xref: /openbmc/qemu/linux-user/signal.c (revision 0694dabe)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include <sys/ucontext.h>
22 #include <sys/resource.h>
23 
24 #include "qemu.h"
25 #include "trace.h"
26 #include "signal-common.h"
27 
28 static struct target_sigaction sigact_table[TARGET_NSIG];
29 
30 static void host_signal_handler(int host_signum, siginfo_t *info,
31                                 void *puc);
32 
33 
34 /*
35  * System includes define _NSIG as SIGRTMAX + 1,
36  * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX
37  * and the first signal is SIGHUP defined as 1
38  * Signal number 0 is reserved for use as kill(pid, 0), to test whether
39  * a process exists without sending it a signal.
40  */
41 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
42 static uint8_t host_to_target_signal_table[_NSIG] = {
43     [SIGHUP] = TARGET_SIGHUP,
44     [SIGINT] = TARGET_SIGINT,
45     [SIGQUIT] = TARGET_SIGQUIT,
46     [SIGILL] = TARGET_SIGILL,
47     [SIGTRAP] = TARGET_SIGTRAP,
48     [SIGABRT] = TARGET_SIGABRT,
49 /*    [SIGIOT] = TARGET_SIGIOT,*/
50     [SIGBUS] = TARGET_SIGBUS,
51     [SIGFPE] = TARGET_SIGFPE,
52     [SIGKILL] = TARGET_SIGKILL,
53     [SIGUSR1] = TARGET_SIGUSR1,
54     [SIGSEGV] = TARGET_SIGSEGV,
55     [SIGUSR2] = TARGET_SIGUSR2,
56     [SIGPIPE] = TARGET_SIGPIPE,
57     [SIGALRM] = TARGET_SIGALRM,
58     [SIGTERM] = TARGET_SIGTERM,
59 #ifdef SIGSTKFLT
60     [SIGSTKFLT] = TARGET_SIGSTKFLT,
61 #endif
62     [SIGCHLD] = TARGET_SIGCHLD,
63     [SIGCONT] = TARGET_SIGCONT,
64     [SIGSTOP] = TARGET_SIGSTOP,
65     [SIGTSTP] = TARGET_SIGTSTP,
66     [SIGTTIN] = TARGET_SIGTTIN,
67     [SIGTTOU] = TARGET_SIGTTOU,
68     [SIGURG] = TARGET_SIGURG,
69     [SIGXCPU] = TARGET_SIGXCPU,
70     [SIGXFSZ] = TARGET_SIGXFSZ,
71     [SIGVTALRM] = TARGET_SIGVTALRM,
72     [SIGPROF] = TARGET_SIGPROF,
73     [SIGWINCH] = TARGET_SIGWINCH,
74     [SIGIO] = TARGET_SIGIO,
75     [SIGPWR] = TARGET_SIGPWR,
76     [SIGSYS] = TARGET_SIGSYS,
77     /* next signals stay the same */
78 };
79 
80 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
81 
82 /* valid sig is between 1 and _NSIG - 1 */
83 int host_to_target_signal(int sig)
84 {
85     if (sig < 1 || sig >= _NSIG) {
86         return sig;
87     }
88     return host_to_target_signal_table[sig];
89 }
90 
91 /* valid sig is between 1 and TARGET_NSIG */
92 int target_to_host_signal(int sig)
93 {
94     if (sig < 1 || sig > TARGET_NSIG) {
95         return sig;
96     }
97     return target_to_host_signal_table[sig];
98 }
99 
100 static inline void target_sigaddset(target_sigset_t *set, int signum)
101 {
102     signum--;
103     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
104     set->sig[signum / TARGET_NSIG_BPW] |= mask;
105 }
106 
107 static inline int target_sigismember(const target_sigset_t *set, int signum)
108 {
109     signum--;
110     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
111     return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
112 }
113 
114 void host_to_target_sigset_internal(target_sigset_t *d,
115                                     const sigset_t *s)
116 {
117     int host_sig, target_sig;
118     target_sigemptyset(d);
119     for (host_sig = 1; host_sig < _NSIG; host_sig++) {
120         target_sig = host_to_target_signal(host_sig);
121         if (target_sig < 1 || target_sig > TARGET_NSIG) {
122             continue;
123         }
124         if (sigismember(s, host_sig)) {
125             target_sigaddset(d, target_sig);
126         }
127     }
128 }
129 
130 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
131 {
132     target_sigset_t d1;
133     int i;
134 
135     host_to_target_sigset_internal(&d1, s);
136     for(i = 0;i < TARGET_NSIG_WORDS; i++)
137         d->sig[i] = tswapal(d1.sig[i]);
138 }
139 
140 void target_to_host_sigset_internal(sigset_t *d,
141                                     const target_sigset_t *s)
142 {
143     int host_sig, target_sig;
144     sigemptyset(d);
