1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include "gdbstub/user.h" 22 #include "exec/page-protection.h" 23 #include "hw/core/tcg-cpu-ops.h" 24 25 #include <sys/ucontext.h> 26 #include <sys/resource.h> 27 28 #include "qemu.h" 29 #include "user-internals.h" 30 #include "strace.h" 31 #include "loader.h" 32 #include "trace.h" 33 #include "signal-common.h" 34 #include "host-signal.h" 35 #include "user/safe-syscall.h" 36 #include "tcg/tcg.h" 37 38 /* target_siginfo_t must fit in gdbstub's siginfo save area. */ 39 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH); 40 41 static struct target_sigaction sigact_table[TARGET_NSIG]; 42 43 static void host_signal_handler(int host_signum, siginfo_t *info, 44 void *puc); 45 46 /* Fallback addresses into sigtramp page. */ 47 abi_ulong default_sigreturn; 48 abi_ulong default_rt_sigreturn; 49 50 /* 51 * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel) 52 * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1. 53 * Signal number 0 is reserved for use as kill(pid, 0), to test whether 54 * a process exists without sending it a signal. 55 */ 56 #ifdef __SIGRTMAX 57 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); 58 #endif 59 static uint8_t host_to_target_signal_table[_NSIG] = { 60 #define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig, 61 MAKE_SIGNAL_LIST 62 #undef MAKE_SIG_ENTRY 63 }; 64 65 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; 66 67 /* valid sig is between 1 and _NSIG - 1 */ 68 int host_to_target_signal(int sig) 69 { 70 if (sig < 1) { 71 return sig; 72 } 73 if (sig >= _NSIG) { 74 return TARGET_NSIG + 1; 75 } 76 return host_to_target_signal_table[sig]; 77 } 78 79 /* valid sig is between 1 and TARGET_NSIG */ 80 int target_to_host_signal(int sig) 81 { 82 if (sig < 1) { 83 return sig; 84 } 85 if (sig > TARGET_NSIG) { 86 return _NSIG; 87 } 88 return target_to_host_signal_table[sig]; 89 } 90 91 static inline void target_sigaddset(target_sigset_t *set, int signum) 92 { 93 signum--; 94 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 95 set->sig[signum / TARGET_NSIG_BPW] |= mask; 96 } 97 98 static inline int target_sigismember(const target_sigset_t *set, int signum) 99 { 100 signum--; 101 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 102 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); 103 } 104 105 void host_to_target_sigset_internal(target_sigset_t *d, 106 const sigset_t *s) 107 { 108 int host_sig, target_sig; 109 target_sigemptyset(d); 110 for (host_sig = 1; host_sig < _NSIG; host_sig++) { 111 target_sig = host_to_target_signal(host_sig); 112 if (target_sig < 1 || target_sig > TARGET_NSIG) { 113 continue; 114 } 115 if (sigismember(s, host_sig)) { 116 target_sigaddset(d, target_sig); 117 } 118 } 119 } 120 121 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 122 { 123 target_sigset_t d1; 124 int i; 125 126 host_to_target_sigset_internal(&d1, s); 127 for(i = 0;i < TARGET_NSIG_WORDS; i++) 128 d->sig[i] = tswapal(d1.sig[i]); 129 } 130 131 void target_to_host_sigset_internal(sigset_t *d, 132 const target_sigset_t *s) 133 { 134 int host_sig, target_sig; 135 sigemptyset(d); 136 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { 137 host_sig = target_to_host_signal(target_sig); 138 if (host_sig < 1 || host_sig >= _NSIG) { 139 continue; 140 } 141 if (target_sigismember(s, target_sig)) { 142 sigaddset(d, host_sig); 143 } 144 } 145 } 146 147 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 148 { 149 target_sigset_t s1; 150 int i; 151 152 for(i = 0;i < TARGET_NSIG_WORDS; i++) 153 s1.sig[i] = tswapal(s->sig[i]); 154 target_to_host_sigset_internal(d, &s1); 155 } 156 157 void host_to_target_old_sigset(abi_ulong *old_sigset, 158 const sigset_t *sigset) 159 { 160 target_sigset_t d; 161 host_to_target_sigset(&d, sigset); 162 *old_sigset = d.sig[0]; 163 } 164 165 void target_to_host_old_sigset(sigset_t *sigset, 166 const abi_ulong *old_sigset) 167 { 168 target_sigset_t d; 169 int i; 170 171 d.sig[0] = *old_sigset; 172 for(i = 1;i < TARGET_NSIG_WORDS; i++) 173 d.sig[i] = 0; 174 target_to_host_sigset(sigset, &d); 175 } 176 177 int block_signals(void) 178 { 179 TaskState *ts = get_task_state(thread_cpu); 180 sigset_t set; 181 182 /* It's OK to block everything including SIGSEGV, because we won't 183 * run any further guest code before unblocking signals in 184 * process_pending_signals(). 185 */ 186 sigfillset(&set); 187 sigprocmask(SIG_SETMASK, &set, 0); 188 189 return qatomic_xchg(&ts->signal_pending, 1); 190 } 191 192 /* Wrapper for sigprocmask function 193 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset 194 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if 195 * a signal was already pending and the syscall must be restarted, or 196 * 0 on success. 