 696 697 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 698 MMUAccessType access_type, bool maperr, uintptr_t ra) 699 { 700 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 701 702 if (tcg_ops->record_sigsegv) { 703 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 704 } 705 706 force_sig_fault(TARGET_SIGSEGV, 707 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 708 addr); 709 cpu->exception_index = EXCP_INTERRUPT; 710 cpu_loop_exit_restore(cpu, ra); 711 } 712 713 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 714 MMUAccessType access_type, uintptr_t ra) 715 { 716 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 717 718 if (tcg_ops->record_sigbus) { 719 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 720 } 721 722 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 723 cpu->exception_index = EXCP_INTERRUPT; 724 cpu_loop_exit_restore(cpu, ra); 725 } 726 727 /* abort execution with signal */ 728 static void QEMU_NORETURN dump_core_and_abort(int target_sig) 729 { 730 CPUState *cpu = thread_cpu; 731 CPUArchState *env = cpu->env_ptr; 732 TaskState *ts = (TaskState *)cpu->opaque; 733 int host_sig, core_dumped = 0; 734 struct sigaction act; 735 736 host_sig = target_to_host_signal(target_sig); 737 trace_user_dump_core_and_abort(env, target_sig, host_sig); 738 gdb_signalled(env, target_sig); 739 740 /* dump core if supported by target binary format */ 741 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 742 stop_all_tasks(); 743 core_dumped = 744 ((*ts->bprm->core_dump)(target_sig, env) == 0); 745 } 746 if (core_dumped) { 747 /* we already dumped the core of target process, we don't want 748 * a coredump of qemu itself */ 749 struct rlimit nodump; 750 getrlimit(RLIMIT_CORE, &nodump); 751 nodump.rlim_cur=0; 752 setrlimit(RLIMIT_CORE, &nodump); 753 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", 754 target_sig, strsignal(host_sig), "core dumped" ); 755 } 756 757 /* The proper exit code for dying from an uncaught signal is 758 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 759 * a negative value. To get the proper exit code we need to 760 * actually die from an uncaught signal. Here the default signal 761 * handler is installed, we send ourself a signal and we wait for 762 * it to arrive. */ 763 sigfillset(&act.sa_mask); 764 act.sa_handler = SIG_DFL; 765 act.sa_flags = 0; 766 sigaction(host_sig, &act, NULL); 767 768 /* For some reason raise(host_sig) doesn't send the signal when 769 * statically linked on x86-64. */ 770 kill(getpid(), host_sig); 771 772 /* Make sure the signal isn't masked (just reuse the mask inside 773 of act) */ 774 sigdelset(&act.sa_mask, host_sig); 775 sigsuspend(&act.sa_mask); 776 777 /* unreachable */ 778 abort(); 779 } 780 781 /* queue a signal so that it will be send to the virtual CPU as soon 782 as possible */ 783 void queue_signal(CPUArchState *env, int sig, int si_type, 784 target_siginfo_t *info) 785 { 786 CPUState *cpu = env_cpu(env); 787 TaskState *ts = cpu->opaque; 788 789 trace_user_queue_signal(env, sig); 790 791 info->si_code = deposit32(info->si_code, 16, 16, si_type); 792 793 ts->sync_signal.info = *info; 794 ts->sync_signal.pending = sig; 795 /* signal that a new signal is pending */ 796 qatomic_set(&ts->signal_pending, 1); 797 } 798 799 800 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 801 static inline void rewind_if_in_safe_syscall(void *puc) 802 { 803 host_sigcontext *uc = (host_sigcontext *)puc; 804 uintptr_t pcreg = host_signal_pc(uc); 805 806 if (pcreg > (uintptr_t)safe_syscall_start 807 && pcreg < (uintptr_t)safe_syscall_end) { 808 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 809 } 810 } 811 812 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 813 { 814 CPUArchState *env = thread_cpu->env_ptr; 815 CPUState *cpu = env_cpu(env); 816 TaskState *ts = cpu->opaque; 817 target_siginfo_t tinfo; 818 host_sigcontext *uc = puc; 819 struct emulated_sigtable *k; 820 int guest_sig; 821 uintptr_t pc = 0; 822 bool sync_sig = false; 823 void *sigmask = host_signal_mask(uc); 824 825 /* 826 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 827 * handling wrt signal blocking and unwinding. 