145     for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
146         host_sig = target_to_host_signal(target_sig);
147         if (host_sig < 1 || host_sig >= _NSIG) {
148             continue;
149         }
150         if (target_sigismember(s, target_sig)) {
151             sigaddset(d, host_sig);
152         }
153     }
154 }
155 
156 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
157 {
158     target_sigset_t s1;
159     int i;
160 
161     for(i = 0;i < TARGET_NSIG_WORDS; i++)
162         s1.sig[i] = tswapal(s->sig[i]);
163     target_to_host_sigset_internal(d, &s1);
164 }
165 
166 void host_to_target_old_sigset(abi_ulong *old_sigset,
167                                const sigset_t *sigset)
168 {
169     target_sigset_t d;
170     host_to_target_sigset(&d, sigset);
171     *old_sigset = d.sig[0];
172 }
173 
174 void target_to_host_old_sigset(sigset_t *sigset,
175                                const abi_ulong *old_sigset)
176 {
177     target_sigset_t d;
178     int i;
179 
180     d.sig[0] = *old_sigset;
181     for(i = 1;i < TARGET_NSIG_WORDS; i++)
182         d.sig[i] = 0;
183     target_to_host_sigset(sigset, &d);
184 }
185 
186 int block_signals(void)
187 {
188     TaskState *ts = (TaskState *)thread_cpu->opaque;
189     sigset_t set;
190 
191     /* It's OK to block everything including SIGSEGV, because we won't
192      * run any further guest code before unblocking signals in
193      * process_pending_signals().
194      */
195     sigfillset(&set);
196     sigprocmask(SIG_SETMASK, &set, 0);
197 
198     return qatomic_xchg(&ts->signal_pending, 1);
199 }
200 
201 /* Wrapper for sigprocmask function
202  * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
203  * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if
204  * a signal was already pending and the syscall must be restarted, or
205  * 0 on success.
206  * If set is NULL, this is guaranteed not to fail.
207  */
208 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
209 {
210     TaskState *ts = (TaskState *)thread_cpu->opaque;
211 
212     if (oldset) {
213         *oldset = ts->signal_mask;
214     }
215 
216     if (set) {
217         int i;
218 
219         if (block_signals()) {
220             return -TARGET_ERESTARTSYS;
221         }
222 
223         switch (how) {
224         case SIG_BLOCK:
225             sigorset(&ts->signal_mask, &ts->signal_mask, set);
226             break;
227         case SIG_UNBLOCK:
228             for (i = 1; i <= NSIG; ++i) {
229                 if (sigismember(set, i)) {
230                     sigdelset(&ts->signal_mask, i);
231                 }
232             }
233             break;
234         case SIG_SETMASK:
235             ts->signal_mask = *set;
236             break;
237         default:
238             g_assert_not_reached();
239         }
240 
241         /* Silently ignore attempts to change blocking status of KILL or STOP */
242         sigdelset(&ts->signal_mask, SIGKILL);
243         sigdelset(&ts->signal_mask, SIGSTOP);
244     }
245     return 0;
246 }
247 
248 #if !defined(TARGET_NIOS2)
249 /* Just set the guest's signal mask to the specified value; the
250  * caller is assumed to have called block_signals() already.
251  */
252 void set_sigmask(const sigset_t *set)
253 {
254     TaskState *ts = (TaskState *)thread_cpu->opaque;
255 
256     ts->signal_mask = *set;
257 }
258 #endif
259 
260 /* sigaltstack management */
261 
262 int on_sig_stack(unsigned long sp)
263 {
264     TaskState *ts = (TaskState *)thread_cpu->opaque;
265 
266     return (sp - ts->sigaltstack_used.ss_sp
267             < ts->sigaltstack_used.ss_size);
268 }
269 
270 int sas_ss_flags(unsigned long sp)
271 {
272     TaskState *ts = (TaskState *)thread_cpu->opaque;
273 
274     return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
275             : on_sig_stack(sp) ? SS_ONSTACK : 0);
276 }
277 
278 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
279 {
280     /*
281      * This is the X/Open sanctioned signal stack switching.