197 * If set is NULL, this is guaranteed not to fail. 198 */ 199 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) 200 { 201 TaskState *ts = get_task_state(thread_cpu); 202 203 if (oldset) { 204 *oldset = ts->signal_mask; 205 } 206 207 if (set) { 208 int i; 209 210 if (block_signals()) { 211 return -QEMU_ERESTARTSYS; 212 } 213 214 switch (how) { 215 case SIG_BLOCK: 216 sigorset(&ts->signal_mask, &ts->signal_mask, set); 217 break; 218 case SIG_UNBLOCK: 219 for (i = 1; i <= NSIG; ++i) { 220 if (sigismember(set, i)) { 221 sigdelset(&ts->signal_mask, i); 222 } 223 } 224 break; 225 case SIG_SETMASK: 226 ts->signal_mask = *set; 227 break; 228 default: 229 g_assert_not_reached(); 230 } 231 232 /* Silently ignore attempts to change blocking status of KILL or STOP */ 233 sigdelset(&ts->signal_mask, SIGKILL); 234 sigdelset(&ts->signal_mask, SIGSTOP); 235 } 236 return 0; 237 } 238 239 /* Just set the guest's signal mask to the specified value; the 240 * caller is assumed to have called block_signals() already. 241 */ 242 void set_sigmask(const sigset_t *set) 243 { 244 TaskState *ts = get_task_state(thread_cpu); 245 246 ts->signal_mask = *set; 247 } 248 249 /* sigaltstack management */ 250 251 int on_sig_stack(unsigned long sp) 252 { 253 TaskState *ts = get_task_state(thread_cpu); 254 255 return (sp - ts->sigaltstack_used.ss_sp 256 < ts->sigaltstack_used.ss_size); 257 } 258 259 int sas_ss_flags(unsigned long sp) 260 { 261 TaskState *ts = get_task_state(thread_cpu); 262 263 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE 264 : on_sig_stack(sp) ? SS_ONSTACK : 0); 265 } 266 267 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) 268 { 269 /* 270 * This is the X/Open sanctioned signal stack switching. 271 */ 272 TaskState *ts = get_task_state(thread_cpu); 273 274 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { 275 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 276 } 277 return sp; 278 } 279 280 void target_save_altstack(target_stack_t *uss, CPUArchState *env) 281 { 282 TaskState *ts = get_task_state(thread_cpu); 283 284 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); 285 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); 286 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); 287 } 288 289 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) 290 { 291 TaskState *ts = get_task_state(thread_cpu); 292 size_t minstacksize = TARGET_MINSIGSTKSZ; 293 target_stack_t ss; 294 295 #if defined(TARGET_PPC64) 296 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ 297 struct image_info *image = ts->info; 298 if (get_ppc64_abi(image) > 1) { 299 minstacksize = 4096; 300 } 301 #endif 302 303 __get_user(ss.ss_sp, &uss->ss_sp); 304 __get_user(ss.ss_size, &uss->ss_size); 305 __get_user(ss.ss_flags, &uss->ss_flags); 306 307 if (on_sig_stack(get_sp_from_cpustate(env))) { 308 return -TARGET_EPERM; 309 } 310 311 switch (ss.ss_flags) { 312 default: 313 return -TARGET_EINVAL; 314 315 case TARGET_SS_DISABLE: 316 ss.ss_size = 0; 317 ss.ss_sp = 0; 318 break; 319 320 case TARGET_SS_ONSTACK: 321 case 0: 322 if (ss.ss_size < minstacksize) { 323 return -TARGET_ENOMEM; 324 } 325 break; 326 } 327 328 ts->sigaltstack_used.ss_sp = ss.ss_sp; 329 ts->sigaltstack_used.ss_size = ss.ss_size; 330 return 0; 331 } 332 333 /* siginfo conversion */ 334 335 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 336 const siginfo_t *info) 337 { 338 int sig = host_to_target_signal(info->si_signo); 339 int si_code = info->si_code; 340 int si_type; 341 tinfo->si_signo = sig; 342 tinfo->si_errno = 0; 343 tinfo->si_code = info->si_code; 344 345 /* This memset serves two purposes: 346 * (1) ensure we don't leak random junk to the guest later 347 * (2) placate false positives from gcc about fields 348 * being used uninitialized if it chooses to inline both this 349 * function and tswap_siginfo() into host_to_target_siginfo(). 350 */ 351 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); 352 353 /* This is awkward, because we have to use a combination of 354 * the si_code and si_signo to figure out which of the union's 355 * members are valid. (Within the host kernel it is always possible 356 * to tell, but the kernel carefully avoids giving userspace the 357 * high 16 bits of si_code, so we don't have the information to 358 * do this the easy way...) We therefore make our best guess, 359 * bearing in mind that a guest can spoof most of the si_codes 360 * via rt_sigqueueinfo() if it likes. 361 * 362 * Once we have made our guess, we record it in the top 16 bits of 363 * the si_code, so that tswap_siginfo() later can use it. 364 * tswap_siginfo() will strip these top bits out before writing 365 * si_code to the guest (sign-extending the lower bits). 366 */ 367 368 switch (si_code) { 369 case SI_USER: 370 case SI_TKILL: 371 case SI_KERNEL: 372 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. 373 * These are the only unspoofable si_code values. 