xref: /openbmc/qemu/linux-user/signal.c (revision 01c3ac68)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "gdbstub/user.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 
24 #include <sys/ucontext.h>
25 #include <sys/resource.h>
26 
27 #include "qemu.h"
28 #include "user-internals.h"
29 #include "strace.h"
30 #include "loader.h"
31 #include "trace.h"
32 #include "signal-common.h"
33 #include "host-signal.h"
34 #include "user/safe-syscall.h"
35 #include "tcg/tcg.h"
36 
37 /* target_siginfo_t must fit in gdbstub's siginfo save area. */
38 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH);
39 
40 static struct target_sigaction sigact_table[TARGET_NSIG];
41 
42 static void host_signal_handler(int host_signum, siginfo_t *info,
43                                 void *puc);
44 
45 /* Fallback addresses into sigtramp page. */
46 abi_ulong default_sigreturn;
47 abi_ulong default_rt_sigreturn;
48 
49 /*
50  * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel)
51  * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1.
52  * Signal number 0 is reserved for use as kill(pid, 0), to test whether
53  * a process exists without sending it a signal.
54  */
55 #ifdef __SIGRTMAX
56 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
57 #endif
58 static uint8_t host_to_target_signal_table[_NSIG] = {
59 #define MAKE_SIG_ENTRY(sig)     [sig] = TARGET_##sig,
60         MAKE_SIGNAL_LIST
61 #undef MAKE_SIG_ENTRY
62 };
63 
64 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
65 
66 /* valid sig is between 1 and _NSIG - 1 */
67 int host_to_target_signal(int sig)
68 {
69     if (sig < 1) {
70         return sig;
71     }
72     if (sig >= _NSIG) {
73         return TARGET_NSIG + 1;
74     }
75     return host_to_target_signal_table[sig];
76 }
77 
78 /* valid sig is between 1 and TARGET_NSIG */
79 int target_to_host_signal(int sig)
80 {
81     if (sig < 1) {
82         return sig;
83     }
84     if (sig > TARGET_NSIG) {
85         return _NSIG;
86     }
87     return target_to_host_signal_table[sig];
88 }
89 
90 static inline void target_sigaddset(target_sigset_t *set, int signum)
91 {
92     signum--;
93     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
94     set->sig[signum / TARGET_NSIG_BPW] |= mask;
95 }
96 
97 static inline int target_sigismember(const target_sigset_t *set, int signum)
98 {
99     signum--;
100     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
101     return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
102 }
103 
104 void host_to_target_sigset_internal(target_sigset_t *d,
105                                     const sigset_t *s)
106 {
107     int host_sig, target_sig;
108     target_sigemptyset(d);
109     for (host_sig = 1; host_sig < _NSIG; host_sig++) {
110         target_sig = host_to_target_signal(host_sig);
111         if (target_sig < 1 || target_sig > TARGET_NSIG) {
112             continue;
113         }
114         if (sigismember(s, host_sig)) {
115             target_sigaddset(d, target_sig);
116         }
117     }
118 }
119 
120 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
121 {
122     target_sigset_t d1;
123     int i;
124 
125     host_to_target_sigset_internal(&d1, s);
126     for(i = 0;i < TARGET_NSIG_WORDS; i++)
127         d->sig[i] = tswapal(d1.sig[i]);
128 }
129 
130 void target_to_host_sigset_internal(sigset_t *d,
131                                     const target_sigset_t *s)
132 {
133     int host_sig, target_sig;
134     sigemptyset(d);
135     for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
136         host_sig = target_to_host_signal(target_sig);
137         if (host_sig < 1 || host_sig >= _NSIG) {
138             continue;
139         }
140         if (target_sigismember(s, target_sig)) {
141             sigaddset(d, host_sig);
142         }
143     }
144 }
145 
146 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
147 {
148     target_sigset_t s1;
149     int i;
150 
151     for(i = 0;i < TARGET_NSIG_WORDS; i++)
152         s1.sig[i] = tswapal(s->sig[i]);
153     target_to_host_sigset_internal(d, &s1);
154 }
155 
156 void host_to_target_old_sigset(abi_ulong *old_sigset,
157                                const sigset_t *sigset)
158 {
159     target_sigset_t d;
160     host_to_target_sigset(&d, sigset);
161     *old_sigset = d.sig[0];
162 }
163 
164 void target_to_host_old_sigset(sigset_t *sigset,
165                                const abi_ulong *old_sigset)
166 {
167     target_sigset_t d;
168     int i;
169 
170     d.sig[0] = *old_sigset;
171     for(i = 1;i < TARGET_NSIG_WORDS; i++)
172         d.sig[i] = 0;
173     target_to_host_sigset(sigset, &d);
174 }
175 
176 int block_signals(void)
177 {
178     TaskState *ts = get_task_state(thread_cpu);
179     sigset_t set;
180 
181     /* It's OK to block everything including SIGSEGV, because we won't
182      * run any further guest code before unblocking signals in
183      * process_pending_signals().