282      */
283     TaskState *ts = (TaskState *)thread_cpu->opaque;
284 
285     if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
286         return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
287     }
288     return sp;
289 }
290 
291 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
292 {
293     TaskState *ts = (TaskState *)thread_cpu->opaque;
294 
295     __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
296     __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
297     __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
298 }
299 
300 /* siginfo conversion */
301 
302 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
303                                                  const siginfo_t *info)
304 {
305     int sig = host_to_target_signal(info->si_signo);
306     int si_code = info->si_code;
307     int si_type;
308     tinfo->si_signo = sig;
309     tinfo->si_errno = 0;
310     tinfo->si_code = info->si_code;
311 
312     /* This memset serves two purposes:
313      * (1) ensure we don't leak random junk to the guest later
314      * (2) placate false positives from gcc about fields
315      *     being used uninitialized if it chooses to inline both this
316      *     function and tswap_siginfo() into host_to_target_siginfo().
317      */
318     memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
319 
320     /* This is awkward, because we have to use a combination of
321      * the si_code and si_signo to figure out which of the union's
322      * members are valid. (Within the host kernel it is always possible
323      * to tell, but the kernel carefully avoids giving userspace the
324      * high 16 bits of si_code, so we don't have the information to
325      * do this the easy way...) We therefore make our best guess,
326      * bearing in mind that a guest can spoof most of the si_codes
327      * via rt_sigqueueinfo() if it likes.
328      *
329      * Once we have made our guess, we record it in the top 16 bits of
330      * the si_code, so that tswap_siginfo() later can use it.
331      * tswap_siginfo() will strip these top bits out before writing
332      * si_code to the guest (sign-extending the lower bits).
333      */
334 
335     switch (si_code) {
336     case SI_USER:
337     case SI_TKILL:
338     case SI_KERNEL:
339         /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
340          * These are the only unspoofable si_code values.
341          */
342         tinfo->_sifields._kill._pid = info->si_pid;
343         tinfo->_sifields._kill._uid = info->si_uid;
344         si_type = QEMU_SI_KILL;
345         break;
346     default:
347         /* Everything else is spoofable. Make best guess based on signal */
348         switch (sig) {
349         case TARGET_SIGCHLD:
350             tinfo->_sifields._sigchld._pid = info->si_pid;
351             tinfo->_sifields._sigchld._uid = info->si_uid;
352             tinfo->_sifields._sigchld._status = info->si_status;
353             tinfo->_sifields._sigchld._utime = info->si_utime;
354             tinfo->_sifields._sigchld._stime = info->si_stime;
355             si_type = QEMU_SI_CHLD;
356             break;
357         case TARGET_SIGIO:
358             tinfo->_sifields._sigpoll._band = info->si_band;
359             tinfo->_sifields._sigpoll._fd = info->si_fd;
360             si_type = QEMU_SI_POLL;
361             break;
362         default:
363             /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
364             tinfo->_sifields._rt._pid = info->si_pid;
365             tinfo->_sifields._rt._uid = info->si_uid;
366             /* XXX: potential problem if 64 bit */
367             tinfo->_sifields._rt._sigval.sival_ptr
368                 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
369             si_type = QEMU_SI_RT;
370             break;
371         }
372         break;
373     }
374 
375     tinfo->si_code = deposit32(si_code, 16, 16, si_type);
376 }
377 
378 void tswap_siginfo(target_siginfo_t *tinfo,
379                    const target_siginfo_t *info)
380 {
381     int si_type = extract32(info->si_code, 16, 16);
382     int si_code = sextract32(info->si_code, 0, 16);
383 
384     __put_user(info->si_signo, &tinfo->si_signo);
385     __put_user(info->si_errno, &tinfo->si_errno);
386     __put_user(si_code, &tinfo->si_code);
387 
388     /* We can use our internal marker of which fields in the structure
389      * are valid, rather than duplicating the guesswork of
390      * host_to_target_siginfo_noswap() here.