374 */ 375 tinfo->_sifields._kill._pid = info->si_pid; 376 tinfo->_sifields._kill._uid = info->si_uid; 377 si_type = QEMU_SI_KILL; 378 break; 379 default: 380 /* Everything else is spoofable. Make best guess based on signal */ 381 switch (sig) { 382 case TARGET_SIGCHLD: 383 tinfo->_sifields._sigchld._pid = info->si_pid; 384 tinfo->_sifields._sigchld._uid = info->si_uid; 385 if (si_code == CLD_EXITED) 386 tinfo->_sifields._sigchld._status = info->si_status; 387 else 388 tinfo->_sifields._sigchld._status 389 = host_to_target_signal(info->si_status & 0x7f) 390 | (info->si_status & ~0x7f); 391 tinfo->_sifields._sigchld._utime = info->si_utime; 392 tinfo->_sifields._sigchld._stime = info->si_stime; 393 si_type = QEMU_SI_CHLD; 394 break; 395 case TARGET_SIGIO: 396 tinfo->_sifields._sigpoll._band = info->si_band; 397 tinfo->_sifields._sigpoll._fd = info->si_fd; 398 si_type = QEMU_SI_POLL; 399 break; 400 default: 401 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ 402 tinfo->_sifields._rt._pid = info->si_pid; 403 tinfo->_sifields._rt._uid = info->si_uid; 404 /* XXX: potential problem if 64 bit */ 405 tinfo->_sifields._rt._sigval.sival_ptr 406 = (abi_ulong)(unsigned long)info->si_value.sival_ptr; 407 si_type = QEMU_SI_RT; 408 break; 409 } 410 break; 411 } 412 413 tinfo->si_code = deposit32(si_code, 16, 16, si_type); 414 } 415 416 static void tswap_siginfo(target_siginfo_t *tinfo, 417 const target_siginfo_t *info) 418 { 419 int si_type = extract32(info->si_code, 16, 16); 420 int si_code = sextract32(info->si_code, 0, 16); 421 422 __put_user(info->si_signo, &tinfo->si_signo); 423 __put_user(info->si_errno, &tinfo->si_errno); 424 __put_user(si_code, &tinfo->si_code); 425 426 /* We can use our internal marker of which fields in the structure 427 * are valid, rather than duplicating the guesswork of 428 * host_to_target_siginfo_noswap() here. 429 */ 430 switch (si_type) { 431 case QEMU_SI_KILL: 432 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); 433 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); 434 break; 435 case QEMU_SI_TIMER: 436 __put_user(info->_sifields._timer._timer1, 437 &tinfo->_sifields._timer._timer1); 438 __put_user(info->_sifields._timer._timer2, 439 &tinfo->_sifields._timer._timer2); 440 break; 441 case QEMU_SI_POLL: 442 __put_user(info->_sifields._sigpoll._band, 443 &tinfo->_sifields._sigpoll._band); 444 __put_user(info->_sifields._sigpoll._fd, 445 &tinfo->_sifields._sigpoll._fd); 446 break; 447 case QEMU_SI_FAULT: 448 __put_user(info->_sifields._sigfault._addr, 449 &tinfo->_sifields._sigfault._addr); 450 break; 451 case QEMU_SI_CHLD: 452 __put_user(info->_sifields._sigchld._pid, 453 &tinfo->_sifields._sigchld._pid); 454 __put_user(info->_sifields._sigchld._uid, 455 &tinfo->_sifields._sigchld._uid); 456 __put_user(info->_sifields._sigchld._status, 457 &tinfo->_sifields._sigchld._status); 458 __put_user(info->_sifields._sigchld._utime, 459 &tinfo->_sifields._sigchld._utime); 460 __put_user(info->_sifields._sigchld._stime, 461 &tinfo->_sifields._sigchld._stime); 462 break; 463 case QEMU_SI_RT: 464 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); 465 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); 466 __put_user(info->_sifields._rt._sigval.sival_ptr, 467 &tinfo->_sifields._rt._sigval.sival_ptr); 468 break; 469 default: 470 g_assert_not_reached(); 471 } 472 } 473 474 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 475 { 476 target_siginfo_t tgt_tmp; 477 host_to_target_siginfo_noswap(&tgt_tmp, info); 478 tswap_siginfo(tinfo, &tgt_tmp); 479 } 480 481 /* XXX: we support only POSIX RT signals are used. */ 482 /* XXX: find a solution for 64 bit (additional malloced data is needed) */ 483 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) 484 { 485 /* This conversion is used only for the rt_sigqueueinfo syscall, 486 * and so we know that the _rt fields are the valid ones. 487 */ 488 abi_ulong sival_ptr; 489 490 __get_user(info->si_signo, &tinfo->si_signo); 491 __get_user(info->si_errno, &tinfo->si_errno); 492 __get_user(info->si_code, &tinfo->si_code); 493 __get_user(info->si_pid, &tinfo->_sifields._rt._pid); 494 __get_user(info->si_uid, &tinfo->_sifields._rt._uid); 495 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); 496 info->si_value.sival_ptr = (void *)(long)sival_ptr; 497 } 498 499 /* returns 1 if given signal should dump core if not handled */ 500 static int core_dump_signal(int sig) 501 { 502 switch (sig) { 503 case TARGET_SIGABRT: 504 case TARGET_SIGFPE: 505 case TARGET_SIGILL: 506 case TARGET_SIGQUIT: 507 case TARGET_SIGSEGV: 508 case TARGET_SIGTRAP: 509 case TARGET_SIGBUS: 510 return (1); 511 default: 512 return (0); 513 } 514 } 515 516 static void signal_table_init(void) 517 { 518 int hsig, tsig, count; 519 520 /* 521 * Signals are supported starting from TARGET_SIGRTMIN and going up 522 * until we run out of host realtime signals. Glibc uses the lower 2 523 * RT signals and (hopefully) nobody uses the upper ones. 524 * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32). 525 * To fix this properly we would need to do manual signal delivery 526 * multiplexed over a single host signal. 527 * Attempts for configure "missing" signals via sigaction will be 528 * silently ignored. 