828 */ 829 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 830 MMUAccessType access_type; 831 uintptr_t host_addr; 832 abi_ptr guest_addr; 833 bool is_write; 834 835 host_addr = (uintptr_t)info->si_addr; 836 837 /* 838 * Convert forcefully to guest address space: addresses outside 839 * reserved_va are still valid to report via SEGV_MAPERR. 840 */ 841 guest_addr = h2g_nocheck(host_addr); 842 843 pc = host_signal_pc(uc); 844 is_write = host_signal_write(info, uc); 845 access_type = adjust_signal_pc(&pc, is_write); 846 847 if (host_sig == SIGSEGV) { 848 bool maperr = true; 849 850 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 851 /* If this was a write to a TB protected page, restart. */ 852 if (is_write && 853 handle_sigsegv_accerr_write(cpu, sigmask, pc, guest_addr)) { 854 return; 855 } 856 857 /* 858 * With reserved_va, the whole address space is PROT_NONE, 859 * which means that we may get ACCERR when we want MAPERR. 860 */ 861 if (page_get_flags(guest_addr) & PAGE_VALID) { 862 maperr = false; 863 } else { 864 info->si_code = SEGV_MAPERR; 865 } 866 } 867 868 sigprocmask(SIG_SETMASK, sigmask, NULL); 869 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 870 } else { 871 sigprocmask(SIG_SETMASK, sigmask, NULL); 872 if (info->si_code == BUS_ADRALN) { 873 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 874 } 875 } 876 877 sync_sig = true; 878 } 879 880 /* get target signal number */ 881 guest_sig = host_to_target_signal(host_sig); 882 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 883 return; 884 } 885 trace_user_host_signal(env, host_sig, guest_sig); 886 887 host_to_target_siginfo_noswap(&tinfo, info); 888 k = &ts->sigtab[guest_sig - 1]; 889 k->info = tinfo; 890 k->pending = guest_sig; 891 ts->signal_pending = 1; 892 893 /* 894 * For synchronous signals, unwind the cpu state to the faulting 895 * insn and then exit back to the main loop so that the signal 896 * is delivered immediately. 897 */ 898 if (sync_sig) { 899 cpu->exception_index = EXCP_INTERRUPT; 900 cpu_loop_exit_restore(cpu, pc); 901 } 902 903 rewind_if_in_safe_syscall(puc); 904 905 /* 906 * Block host signals until target signal handler entered. We 907 * can't block SIGSEGV or SIGBUS while we're executing guest 908 * code in case the guest code provokes one in the window between 909 * now and it getting out to the main loop. Signals will be 910 * unblocked again in process_pending_signals(). 911 * 912 * WARNING: we cannot use sigfillset() here because the sigmask 913 * field is a kernel sigset_t, which is much smaller than the 914 * libc sigset_t which sigfillset() operates on. Using sigfillset() 915 * would write 0xff bytes off the end of the structure and trash 916 * data on the struct. 917 */ 918 memset(sigmask, 0xff, SIGSET_T_SIZE); 919 sigdelset(sigmask, SIGSEGV); 920 sigdelset(sigmask, SIGBUS); 921 922 /* interrupt the virtual CPU as soon as possible */ 923 cpu_exit(thread_cpu); 924 } 925 926 /* do_sigaltstack() returns target values and errnos. */ 927 /* compare linux/kernel/signal.c:do_sigaltstack() */ 928 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, 929 CPUArchState *env) 930 { 931 target_stack_t oss, *uoss = NULL; 932 abi_long ret = -TARGET_EFAULT; 933 934 if (uoss_addr) { 935 /* Verify writability now, but do not alter user memory yet. */ 936 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { 937 goto out; 938 } 939 target_save_altstack(&oss, env); 940 } 941 942 if (uss_addr) { 943 target_stack_t *uss; 944 945 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 946 goto out; 947 } 948 ret = target_restore_altstack(uss, env); 949 if (ret) { 950 goto out; 951 } 952 } 953 954 if (uoss_addr) { 955 memcpy(uoss, &oss, sizeof(oss)); 956 