391      */
392     switch (si_type) {
393     case QEMU_SI_KILL:
394         __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
395         __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
396         break;
397     case QEMU_SI_TIMER:
398         __put_user(info->_sifields._timer._timer1,
399                    &tinfo->_sifields._timer._timer1);
400         __put_user(info->_sifields._timer._timer2,
401                    &tinfo->_sifields._timer._timer2);
402         break;
403     case QEMU_SI_POLL:
404         __put_user(info->_sifields._sigpoll._band,
405                    &tinfo->_sifields._sigpoll._band);
406         __put_user(info->_sifields._sigpoll._fd,
407                    &tinfo->_sifields._sigpoll._fd);
408         break;
409     case QEMU_SI_FAULT:
410         __put_user(info->_sifields._sigfault._addr,
411                    &tinfo->_sifields._sigfault._addr);
412         break;
413     case QEMU_SI_CHLD:
414         __put_user(info->_sifields._sigchld._pid,
415                    &tinfo->_sifields._sigchld._pid);
416         __put_user(info->_sifields._sigchld._uid,
417                    &tinfo->_sifields._sigchld._uid);
418         __put_user(info->_sifields._sigchld._status,
419                    &tinfo->_sifields._sigchld._status);
420         __put_user(info->_sifields._sigchld._utime,
421                    &tinfo->_sifields._sigchld._utime);
422         __put_user(info->_sifields._sigchld._stime,
423                    &tinfo->_sifields._sigchld._stime);
424         break;
425     case QEMU_SI_RT:
426         __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
427         __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
428         __put_user(info->_sifields._rt._sigval.sival_ptr,
429                    &tinfo->_sifields._rt._sigval.sival_ptr);
430         break;
431     default:
432         g_assert_not_reached();
433     }
434 }
435 
436 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
437 {
438     target_siginfo_t tgt_tmp;
439     host_to_target_siginfo_noswap(&tgt_tmp, info);
440     tswap_siginfo(tinfo, &tgt_tmp);
441 }
442 
443 /* XXX: we support only POSIX RT signals are used. */
444 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
445 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
446 {
447     /* This conversion is used only for the rt_sigqueueinfo syscall,
448      * and so we know that the _rt fields are the valid ones.
449      */
450     abi_ulong sival_ptr;
451 
452     __get_user(info->si_signo, &tinfo->si_signo);
453     __get_user(info->si_errno, &tinfo->si_errno);
454     __get_user(info->si_code, &tinfo->si_code);
455     __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
456     __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
457     __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
458     info->si_value.sival_ptr = (void *)(long)sival_ptr;
459 }
460 
461 static int fatal_signal (int sig)
462 {
463     switch (sig) {
464     case TARGET_SIGCHLD:
465     case TARGET_SIGURG:
466     case TARGET_SIGWINCH:
467         /* Ignored by default.  */
468         return 0;
469     case TARGET_SIGCONT:
470     case TARGET_SIGSTOP:
471     case TARGET_SIGTSTP:
472     case TARGET_SIGTTIN:
473     case TARGET_SIGTTOU:
474         /* Job control signals.  */
475         return 0;
476     default:
477         return 1;
478     }
479 }
480 
481 /* returns 1 if given signal should dump core if not handled */
482 static int core_dump_signal(int sig)
483 {
484     switch (sig) {
485     case TARGET_SIGABRT:
486     case TARGET_SIGFPE:
487     case TARGET_SIGILL:
488     case TARGET_SIGQUIT:
489     case TARGET_SIGSEGV:
490     case TARGET_SIGTRAP:
491     case TARGET_SIGBUS:
492         return (1);
493     default:
494         return (0);
495     }
496 }
497 
498 static void signal_table_init(void)
499 {
500     int host_sig, target_sig, count;
501 
502     /*
503      * Signals are supported starting from TARGET_SIGRTMIN and going up
504      * until we run out of host realtime signals.
505      * glibc at least uses only the lower 2 rt signals and probably
506      * nobody's using the upper ones.
507      * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32)
508      * To fix this properly we need to do manual signal delivery multiplexed
509      * over a single host signal.
510      * Attempts for configure "missing" signals via sigaction will be
511      * silently ignored.
512      */
513     for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) {
514         target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN;
515         if (target_sig <= TARGET_NSIG) {
516             host_to_target_signal_table[host_sig] = target_sig;
517         }
518     }
519 
520     /* generate signal conversion tables */
521     for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
522         target_to_host_signal_table[target_sig] = _NSIG; /* poison */
523     }
524     for (host_sig = 1; host_sig < _NSIG; host_sig++) {
525         if (host_to_target_signal_table[host_sig] == 0) {
526             host_to_target_signal_table[host_sig] = host_sig;
527         }
528         target_sig = host_to_target_signal_table[host_sig];
529         if (target_sig <= TARGET_NSIG) {
530             target_to_host_signal_table[target_sig] = host_sig;
531         }
532     }
533 
534     if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) {
535         for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) {
536             if (target_to_host_signal_table[target_sig] == _NSIG) {
537                 count++;
538             }
539         }
540         trace_signal_table_init(count);
541     }
542 }
543 
544 void signal_init(void)
545 {
546     TaskState *ts = (TaskState *)thread_cpu->opaque;
547     struct sigaction act;
548     struct sigaction oact;
549     int i;
550     int host_sig;
551 
552     /* initialize signal conversion tables */
553     signal_table_init();
554 
555     /* Set the signal mask from the host mask. */
556     sigprocmask(0, 0, &ts->signal_mask);
557 
558     sigfillset(&act.sa_mask);
559     act.sa_flags = SA_SIGINFO;
560     act.sa_sigaction = host_signal_handler;
561     for(i = 1; i <= TARGET_NSIG; i++) {
562 #ifdef CONFIG_GPROF
563         if (i == TARGET_SIGPROF) {
564             continue;
565         }
566 #endif
567         host_sig = target_to_host_signal(i);
568         sigaction(host_sig, NULL, &oact);
569         if (oact.sa_sigaction == (void *)SIG_IGN) {
570             sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
571         } else if (oact.sa_sigaction == (void *)SIG_DFL) {
572             sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
573         }
574         /* If there's already a handler installed then something has
575            gone horribly wrong, so don't even try to handle that case.  */
576         /* Install some handlers for our own use.  We need at least
577            SIGSEGV and SIGBUS, to detect exceptions.  We can not just
578            trap all signals because it affects syscall interrupt
579            behavior.  But do trap all default-fatal signals.  */
580         if (fatal_signal (i))
581             sigaction(host_sig, &act, NULL);
582     }
583 }
584 
585 /* Force a synchronously taken signal. The kernel force_sig() function
586  * also forces the signal to "not blocked, not ignored", but for QEMU
587  * that work is done in process_pending_signals().