529 * 530 * Remap the target SIGABRT, so that we can distinguish host abort 531 * from guest abort. When the guest registers a signal handler or 532 * calls raise(SIGABRT), the host will raise SIG_RTn. If the guest 533 * arrives at dump_core_and_abort(), we will map back to host SIGABRT 534 * so that the parent (native or emulated) sees the correct signal. 535 * Finally, also map host to guest SIGABRT so that the emulated 536 * parent sees the correct mapping from wait status. 537 */ 538 539 hsig = SIGRTMIN; 540 host_to_target_signal_table[SIGABRT] = 0; 541 host_to_target_signal_table[hsig++] = TARGET_SIGABRT; 542 543 for (tsig = TARGET_SIGRTMIN; 544 hsig <= SIGRTMAX && tsig <= TARGET_NSIG; 545 hsig++, tsig++) { 546 host_to_target_signal_table[hsig] = tsig; 547 } 548 549 /* Invert the mapping that has already been assigned. */ 550 for (hsig = 1; hsig < _NSIG; hsig++) { 551 tsig = host_to_target_signal_table[hsig]; 552 if (tsig) { 553 assert(target_to_host_signal_table[tsig] == 0); 554 target_to_host_signal_table[tsig] = hsig; 555 } 556 } 557 558 host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT; 559 560 /* Map everything else out-of-bounds. */ 561 for (hsig = 1; hsig < _NSIG; hsig++) { 562 if (host_to_target_signal_table[hsig] == 0) { 563 host_to_target_signal_table[hsig] = TARGET_NSIG + 1; 564 } 565 } 566 for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) { 567 if (target_to_host_signal_table[tsig] == 0) { 568 target_to_host_signal_table[tsig] = _NSIG; 569 count++; 570 } 571 } 572 573 trace_signal_table_init(count); 574 } 575 576 void signal_init(void) 577 { 578 TaskState *ts = get_task_state(thread_cpu); 579 struct sigaction act, oact; 580 581 /* initialize signal conversion tables */ 582 signal_table_init(); 583 584 /* Set the signal mask from the host mask. */ 585 sigprocmask(0, 0, &ts->signal_mask); 586 587 sigfillset(&act.sa_mask); 588 act.sa_flags = SA_SIGINFO; 589 act.sa_sigaction = host_signal_handler; 590 591 /* 592 * A parent process may configure ignored signals, but all other 593 * signals are default. For any target signals that have no host 594 * mapping, set to ignore. For all core_dump_signal, install our 595 * host signal handler so that we may invoke dump_core_and_abort. 596 * This includes SIGSEGV and SIGBUS, which are also need our signal 597 * handler for paging and exceptions. 598 */ 599 for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) { 600 int hsig = target_to_host_signal(tsig); 601 abi_ptr thand = TARGET_SIG_IGN; 602 603 if (hsig >= _NSIG) { 604 continue; 605 } 606 607 /* As we force remap SIGABRT, cannot probe and install in one step. */ 608 if (tsig == TARGET_SIGABRT) { 609 sigaction(SIGABRT, NULL, &oact); 610 sigaction(hsig, &act, NULL); 611 } else { 612 struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL; 613 sigaction(hsig, iact, &oact); 614 } 615 616 if (oact.sa_sigaction != (void *)SIG_IGN) { 617 thand = TARGET_SIG_DFL; 618 } 619 sigact_table[tsig - 1]._sa_handler = thand; 620 } 621 } 622 623 /* Force a synchronously taken signal. The kernel force_sig() function 624 * also forces the signal to "not blocked, not ignored", but for QEMU 625 * that work is done in process_pending_signals(). 626 */ 627 void force_sig(int sig) 628 { 629 CPUState *cpu = thread_cpu; 630 target_siginfo_t info = {}; 631 632 info.si_signo = sig; 633 info.si_errno = 0; 634 info.si_code = TARGET_SI_KERNEL; 635 info._sifields._kill._pid = 0; 636 info._sifields._kill._uid = 0; 637 queue_signal(cpu_env(cpu), info.si_signo, QEMU_SI_KILL, &info); 638 } 639 640 /* 641 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 642 * 'force' part is handled in process_pending_signals(). 643 */ 644 void force_sig_fault(int sig, int code, abi_ulong addr) 645 { 646 CPUState *cpu = thread_cpu; 647 target_siginfo_t info = {}; 648 649 info.si_signo = sig; 650 info.si_errno = 0; 651 info.si_code = code; 652 info._sifields._sigfault._addr = addr; 653 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info); 654 } 655 656 /* Force a SIGSEGV if we couldn't write to memory trying to set 657 * up the signal frame. oldsig is the signal we were trying to handle 658 * at the point of failure. 659 */ 660 #if !defined(TARGET_RISCV) 661 void force_sigsegv(int oldsig) 662 { 663 if (oldsig == SIGSEGV) { 664 /* Make sure we don't try to deliver the signal again; this will 665 * end up with handle_pending_signal() calling dump_core_and_abort(). 