unlock_user_struct(uoss, uoss_addr, 1); 957 uoss = NULL; 958 } 959 ret = 0; 960 961 out: 962 if (uoss) { 963 unlock_user_struct(uoss, uoss_addr, 0); 964 } 965 return ret; 966 } 967 968 /* do_sigaction() return target values and host errnos */ 969 int do_sigaction(int sig, const struct target_sigaction *act, 970 struct target_sigaction *oact, abi_ulong ka_restorer) 971 { 972 struct target_sigaction *k; 973 struct sigaction act1; 974 int host_sig; 975 int ret = 0; 976 977 trace_signal_do_sigaction_guest(sig, TARGET_NSIG); 978 979 if (sig < 1 || sig > TARGET_NSIG) { 980 return -TARGET_EINVAL; 981 } 982 983 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { 984 return -TARGET_EINVAL; 985 } 986 987 if (block_signals()) { 988 return -QEMU_ERESTARTSYS; 989 } 990 991 k = &sigact_table[sig - 1]; 992 if (oact) { 993 __put_user(k->_sa_handler, &oact->_sa_handler); 994 __put_user(k->sa_flags, &oact->sa_flags); 995 #ifdef TARGET_ARCH_HAS_SA_RESTORER 996 __put_user(k->sa_restorer, &oact->sa_restorer); 997 #endif 998 /* Not swapped. */ 999 oact->sa_mask = k->sa_mask; 1000 } 1001 if (act) { 1002 /* FIXME: This is not threadsafe. */ 1003 __get_user(k->_sa_handler, &act->_sa_handler); 1004 __get_user(k->sa_flags, &act->sa_flags); 1005 #ifdef TARGET_ARCH_HAS_SA_RESTORER 1006 __get_user(k->sa_restorer, &act->sa_restorer); 1007 #endif 1008 #ifdef TARGET_ARCH_HAS_KA_RESTORER 1009 k->ka_restorer = ka_restorer; 1010 #endif 1011 /* To be swapped in target_to_host_sigset. */ 1012 k->sa_mask = act->sa_mask; 1013 1014 /* we update the host linux signal state */ 1015 host_sig = target_to_host_signal(sig); 1016 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); 1017 if (host_sig > SIGRTMAX) { 1018 /* we don't have enough host signals to map all target signals */ 1019 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", 1020 sig); 1021 /* 1022 * we don't return an error here because some programs try to 1023 * register an handler for all possible rt signals even if they 1024 * don't need it. 1025 * An error here can abort them whereas there can be no problem 1026 * to not have the signal available later. 1027 * This is the case for golang, 1028 * See https://github.com/golang/go/issues/33746 1029 * So we silently ignore the error. 1030 */ 1031 return 0; 1032 } 1033 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 1034 sigfillset(&act1.sa_mask); 1035 act1.sa_flags = SA_SIGINFO; 1036 if (k->sa_flags & TARGET_SA_RESTART) 1037 act1.sa_flags |= SA_RESTART; 1038 /* NOTE: it is important to update the host kernel signal 1039 ignore state to avoid getting unexpected interrupted 1040 syscalls */ 1041 if (k->_sa_handler == TARGET_SIG_IGN) { 1042 act1.sa_sigaction = (void *)SIG_IGN; 1043 } else if (k->_sa_handler == TARGET_SIG_DFL) { 1044 if (fatal_signal (sig)) 1045 act1.sa_sigaction = host_signal_handler; 1046 else 1047 act1.sa_sigaction = (void *)SIG_DFL; 1048 } else { 1049 act1.sa_sigaction = host_signal_handler; 1050 } 1051 ret = sigaction(host_sig, &act1, NULL); 1052 } 1053 } 1054 return ret; 1055 } 1056 1057 static void handle_pending_signal(CPUArchState *cpu_env, int sig, 1058 struct emulated_sigtable *k) 1059 { 1060 CPUState *cpu = env_cpu(cpu_env); 1061 abi_ulong handler; 1062 sigset_t set; 1063 target_sigset_t target_old_set; 1064 struct target_sigaction *sa; 1065 TaskState *ts = cpu->opaque; 1066 1067 trace_user_handle_signal(cpu_env, sig); 1068 /* dequeue signal */ 1069 k->pending = 0; 1070 1071 sig = gdb_handlesig(cpu, sig); 1072 if (!sig) { 1073 sa = NULL; 1074 handler = TARGET_SIG_IGN; 1075 } else { 1076 sa = &sigact_table[sig - 1]; 1077 handler = sa->_sa_handler; 1078 } 1079 1080 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 1081 print_taken_signal(sig, &k->info); 1082 } 1083 1084 if (handler == TARGET_SIG_DFL) { 1085 /* default handler : ignore some signal. The other are job control or fatal */ 1086 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { 1087 kill(getpid(),SIGSTOP); 1088 } else if (sig != TARGET_SIGCHLD && 1089 sig != TARGET_SIGURG && 1090 sig != TARGET_SIGWINCH && 1091 sig != TARGET_SIGCONT) { 1092 dump_core_and_abort(sig); 1093 } 1094 } else if (handler == TARGET_SIG_IGN) { 1095 /* ignore sig */ 1096 } else if (handler == TARGET_SIG_ERR) { 1097 dump_core_and_abort(sig); 1098 } else { 1099 /* compute the blocked signals during the handler execution */ 1100 sigset_t *blocked_set; 1101 1102 target_to_host_sigset(&set, &sa->sa_mask); 1103 /* SA_NODEFER indicates that the current signal should not be 1104 blocked during the handler */ 1105 if (!