588  */
589 void force_sig(int sig)
590 {
591     CPUState *cpu = thread_cpu;
592     CPUArchState *env = cpu->env_ptr;
593     target_siginfo_t info;
594 
595     info.si_signo = sig;
596     info.si_errno = 0;
597     info.si_code = TARGET_SI_KERNEL;
598     info._sifields._kill._pid = 0;
599     info._sifields._kill._uid = 0;
600     queue_signal(env, info.si_signo, QEMU_SI_KILL, &info);
601 }
602 
603 /* Force a SIGSEGV if we couldn't write to memory trying to set
604  * up the signal frame. oldsig is the signal we were trying to handle
605  * at the point of failure.
606  */
607 #if !defined(TARGET_RISCV)
608 void force_sigsegv(int oldsig)
609 {
610     if (oldsig == SIGSEGV) {
611         /* Make sure we don't try to deliver the signal again; this will
612          * end up with handle_pending_signal() calling dump_core_and_abort().
613          */
614         sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
615     }
616     force_sig(TARGET_SIGSEGV);
617 }
618 
619 #endif
620 
621 /* abort execution with signal */
622 static void QEMU_NORETURN dump_core_and_abort(int target_sig)
623 {
624     CPUState *cpu = thread_cpu;
625     CPUArchState *env = cpu->env_ptr;
626     TaskState *ts = (TaskState *)cpu->opaque;
627     int host_sig, core_dumped = 0;
628     struct sigaction act;
629 
630     host_sig = target_to_host_signal(target_sig);
631     trace_user_force_sig(env, target_sig, host_sig);
632     gdb_signalled(env, target_sig);
633 
634     /* dump core if supported by target binary format */
635     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
636         stop_all_tasks();
637         core_dumped =
638             ((*ts->bprm->core_dump)(target_sig, env) == 0);
639     }
640     if (core_dumped) {
641         /* we already dumped the core of target process, we don't want
642          * a coredump of qemu itself */
643         struct rlimit nodump;
644         getrlimit(RLIMIT_CORE, &nodump);
645         nodump.rlim_cur=0;
646         setrlimit(RLIMIT_CORE, &nodump);
647         (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
648             target_sig, strsignal(host_sig), "core dumped" );
649     }
650 
651     /* The proper exit code for dying from an uncaught signal is
652      * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
653      * a negative value.  To get the proper exit code we need to
654      * actually die from an uncaught signal.  Here the default signal
655      * handler is installed, we send ourself a signal and we wait for
656      * it to arrive. */
657     sigfillset(&act.sa_mask);
658     act.sa_handler = SIG_DFL;
659     act.sa_flags = 0;
660     sigaction(host_sig, &act, NULL);
661 
662     /* For some reason raise(host_sig) doesn't send the signal when
663      * statically linked on x86-64. */
664     kill(getpid(), host_sig);
665 
666     /* Make sure the signal isn't masked (just reuse the mask inside
667     of act) */
668     sigdelset(&act.sa_mask, host_sig);
669     sigsuspend(&act.sa_mask);
670 
671     /* unreachable */
672     abort();
673 }
674 
675 /* queue a signal so that it will be send to the virtual CPU as soon
676    as possible */
677 int queue_signal(CPUArchState *env, int sig, int si_type,
678                  target_siginfo_t *info)
679 {
680     CPUState *cpu = env_cpu(env);
681     TaskState *ts = cpu->opaque;
682 
683     trace_user_queue_signal(env, sig);
684 
685     info->si_code = deposit32(info->si_code, 16, 16, si_type);
686 
687     ts->sync_signal.info = *info;
688     ts->sync_signal.pending = sig;
689     /* signal that a new signal is pending */
690     qatomic_set(&ts->signal_pending, 1);
691     return 1; /* indicates that the signal was queued */
692 }
693 
694 #ifndef HAVE_SAFE_SYSCALL
695 static inline void rewind_if_in_safe_syscall(void *puc)
696 {
697     /* Default version: never rewind */
698 }
699 #endif
700 
701 static void host_signal_handler(int host_signum, siginfo_t *info,
702                                 void *puc)
703 {
704     CPUArchState *env = thread_cpu->env_ptr;
705     CPUState *cpu = env_cpu(env);
706     TaskState *ts = cpu->opaque;
707 
708     int sig;
709     target_siginfo_t tinfo;
710     ucontext_t *uc = puc;
711     struct emulated_sigtable *k;
712 
713     /* the CPU emulator uses some host signals to detect exceptions,
714        we forward to it some signals */
715     if ((host_signum == SIGSEGV || host_signum == SIGBUS)
716         && info->si_code > 0) {
717         if (cpu_signal_handler(host_signum, info, puc))
718             return;
719     }
720 
721     /* get target signal number */
722     sig = host_to_target_signal(host_signum);