666 */ 667 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; 668 } 669 force_sig(TARGET_SIGSEGV); 670 } 671 #endif 672 673 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 674 MMUAccessType access_type, bool maperr, uintptr_t ra) 675 { 676 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 677 678 if (tcg_ops->record_sigsegv) { 679 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 680 } 681 682 force_sig_fault(TARGET_SIGSEGV, 683 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 684 addr); 685 cpu->exception_index = EXCP_INTERRUPT; 686 cpu_loop_exit_restore(cpu, ra); 687 } 688 689 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 690 MMUAccessType access_type, uintptr_t ra) 691 { 692 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 693 694 if (tcg_ops->record_sigbus) { 695 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 696 } 697 698 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 699 cpu->exception_index = EXCP_INTERRUPT; 700 cpu_loop_exit_restore(cpu, ra); 701 } 702 703 /* abort execution with signal */ 704 static G_NORETURN 705 void die_with_signal(int host_sig) 706 { 707 struct sigaction act = { 708 .sa_handler = SIG_DFL, 709 }; 710 711 /* 712 * The proper exit code for dying from an uncaught signal is -<signal>. 713 * The kernel doesn't allow exit() or _exit() to pass a negative value. 714 * To get the proper exit code we need to actually die from an uncaught 715 * signal. Here the default signal handler is installed, we send 716 * the signal and we wait for it to arrive. 717 */ 718 sigfillset(&act.sa_mask); 719 sigaction(host_sig, &act, NULL); 720 721 kill(getpid(), host_sig); 722 723 /* Make sure the signal isn't masked (reusing the mask inside of act). */ 724 sigdelset(&act.sa_mask, host_sig); 725 sigsuspend(&act.sa_mask); 726 727 /* unreachable */ 728 _exit(EXIT_FAILURE); 729 } 730 731 static G_NORETURN 732 void dump_core_and_abort(CPUArchState *env, int target_sig) 733 { 734 CPUState *cpu = env_cpu(env); 735 TaskState *ts = get_task_state(cpu); 736 int host_sig, core_dumped = 0; 737 738 /* On exit, undo the remapping of SIGABRT. */ 739 if (target_sig == TARGET_SIGABRT) { 740 host_sig = SIGABRT; 741 } else { 742 host_sig = target_to_host_signal(target_sig); 743 } 744 trace_user_dump_core_and_abort(env, target_sig, host_sig); 745 gdb_signalled(env, target_sig); 746 747 /* dump core if supported by target binary format */ 748 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 749 stop_all_tasks(); 750 core_dumped = 751 ((*ts->bprm->core_dump)(target_sig, env) == 0); 752 } 753 if (core_dumped) { 754 /* we already dumped the core of target process, we don't want 755 * a coredump of qemu itself */ 756 struct rlimit nodump; 757 getrlimit(RLIMIT_CORE, &nodump); 758 nodump.rlim_cur=0; 759 setrlimit(RLIMIT_CORE, &nodump); 760 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", 761 target_sig, strsignal(host_sig), "core dumped" ); 762 } 763 764 preexit_cleanup(env, 128 + target_sig); 765 die_with_signal(host_sig); 766 } 767 768 /* queue a signal so that it will be send to the virtual CPU as soon 769 as possible */ 770 void queue_signal(CPUArchState *env, int sig, int si_type, 771 target_siginfo_t *info) 772 { 773 CPUState *cpu = env_cpu(env); 774 TaskState *ts = get_task_state(cpu); 775 776 trace_user_queue_signal(env, sig); 777 778 info->si_code = deposit32(info->si_code, 16, 16, si_type); 779 780 ts->sync_signal.info = *info; 781 ts->sync_signal.pending = sig; 782 /* signal that a new signal is pending */ 783 qatomic_set(&ts->signal_pending, 1); 784 } 785 786 787 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 788 static inline void rewind_if_in_safe_syscall(void *puc) 789 { 790 host_sigcontext *uc = (host_sigcontext *)puc; 791 uintptr_t pcreg = host_signal_pc(uc); 792 793 if (pcreg > (uintptr_t)safe_syscall_start 794 && pcreg < (uintptr_t)safe_syscall_end) { 795 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 796 } 797 } 798 799 static G_NORETURN 800 void die_from_signal(siginfo_t *info) 801 { 802 char sigbuf[4], codebuf[12]; 803 const char *sig, *code = NULL; 804 805 switch (info->si_signo) { 806 case SIGSEGV: 807 sig = "SEGV"; 808 switch (info->si_code) { 809 case SEGV_MAPERR: 810 code = "MAPERR"; 811 break; 812 case SEGV_ACCERR: 813 code = "ACCERR"; 814 break; 815 } 816 break; 817 case SIGBUS: 818 sig = "BUS"; 819 switch (info->si_code) { 820 case BUS_ADRALN: 821 code = "ADRALN"; 822 break; 823 case BUS_ADRERR: 824 code = "ADRERR"; 825 break; 826 } 827 break; 828 case SIGILL: 829 sig = "ILL"; 830 switch (info->si_code) { 831 case ILL_ILLOPC: 832 code = "ILLOPC"; 833 break; 834 case ILL_ILLOPN: 835 code = "ILLOPN"; 836 break; 837 case ILL_ILLADR: 838 code = "ILLADR"; 839 break; 840 case ILL_PRVOPC: 841 code = "PRVOPC"; 842 break; 843 case ILL_PRVREG: 844 code = "PRVREG"; 845 break; 846 case ILL_COPROC: 847 code = "COPROC"; 848 break; 849 } 850 break; 851 case SIGFPE: 852 sig = "FPE"; 853 switch (info->si_code) { 854 case FPE_INTDIV: 855 code = "INTDIV"; 856 break; 857 case FPE_INTOVF: 858 code = "INTOVF"; 859 break; 860 } 861 break; 862 case SIGTRAP: 863 sig = "TRAP"; 864 break; 865 default: 866 snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo); 867 sig = sigbuf; 868 break; 869 } 870 if (code == NULL) { 871 snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code); 872 code = codebuf; 873 } 874 875 error_report("QEMU internal SIG%s {code=%s, addr=%p}", 876 sig, code, info->si_addr); 877 die_with_signal(info->si_signo); 878 } 879 880 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info, 881 host_sigcontext *uc) 882 { 883 uintptr_t host_addr = (uintptr_t)info->si_addr; 884 /* 885 * Convert forcefully to guest address space: addresses outside 886 * reserved_va are still valid to report via SEGV_MAPERR. 