(sa->sa_flags & TARGET_SA_NODEFER)) 1106 sigaddset(&set, target_to_host_signal(sig)); 1107 1108 /* save the previous blocked signal state to restore it at the 1109 end of the signal execution (see do_sigreturn) */ 1110 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 1111 1112 /* block signals in the handler */ 1113 blocked_set = ts->in_sigsuspend ? 1114 &ts->sigsuspend_mask : &ts->signal_mask; 1115 sigorset(&ts->signal_mask, blocked_set, &set); 1116 ts->in_sigsuspend = 0; 1117 1118 /* if the CPU is in VM86 mode, we restore the 32 bit values */ 1119 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 1120 { 1121 CPUX86State *env = cpu_env; 1122 if (env->eflags & VM_MASK) 1123 save_v86_state(env); 1124 } 1125 #endif 1126 /* prepare the stack frame of the virtual CPU */ 1127 #if defined(TARGET_ARCH_HAS_SETUP_FRAME) 1128 if (sa->sa_flags & TARGET_SA_SIGINFO) { 1129 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1130 } else { 1131 setup_frame(sig, sa, &target_old_set, cpu_env); 1132 } 1133 #else 1134 /* These targets do not have traditional signals. */ 1135 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1136 #endif 1137 if (sa->sa_flags & TARGET_SA_RESETHAND) { 1138 sa->_sa_handler = TARGET_SIG_DFL; 1139 } 1140 } 1141 } 1142 1143 void process_pending_signals(CPUArchState *cpu_env) 1144 { 1145 CPUState *cpu = env_cpu(cpu_env); 1146 int sig; 1147 TaskState *ts = cpu->opaque; 1148 sigset_t set; 1149 sigset_t *blocked_set; 1150 1151 while (qatomic_read(&ts->signal_pending)) { 1152 /* FIXME: This is not threadsafe. */ 1153 sigfillset(&set); 1154 sigprocmask(SIG_SETMASK, &set, 0); 1155 1156 restart_scan: 1157 sig = ts->sync_signal.pending; 1158 if (sig) { 1159 /* Synchronous signals are forced, 1160 * see force_sig_info() and callers in Linux 1161 * Note that not all of our queue_signal() calls in QEMU correspond 1162 * to force_sig_info() calls in Linux (some are send_sig_info()). 1163 * However it seems like a kernel bug to me to allow the process 1164 * to block a synchronous signal since it could then just end up 1165 * looping round and round indefinitely. 1166 */ 1167 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) 1168 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 1169 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); 1170 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 1171 } 1172 1173 handle_pending_signal(cpu_env, sig, &ts->sync_signal); 1174 } 1175 1176 for (sig = 1; sig <= TARGET_NSIG; sig++) { 1177 blocked_set = ts->in_sigsuspend ? 1178 &ts->sigsuspend_mask : &ts->signal_mask; 1179 1180 if (ts->sigtab[sig - 1].pending && 1181 (!sigismember(blocked_set, 1182 target_to_host_signal_table[sig]))) { 1183 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); 1184 /* Restart scan from the beginning, as handle_pending_signal 1185 * might have resulted in a new synchronous signal (eg SIGSEGV). 1186 */ 1187 goto restart_scan; 1188 } 1189 } 1190 1191 /* if no signal is pending, unblock signals and recheck (the act 1192 * of unblocking might cause us to take another host signal which 1193 * will set signal_pending again). 1194 */ 1195 qatomic_set(&ts->signal_pending, 0); 1196 ts->in_sigsuspend = 0; 1197 set = ts->signal_mask; 1198 sigdelset(&set, SIGSEGV); 1199 sigdelset(&set, SIGBUS); 1200 sigprocmask(SIG_SETMASK, &set, 0); 1201 } 1202 ts->in_sigsuspend = 0; 1203 } 1204