723     if (sig < 1 || sig > TARGET_NSIG)
724         return;
725     trace_user_host_signal(env, host_signum, sig);
726 
727     rewind_if_in_safe_syscall(puc);
728 
729     host_to_target_siginfo_noswap(&tinfo, info);
730     k = &ts->sigtab[sig - 1];
731     k->info = tinfo;
732     k->pending = sig;
733     ts->signal_pending = 1;
734 
735     /* Block host signals until target signal handler entered. We
736      * can't block SIGSEGV or SIGBUS while we're executing guest
737      * code in case the guest code provokes one in the window between
738      * now and it getting out to the main loop. Signals will be
739      * unblocked again in process_pending_signals().
740      *
741      * WARNING: we cannot use sigfillset() here because the uc_sigmask
742      * field is a kernel sigset_t, which is much smaller than the
743      * libc sigset_t which sigfillset() operates on. Using sigfillset()
744      * would write 0xff bytes off the end of the structure and trash
745      * data on the struct.
746      * We can't use sizeof(uc->uc_sigmask) either, because the libc
747      * headers define the struct field with the wrong (too large) type.
748      */
749     memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE);
750     sigdelset(&uc->uc_sigmask, SIGSEGV);
751     sigdelset(&uc->uc_sigmask, SIGBUS);
752 
753     /* interrupt the virtual CPU as soon as possible */
754     cpu_exit(thread_cpu);
755 }
756 
757 /* do_sigaltstack() returns target values and errnos. */
758 /* compare linux/kernel/signal.c:do_sigaltstack() */
759 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
760 {
761     int ret;
762     struct target_sigaltstack oss;
763     TaskState *ts = (TaskState *)thread_cpu->opaque;
764 
765     /* XXX: test errors */
766     if(uoss_addr)
767     {
768         __put_user(ts->sigaltstack_used.ss_sp, &oss.ss_sp);
769         __put_user(ts->sigaltstack_used.ss_size, &oss.ss_size);
770         __put_user(sas_ss_flags(sp), &oss.ss_flags);
771     }
772 
773     if(uss_addr)
774     {
775         struct target_sigaltstack *uss;
776         struct target_sigaltstack ss;
777         size_t minstacksize = TARGET_MINSIGSTKSZ;
778 
779 #if defined(TARGET_PPC64)
780         /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
781         struct image_info *image = ((TaskState *)thread_cpu->opaque)->info;
782         if (get_ppc64_abi(image) > 1) {
783             minstacksize = 4096;
784         }
785 #endif
786 
787         ret = -TARGET_EFAULT;
788         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
789             goto out;
790         }
791         __get_user(ss.ss_sp, &uss->ss_sp);
792         __get_user(ss.ss_size, &uss->ss_size);
793         __get_user(ss.ss_flags, &uss->ss_flags);
794         unlock_user_struct(uss, uss_addr, 0);
795 
796         ret = -TARGET_EPERM;
797         if (on_sig_stack(sp))
798             goto out;
799 
800         ret = -TARGET_EINVAL;
801         if (ss.ss_flags != TARGET_SS_DISABLE
802             && ss.ss_flags != TARGET_SS_ONSTACK
803             && ss.ss_flags != 0)
804             goto out;
805 
806         if (ss.ss_flags == TARGET_SS_DISABLE) {
807             ss.ss_size = 0;
808             ss.ss_sp = 0;
809         } else {
810             ret = -TARGET_ENOMEM;
811             if (ss.ss_size < minstacksize) {
812                 goto out;
813             }
814         }
815 
816         ts->sigaltstack_used.ss_sp = ss.ss_sp;
817         ts->sigaltstack_used.ss_size = ss.ss_size;
818     }
819 
820     if (uoss_addr) {
821         ret = -TARGET_EFAULT;
822         if (copy_to_user(uoss_addr, &oss, sizeof(oss)))
823             goto out;
824     }
825 
826     ret = 0;
827 out:
828     return ret;
829 }
830 
831 /* do_sigaction() return target values and host errnos */
832 int do_sigaction(int sig, const struct target_sigaction *act,
833                  struct target_sigaction *oact)
834 {
835     struct target_sigaction *k;
836     struct sigaction act1;
837     int host_sig;
838     int ret = 0;
839 
840     trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
841 
842     if (sig < 1 || sig > TARGET_NSIG || sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) {
843         return -TARGET_EINVAL;
844     }
845 
846     if (block_signals()) {
847         return -TARGET_ERESTARTSYS;
848     }
849 
850     k = &sigact_table[sig - 1];
851     if (oact) {
852         __put_user(k->_sa_handler, &oact->_sa_handler);
853         __put_user(k->sa_flags, &oact->sa_flags);
854 #ifdef TARGET_ARCH_HAS_SA_RESTORER
855         __put_user(k->sa_restorer, &oact->sa_restorer);
856 #endif