887 */ 888 bool is_valid = h2g_valid(host_addr); 889 abi_ptr guest_addr = h2g_nocheck(host_addr); 890 uintptr_t pc = host_signal_pc(uc); 891 bool is_write = host_signal_write(info, uc); 892 MMUAccessType access_type = adjust_signal_pc(&pc, is_write); 893 bool maperr; 894 895 /* If this was a write to a TB protected page, restart. */ 896 if (is_write 897 && is_valid 898 && info->si_code == SEGV_ACCERR 899 && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc), 900 pc, guest_addr)) { 901 return; 902 } 903 904 /* 905 * If the access was not on behalf of the guest, within the executable 906 * mapping of the generated code buffer, then it is a host bug. 907 */ 908 if (access_type != MMU_INST_FETCH 909 && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) { 910 die_from_signal(info); 911 } 912 913 maperr = true; 914 if (is_valid && info->si_code == SEGV_ACCERR) { 915 /* 916 * With reserved_va, the whole address space is PROT_NONE, 917 * which means that we may get ACCERR when we want MAPERR. 918 */ 919 if (page_get_flags(guest_addr) & PAGE_VALID) { 920 maperr = false; 921 } else { 922 info->si_code = SEGV_MAPERR; 923 } 924 } 925 926 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL); 927 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 928 } 929 930 static uintptr_t host_sigbus_handler(CPUState *cpu, siginfo_t *info, 931 host_sigcontext *uc) 932 { 933 uintptr_t pc = host_signal_pc(uc); 934 bool is_write = host_signal_write(info, uc); 935 MMUAccessType access_type = adjust_signal_pc(&pc, is_write); 936 937 /* 938 * If the access was not on behalf of the guest, within the executable 939 * mapping of the generated code buffer, then it is a host bug. 940 */ 941 if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) { 942 die_from_signal(info); 943 } 944 945 if (info->si_code == BUS_ADRALN) { 946 uintptr_t host_addr = (uintptr_t)info->si_addr; 947 abi_ptr guest_addr = h2g_nocheck(host_addr); 948 949 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL); 950 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 951 } 952 return pc; 953 } 954 955 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 956 { 957 CPUState *cpu = thread_cpu; 958 CPUArchState *env = cpu_env(cpu); 959 TaskState *ts = get_task_state(cpu); 960 target_siginfo_t tinfo; 961 host_sigcontext *uc = puc; 962 struct emulated_sigtable *k; 963 int guest_sig; 964 uintptr_t pc = 0; 965 bool sync_sig = false; 966 void *sigmask; 967 968 /* 969 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 970 * handling wrt signal blocking and unwinding. Non-spoofed SIGILL, 971 * SIGFPE, SIGTRAP are always host bugs. 972 */ 973 if (info->si_code > 0) { 974 switch (host_sig) { 975 case SIGSEGV: 976 /* Only returns on handle_sigsegv_accerr_write success. */ 977 host_sigsegv_handler(cpu, info, uc); 978 return; 979 case SIGBUS: 980 pc = host_sigbus_handler(cpu, info, uc); 981 sync_sig = true; 982 break; 983 case SIGILL: 984 case SIGFPE: 985 case SIGTRAP: 986 die_from_signal(info); 987 } 988 } 989 990 /* get target signal number */ 991 guest_sig = host_to_target_signal(host_sig); 992 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 993 return; 994 } 995 trace_user_host_signal(env, host_sig, guest_sig); 996 997 host_to_target_siginfo_noswap(&tinfo, info); 998 k = &ts->sigtab[guest_sig - 1]; 999 k->info = tinfo; 1000 k->pending = guest_sig; 1001 ts->signal_pending = 1; 1002 1003 /* 1004 * For synchronous signals, unwind the cpu state to the faulting 1005 * insn and then exit back to the main loop so that the signal 1006 * is delivered immediately. 1007 */ 1008 if (sync_sig) { 1009 cpu->exception_index = EXCP_INTERRUPT; 1010 cpu_loop_exit_restore(cpu, pc); 1011 } 1012 1013 rewind_if_in_safe_syscall(puc); 1014 1015 /* 1016 * Block host signals until target signal handler entered. We 1017 * can't block SIGSEGV or SIGBUS while we're executing guest 1018 * code in case the guest code provokes one in the window between 1019 * now and it getting out to the main loop. Signals will be 1020 * unblocked again in process_pending_signals(). 1021 * 1022 * WARNING: we cannot use sigfillset() here because the sigmask 1023 * field is a kernel sigset_t, which is much smaller than the 1024 * libc sigset_t which sigfillset() operates on. Using sigfillset() 1025 * would write 0xff bytes off the end of the structure and trash 1026 * data on the struct. 