184      */
185     sigfillset(&set);
186     sigprocmask(SIG_SETMASK, &set, 0);
187 
188     return qatomic_xchg(&ts->signal_pending, 1);
189 }
190 
191 /* Wrapper for sigprocmask function
192  * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
193  * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
194  * a signal was already pending and the syscall must be restarted, or
195  * 0 on success.
196  * If set is NULL, this is guaranteed not to fail.
197  */
198 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
199 {
200     TaskState *ts = get_task_state(thread_cpu);
201 
202     if (oldset) {
203         *oldset = ts->signal_mask;
204     }
205 
206     if (set) {
207         int i;
208 
209         if (block_signals()) {
210             return -QEMU_ERESTARTSYS;
211         }
212 
213         switch (how) {
214         case SIG_BLOCK:
215             sigorset(&ts->signal_mask, &ts->signal_mask, set);
216             break;
217         case SIG_UNBLOCK:
218             for (i = 1; i <= NSIG; ++i) {
219                 if (sigismember(set, i)) {
220                     sigdelset(&ts->signal_mask, i);
221                 }
222             }
223             break;
224         case SIG_SETMASK:
225             ts->signal_mask = *set;
226             break;
227         default:
228             g_assert_not_reached();
229         }
230 
231         /* Silently ignore attempts to change blocking status of KILL or STOP */
232         sigdelset(&ts->signal_mask, SIGKILL);
233         sigdelset(&ts->signal_mask, SIGSTOP);
234     }
235     return 0;
236 }
237 
238 /* Just set the guest's signal mask to the specified value; the
239  * caller is assumed to have called block_signals() already.
240  */
241 void set_sigmask(const sigset_t *set)
242 {
243     TaskState *ts = get_task_state(thread_cpu);
244 
245     ts->signal_mask = *set;
246 }
247 
248 /* sigaltstack management */
249 
250 int on_sig_stack(unsigned long sp)
251 {
252     TaskState *ts = get_task_state(thread_cpu);
253 
254     return (sp - ts->sigaltstack_used.ss_sp
255             < ts->sigaltstack_used.ss_size);
256 }
257 
258 int sas_ss_flags(unsigned long sp)
259 {
260     TaskState *ts = get_task_state(thread_cpu);
261 
262     return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
263             : on_sig_stack(sp) ? SS_ONSTACK : 0);
264 }
265 
266 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
267 {
268     /*
269      * This is the X/Open sanctioned signal stack switching.
270      */
271     TaskState *ts = get_task_state(thread_cpu);
272 
273     if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
274         return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
275     }
276     return sp;
277 }
278 
279 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
280 {
281     TaskState *ts = get_task_state(thread_cpu);
282 
283     __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
284     __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
285     __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
286 }
287 
288 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
289 {
290     TaskState *ts = get_task_state(thread_cpu);
291     size_t minstacksize = TARGET_MINSIGSTKSZ;
292     target_stack_t ss;
293 
294 #if defined(TARGET_PPC64)
295     /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
296     struct image_info *image = ts->info;
297     if (get_ppc64_abi(image) > 1) {
298         minstacksize = 4096;
299     }
300 #endif
301 
302     __get_user(ss.ss_sp, &uss->ss_sp);
303     __get_user(ss.ss_size, &uss->ss_size);
304     __get_user(ss.ss_flags, &uss->ss_flags);
305 
306     if (on_sig_stack(get_sp_from_cpustate(env))) {
307         return -TARGET_EPERM;
308     }
309 
310     switch (ss.ss_flags) {
311     default:
312         return -TARGET_EINVAL;
313 
314     case TARGET_SS_DISABLE:
315         ss.ss_size = 0;
316         ss.ss_sp = 0;
317         break;
318 
319     case TARGET_SS_ONSTACK:
320     case 0:
321         if (ss.ss_size < minstacksize) {
322             return -TARGET_ENOMEM;
323         }
324         break;
325     }
326 
327     ts->sigaltstack_used.ss_sp = ss.ss_sp;
328     ts->sigaltstack_used.ss_size = ss.ss_size;
329     return 0;
330 }
331 
332 /* siginfo conversion */
333 
334 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
335                                                  const siginfo_t *info)
336 {
337     int sig = host_to_target_signal(info->si_signo);
338     int si_code = info->si_code;
339     int si_type;
340     tinfo->si_signo = sig;
341     tinfo->si_errno = 0;
342     tinfo->si_code = info->si_code;
343 
344     /* This memset serves two purposes:
345      * (1) ensure we don't leak random junk to the guest later
346      * (2) placate false positives from gcc about fields
347      *     being used uninitialized if it chooses to inline both this
348      *     function and tswap_siginfo() into host_to_target_siginfo().