857         /* Not swapped.  */
858         oact->sa_mask = k->sa_mask;
859     }
860     if (act) {
861         /* FIXME: This is not threadsafe.  */
862         __get_user(k->_sa_handler, &act->_sa_handler);
863         __get_user(k->sa_flags, &act->sa_flags);
864 #ifdef TARGET_ARCH_HAS_SA_RESTORER
865         __get_user(k->sa_restorer, &act->sa_restorer);
866 #endif
867         /* To be swapped in target_to_host_sigset.  */
868         k->sa_mask = act->sa_mask;
869 
870         /* we update the host linux signal state */
871         host_sig = target_to_host_signal(sig);
872         trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
873         if (host_sig > SIGRTMAX) {
874             /* we don't have enough host signals to map all target signals */
875             qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
876                           sig);
877             /*
878              * we don't return an error here because some programs try to
879              * register an handler for all possible rt signals even if they
880              * don't need it.
881              * An error here can abort them whereas there can be no problem
882              * to not have the signal available later.
883              * This is the case for golang,
884              *   See https://github.com/golang/go/issues/33746
885              * So we silently ignore the error.
886              */
887             return 0;
888         }
889         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
890             sigfillset(&act1.sa_mask);
891             act1.sa_flags = SA_SIGINFO;
892             if (k->sa_flags & TARGET_SA_RESTART)
893                 act1.sa_flags |= SA_RESTART;
894             /* NOTE: it is important to update the host kernel signal
895                ignore state to avoid getting unexpected interrupted
896                syscalls */
897             if (k->_sa_handler == TARGET_SIG_IGN) {
898                 act1.sa_sigaction = (void *)SIG_IGN;
899             } else if (k->_sa_handler == TARGET_SIG_DFL) {
900                 if (fatal_signal (sig))
901                     act1.sa_sigaction = host_signal_handler;
902                 else
903                     act1.sa_sigaction = (void *)SIG_DFL;
904             } else {
905                 act1.sa_sigaction = host_signal_handler;
906             }
907             ret = sigaction(host_sig, &act1, NULL);
908         }
909     }
910     return ret;
911 }
912 
913 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
914                                   struct emulated_sigtable *k)
915 {
916     CPUState *cpu = env_cpu(cpu_env);
917     abi_ulong handler;
918     sigset_t set;
919     target_sigset_t target_old_set;
920     struct target_sigaction *sa;
921     TaskState *ts = cpu->opaque;
922 
923     trace_user_handle_signal(cpu_env, sig);
924     /* dequeue signal */
925     k->pending = 0;
926 
927     sig = gdb_handlesig(cpu, sig);
928     if (!sig) {
929         sa = NULL;
930         handler = TARGET_SIG_IGN;
931     } else {
932         sa = &sigact_table[sig - 1];
933         handler = sa->_sa_handler;
934     }
935 
936     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
937         print_taken_signal(sig, &k->info);
938     }
939 
940     if (handler == TARGET_SIG_DFL) {
941         /* default handler : ignore some signal. The other are job control or fatal */
942         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
943             kill(getpid(),SIGSTOP);
944         } else if (sig != TARGET_SIGCHLD &&
945                    sig != TARGET_SIGURG &&
946                    sig != TARGET_SIGWINCH &&
947                    sig != TARGET_SIGCONT) {
948             dump_core_and_abort(sig);
949         }
950     } else if (handler == TARGET_SIG_IGN) {
951         /* ignore sig */
952     } else if (handler == TARGET_SIG_ERR) {
953         dump_core_and_abort(sig);
954     } else {
955         /* compute the blocked signals during the handler execution */
956         sigset_t *blocked_set;
957 
958         target_to_host_sigset(&set, &sa->sa_mask);
959         /* SA_NODEFER indicates that the current signal should not be
960            blocked during the handler */
961         if (!(sa->sa_flags & TARGET_SA_NODEFER))
962             sigaddset(&set, target_to_host_signal(sig));
963 
964         /* save the previous blocked signal state to restore it at the
965            end of the signal execution (see do_sigreturn) */
966         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
967 
968         /* block signals in the handler */
969         blocked_set = ts->in_sigsuspend ?