1027 */ 1028 sigmask = host_signal_mask(uc); 1029 memset(sigmask, 0xff, SIGSET_T_SIZE); 1030 sigdelset(sigmask, SIGSEGV); 1031 sigdelset(sigmask, SIGBUS); 1032 1033 /* interrupt the virtual CPU as soon as possible */ 1034 cpu_exit(thread_cpu); 1035 } 1036 1037 /* do_sigaltstack() returns target values and errnos. */ 1038 /* compare linux/kernel/signal.c:do_sigaltstack() */ 1039 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, 1040 CPUArchState *env) 1041 { 1042 target_stack_t oss, *uoss = NULL; 1043 abi_long ret = -TARGET_EFAULT; 1044 1045 if (uoss_addr) { 1046 /* Verify writability now, but do not alter user memory yet. */ 1047 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { 1048 goto out; 1049 } 1050 target_save_altstack(&oss, env); 1051 } 1052 1053 if (uss_addr) { 1054 target_stack_t *uss; 1055 1056 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 1057 goto out; 1058 } 1059 ret = target_restore_altstack(uss, env); 1060 if (ret) { 1061 goto out; 1062 } 1063 } 1064 1065 if (uoss_addr) { 1066 memcpy(uoss, &oss, sizeof(oss)); 1067 unlock_user_struct(uoss, uoss_addr, 1); 1068 uoss = NULL; 1069 } 1070 ret = 0; 1071 1072 out: 1073 if (uoss) { 1074 unlock_user_struct(uoss, uoss_addr, 0); 1075 } 1076 return ret; 1077 } 1078 1079 /* do_sigaction() return target values and host errnos */ 1080 int do_sigaction(int sig, const struct target_sigaction *act, 1081 struct target_sigaction *oact, abi_ulong ka_restorer) 1082 { 1083 struct target_sigaction *k; 1084 int host_sig; 1085 int ret = 0; 1086 1087 trace_signal_do_sigaction_guest(sig, TARGET_NSIG); 1088 1089 if (sig < 1 || sig > TARGET_NSIG) { 1090 return -TARGET_EINVAL; 1091 } 1092 1093 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { 1094 return -TARGET_EINVAL; 1095 } 1096 1097 if (block_signals()) { 1098 return -QEMU_ERESTARTSYS; 1099 } 1100 1101 k = &sigact_table[sig - 1]; 1102 if (oact) { 1103 __put_user(k->_sa_handler, &oact->_sa_handler); 1104 __put_user(k->sa_flags, &oact->sa_flags); 1105 #ifdef TARGET_ARCH_HAS_SA_RESTORER 1106 __put_user(k->sa_restorer, &oact->sa_restorer); 1107 #endif 1108 /* Not swapped. */ 1109 oact->sa_mask = k->sa_mask; 1110 } 1111 if (act) { 1112 __get_user(k->_sa_handler, &act->_sa_handler); 1113 __get_user(k->sa_flags, &act->sa_flags); 1114 #ifdef TARGET_ARCH_HAS_SA_RESTORER 1115 __get_user(k->sa_restorer, &act->sa_restorer); 1116 #endif 1117 #ifdef TARGET_ARCH_HAS_KA_RESTORER 1118 k->ka_restorer = ka_restorer; 1119 #endif 1120 /* To be swapped in target_to_host_sigset. */ 1121 k->sa_mask = act->sa_mask; 1122 1123 /* we update the host linux signal state */ 1124 host_sig = target_to_host_signal(sig); 1125 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); 1126 if (host_sig > SIGRTMAX) { 1127 /* we don't have enough host signals to map all target signals */ 1128 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", 1129 sig); 1130 /* 1131 * we don't return an error here because some programs try to 1132 * register an handler for all possible rt signals even if they 1133 * don't need it. 1134 * An error here can abort them whereas there can be no problem 1135 * to not have the signal available later. 1136 * This is the case for golang, 1137 * See https://github.com/golang/go/issues/33746 1138 * So we silently ignore the error. 1139 */ 1140 return 0; 1141 } 1142 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 1143 struct sigaction act1; 1144 1145 sigfillset(&act1.sa_mask); 1146 act1.sa_flags = SA_SIGINFO; 1147 if (k->_sa_handler == TARGET_SIG_IGN) { 1148 /* 1149 * It is important to update the host kernel signal ignore 1150 * state to avoid getting unexpected interrupted syscalls. 1151 */ 1152 act1.sa_sigaction = (void *)SIG_IGN; 1153 } else if (k->_sa_handler == TARGET_SIG_DFL) { 1154 if (core_dump_signal(sig)) { 1155 act1.sa_sigaction = host_signal_handler; 1156 } else { 1157 act1.sa_sigaction = (void *)SIG_DFL; 1158 } 1159 } else { 1160 act1.sa_sigaction = host_signal_handler; 1161 if (k->sa_flags & TARGET_SA_RESTART) { 1162 act1.sa_flags |= SA_RESTART; 1163 } 1164 } 1165 ret = sigaction(host_sig, &act1, NULL); 1166 } 1167 } 1168 return ret; 1169 } 1170 1171 static void handle_pending_signal(CPUArchState *cpu_env, int sig, 1172 struct emulated_sigtable *k) 1173 { 1174 CPUState *cpu = env_cpu(cpu_env); 1175 abi_ulong handler; 1176 sigset_t set; 1177 target_siginfo_t unswapped; 1178 target_sigset_t target_old_set; 1179 struct target_sigaction *sa; 1180 TaskState *ts = get_task_state(cpu); 1181 1182 trace_user_handle_signal(cpu_env, sig); 1183 /* dequeue signal */ 1184 k->pending = 0; 1185 1186 /* 1187 * Writes out siginfo values byteswapped, accordingly to the target. 1188 * It also cleans the si_type from si_code making it correct for 1189 * the target. We must hold on to the original unswapped copy for 1190 * strace below, because si_type is still required there. 