349      */
350     memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
351 
352     /* This is awkward, because we have to use a combination of
353      * the si_code and si_signo to figure out which of the union's
354      * members are valid. (Within the host kernel it is always possible
355      * to tell, but the kernel carefully avoids giving userspace the
356      * high 16 bits of si_code, so we don't have the information to
357      * do this the easy way...) We therefore make our best guess,
358      * bearing in mind that a guest can spoof most of the si_codes
359      * via rt_sigqueueinfo() if it likes.
360      *
361      * Once we have made our guess, we record it in the top 16 bits of
362      * the si_code, so that tswap_siginfo() later can use it.
363      * tswap_siginfo() will strip these top bits out before writing
364      * si_code to the guest (sign-extending the lower bits).
365      */
366 
367     switch (si_code) {
368     case SI_USER:
369     case SI_TKILL:
370     case SI_KERNEL:
371         /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
372          * These are the only unspoofable si_code values.
373          */
374         tinfo->_sifields._kill._pid = info->si_pid;
375         tinfo->_sifields._kill._uid = info->si_uid;
376         si_type = QEMU_SI_KILL;
377         break;
378     default:
379         /* Everything else is spoofable. Make best guess based on signal */
380         switch (sig) {
381         case TARGET_SIGCHLD:
382             tinfo->_sifields._sigchld._pid = info->si_pid;
383             tinfo->_sifields._sigchld._uid = info->si_uid;
384             if (si_code == CLD_EXITED)
385                 tinfo->_sifields._sigchld._status = info->si_status;
386             else
387                 tinfo->_sifields._sigchld._status
388                     = host_to_target_signal(info->si_status & 0x7f)
389                         | (info->si_status & ~0x7f);
390             tinfo->_sifields._sigchld._utime = info->si_utime;
391             tinfo->_sifields._sigchld._stime = info->si_stime;
392             si_type = QEMU_SI_CHLD;
393             break;
394         case TARGET_SIGIO:
395             tinfo->_sifields._sigpoll._band = info->si_band;
396             tinfo->_sifields._sigpoll._fd = info->si_fd;
397             si_type = QEMU_SI_POLL;
398             break;
399         default:
400             /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
401             tinfo->_sifields._rt._pid = info->si_pid;
402             tinfo->_sifields._rt._uid = info->si_uid;
403             /* XXX: potential problem if 64 bit */
404             tinfo->_sifields._rt._sigval.sival_ptr
405                 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
406             si_type = QEMU_SI_RT;
407             break;
408         }
409         break;
410     }
411 
412     tinfo->si_code = deposit32(si_code, 16, 16, si_type);
413 }
414 
415 static void tswap_siginfo(target_siginfo_t *tinfo,
416                           const target_siginfo_t *info)
417 {
418     int si_type = extract32(info->si_code, 16, 16);
419     int si_code = sextract32(info->si_code, 0, 16);
420 
421     __put_user(info->si_signo, &tinfo->si_signo);
422     __put_user(info->si_errno, &tinfo->si_errno);
423     __put_user(si_code, &tinfo->si_code);
424 
425     /* We can use our internal marker of which fields in the structure
426      * are valid, rather than duplicating the guesswork of
427      * host_to_target_siginfo_noswap() here.