970             &ts->sigsuspend_mask : &ts->signal_mask;
971         sigorset(&ts->signal_mask, blocked_set, &set);
972         ts->in_sigsuspend = 0;
973 
974         /* if the CPU is in VM86 mode, we restore the 32 bit values */
975 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
976         {
977             CPUX86State *env = cpu_env;
978             if (env->eflags & VM_MASK)
979                 save_v86_state(env);
980         }
981 #endif
982         /* prepare the stack frame of the virtual CPU */
983 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
984         if (sa->sa_flags & TARGET_SA_SIGINFO) {
985             setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
986         } else {
987             setup_frame(sig, sa, &target_old_set, cpu_env);
988         }
989 #else
990         /* These targets do not have traditional signals.  */
991         setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
992 #endif
993         if (sa->sa_flags & TARGET_SA_RESETHAND) {
994             sa->_sa_handler = TARGET_SIG_DFL;
995         }
996     }
997 }
998 
999 void process_pending_signals(CPUArchState *cpu_env)
1000 {
1001     CPUState *cpu = env_cpu(cpu_env);
1002     int sig;
1003     TaskState *ts = cpu->opaque;
1004     sigset_t set;
1005     sigset_t *blocked_set;
1006 
1007     while (qatomic_read(&ts->signal_pending)) {
1008         /* FIXME: This is not threadsafe.  */
1009         sigfillset(&set);
1010         sigprocmask(SIG_SETMASK, &set, 0);
1011 
1012     restart_scan:
1013         sig = ts->sync_signal.pending;
1014         if (sig) {
1015             /* Synchronous signals are forced,
1016              * see force_sig_info() and callers in Linux
1017              * Note that not all of our queue_signal() calls in QEMU correspond
1018              * to force_sig_info() calls in Linux (some are send_sig_info()).
1019              * However it seems like a kernel bug to me to allow the process
1020              * to block a synchronous signal since it could then just end up
1021              * looping round and round indefinitely.
1022              */
1023             if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
1024                 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
1025                 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
1026                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1027             }
1028 
1029             handle_pending_signal(cpu_env, sig, &ts->sync_signal);
1030         }
1031 
1032         for (sig = 1; sig <= TARGET_NSIG; sig++) {
1033             blocked_set = ts->in_sigsuspend ?
1034                 &ts->sigsuspend_mask : &ts->signal_mask;
1035 
1036             if (ts->sigtab[sig - 1].pending &&
1037                 (!sigismember(blocked_set,
1038                               target_to_host_signal_table[sig]))) {
1039                 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
1040                 /* Restart scan from the beginning, as handle_pending_signal
1041                  * might have resulted in a new synchronous signal (eg SIGSEGV).
1042                  */
1043                 goto restart_scan;
1044             }
1045         }
1046 
1047         /* if no signal is pending, unblock signals and recheck (the act
1048          * of unblocking might cause us to take another host signal which
1049          * will set signal_pending again).
1050          */
1051         qatomic_set(&ts->signal_pending, 0);
1052         ts->in_sigsuspend = 0;
1053         set = ts->signal_mask;
1054         sigdelset(&set, SIGSEGV);
1055         sigdelset(&set, SIGBUS);
1056         sigprocmask(SIG_SETMASK, &set, 0);
1057     }
1058     ts->in_sigsuspend = 0;
1059 }
1060