1191 */ 1192 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 1193 unswapped = k->info; 1194 } 1195 tswap_siginfo(&k->info, &k->info); 1196 1197 sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info)); 1198 if (!sig) { 1199 sa = NULL; 1200 handler = TARGET_SIG_IGN; 1201 } else { 1202 sa = &sigact_table[sig - 1]; 1203 handler = sa->_sa_handler; 1204 } 1205 1206 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 1207 print_taken_signal(sig, &unswapped); 1208 } 1209 1210 if (handler == TARGET_SIG_DFL) { 1211 /* default handler : ignore some signal. The other are job control or fatal */ 1212 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { 1213 kill(getpid(),SIGSTOP); 1214 } else if (sig != TARGET_SIGCHLD && 1215 sig != TARGET_SIGURG && 1216 sig != TARGET_SIGWINCH && 1217 sig != TARGET_SIGCONT) { 1218 dump_core_and_abort(cpu_env, sig); 1219 } 1220 } else if (handler == TARGET_SIG_IGN) { 1221 /* ignore sig */ 1222 } else if (handler == TARGET_SIG_ERR) { 1223 dump_core_and_abort(cpu_env, sig); 1224 } else { 1225 /* compute the blocked signals during the handler execution */ 1226 sigset_t *blocked_set; 1227 1228 target_to_host_sigset(&set, &sa->sa_mask); 1229 /* SA_NODEFER indicates that the current signal should not be 1230 blocked during the handler */ 1231 if (!(sa->sa_flags & TARGET_SA_NODEFER)) 1232 sigaddset(&set, target_to_host_signal(sig)); 1233 1234 /* save the previous blocked signal state to restore it at the 1235 end of the signal execution (see do_sigreturn) */ 1236 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 1237 1238 /* block signals in the handler */ 1239 blocked_set = ts->in_sigsuspend ? 1240 &ts->sigsuspend_mask : &ts->signal_mask; 1241 sigorset(&ts->signal_mask, blocked_set, &set); 1242 ts->in_sigsuspend = 0; 1243 1244 /* if the CPU is in VM86 mode, we restore the 32 bit values */ 1245 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 1246 { 1247 CPUX86State *env = cpu_env; 1248 if (env->eflags & VM_MASK) 1249 save_v86_state(env); 1250 } 1251 #endif 1252 /* prepare the stack frame of the virtual CPU */ 1253 #if defined(TARGET_ARCH_HAS_SETUP_FRAME) 1254 if (sa->sa_flags & TARGET_SA_SIGINFO) { 1255 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1256 } else { 1257 setup_frame(sig, sa, &target_old_set, cpu_env); 1258 } 1259 #else 1260 /* These targets do not have traditional signals. */ 1261 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); 1262 #endif 1263 if (sa->sa_flags & TARGET_SA_RESETHAND) { 1264 sa->_sa_handler = TARGET_SIG_DFL; 1265 } 1266 } 1267 } 1268 1269 void process_pending_signals(CPUArchState *cpu_env) 1270 { 1271 CPUState *cpu = env_cpu(cpu_env); 1272 int sig; 1273 TaskState *ts = get_task_state(cpu); 1274 sigset_t set; 1275 sigset_t *blocked_set; 1276 1277 while (qatomic_read(&ts->signal_pending)) { 1278 sigfillset(&set); 1279 sigprocmask(SIG_SETMASK, &set, 0); 1280 1281 restart_scan: 1282 sig = ts->sync_signal.pending; 1283 if (sig) { 1284 /* Synchronous signals are forced, 1285 * see force_sig_info() and callers in Linux 1286 * Note that not all of our queue_signal() calls in QEMU correspond 1287 * to force_sig_info() calls in Linux (some are send_sig_info()). 1288 * However it seems like a kernel bug to me to allow the process 1289 * to block a synchronous signal since it could then just end up 1290 * looping round and round indefinitely. 1291 */ 1292 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) 1293 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 1294 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); 1295 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 1296 } 1297 1298 handle_pending_signal(cpu_env, sig, &ts->sync_signal); 1299 } 1300 1301 for (sig = 1; sig <= TARGET_NSIG; sig++) { 1302 blocked_set = ts->in_sigsuspend ? 1303 &ts->sigsuspend_mask : &ts->signal_mask; 1304 1305 if (ts->sigtab[sig - 1].pending && 1306 (!sigismember(blocked_set, 1307 target_to_host_signal_table[sig]))) { 1308 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); 1309 /* Restart scan from the beginning, as handle_pending_signal 1310 * might have resulted in a new synchronous signal (eg SIGSEGV). 1311 */ 1312 goto restart_scan; 1313 } 1314 } 1315 1316 /* if no signal is pending, unblock signals and recheck (the act 1317 * of unblocking might cause us to take another host signal which 1318 * will set signal_pending again). 1319 */ 1320 qatomic_set(&ts->signal_pending, 0); 1321 ts->in_sigsuspend = 0; 1322 set = ts->signal_mask; 1323 sigdelset(&set, SIGSEGV); 1324 sigdelset(&set, SIGBUS); 1325 sigprocmask(SIG_SETMASK, &set, 0); 1326 } 1327 ts->in_sigsuspend = 0; 1328 } 1329 1330 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset, 1331 target_ulong sigsize) 1332 { 1333 TaskState *ts = get_task_state(thread_cpu); 1334 sigset_t *host_set = &ts->sigsuspend_mask; 1335 target_sigset_t *target_sigset; 1336 1337 if (sigsize != sizeof(*target_sigset)) { 1338 /* Like the kernel, we enforce correct size sigsets */ 1339 return -TARGET_EINVAL; 1340 } 1341 1342 target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1); 1343 if (!target_sigset) { 1344 return -TARGET_EFAULT; 1345 } 1346 target_to_host_sigset(host_set, target_sigset); 1347 unlock_user(target_sigset, sigset, 0); 1348 1349 *pset = host_set; 1350 return 0; 1351 } 1352