428      */
429     switch (si_type) {
430     case QEMU_SI_KILL:
431         __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
432         __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
433         break;
434     case QEMU_SI_TIMER:
435         __put_user(info->_sifields._timer._timer1,
436                    &tinfo->_sifields._timer._timer1);
437         __put_user(info->_sifields._timer._timer2,
438                    &tinfo->_sifields._timer._timer2);
439         break;
440     case QEMU_SI_POLL:
441         __put_user(info->_sifields._sigpoll._band,
442                    &tinfo->_sifields._sigpoll._band);
443         __put_user(info->_sifields._sigpoll._fd,
444                    &tinfo->_sifields._sigpoll._fd);
445         break;
446     case QEMU_SI_FAULT:
447         __put_user(info->_sifields._sigfault._addr,
448                    &tinfo->_sifields._sigfault._addr);
449         break;
450     case QEMU_SI_CHLD:
451         __put_user(info->_sifields._sigchld._pid,
452                    &tinfo->_sifields._sigchld._pid);
453         __put_user(info->_sifields._sigchld._uid,
454                    &tinfo->_sifields._sigchld._uid);
455         __put_user(info->_sifields._sigchld._status,
456                    &tinfo->_sifields._sigchld._status);
457         __put_user(info->_sifields._sigchld._utime,
458                    &tinfo->_sifields._sigchld._utime);
459         __put_user(info->_sifields._sigchld._stime,
460                    &tinfo->_sifields._sigchld._stime);
461         break;
462     case QEMU_SI_RT:
463         __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
464         __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
465         __put_user(info->_sifields._rt._sigval.sival_ptr,
466                    &tinfo->_sifields._rt._sigval.sival_ptr);
467         break;
468     default:
469         g_assert_not_reached();
470     }
471 }
472 
473 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
474 {
475     target_siginfo_t tgt_tmp;
476     host_to_target_siginfo_noswap(&tgt_tmp, info);
477     tswap_siginfo(tinfo, &tgt_tmp);
478 }
479 
480 /* XXX: we support only POSIX RT signals are used. */
481 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
482 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
483 {
484     /* This conversion is used only for the rt_sigqueueinfo syscall,
485      * and so we know that the _rt fields are the valid ones.
486      */
487     abi_ulong sival_ptr;
488 
489     __get_user(info->si_signo, &tinfo->si_signo);
490     __get_user(info->si_errno, &tinfo->si_errno);
491     __get_user(info->si_code, &tinfo->si_code);
492     __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
493     __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
494     __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
495     info->si_value.sival_ptr = (void *)(long)sival_ptr;
496 }
497 
498 /* returns 1 if given signal should dump core if not handled */
499 static int core_dump_signal(int sig)
500 {
501     switch (sig) {
502     case TARGET_SIGABRT:
503     case TARGET_SIGFPE:
504     case TARGET_SIGILL:
505     case TARGET_SIGQUIT:
506     case TARGET_SIGSEGV:
507     case TARGET_SIGTRAP:
508     case TARGET_SIGBUS:
509         return (1);
510     default:
511         return (0);
512     }
513 }
514 
515 static void signal_table_init(void)
516 {
517     int hsig, tsig, count;
518 
519     /*
520      * Signals are supported starting from TARGET_SIGRTMIN and going up
521      * until we run out of host realtime signals.  Glibc uses the lower 2
522      * RT signals and (hopefully) nobody uses the upper ones.
523      * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32).
524      * To fix this properly we would need to do manual signal delivery
525      * multiplexed over a single host signal.
526      * Attempts for configure "missing" signals via sigaction will be
527      * silently ignored.
528      *
529      * Remap the target SIGABRT, so that we can distinguish host abort
530      * from guest abort.  When the guest registers a signal handler or
531      * calls raise(SIGABRT), the host will raise SIG_RTn.  If the guest
532      * arrives at dump_core_and_abort(), we will map back to host SIGABRT
533      * so that the parent (native or emulated) sees the correct signal.
534      * Finally, also map host to guest SIGABRT so that the emulated
535      * parent sees the correct mapping from wait status.
536      */
537 
538     hsig = SIGRTMIN;
539     host_to_target_signal_table[SIGABRT] = 0;
540     host_to_target_signal_table[hsig++] = TARGET_SIGABRT;
541 
542     for (tsig = TARGET_SIGRTMIN;
543          hsig <= SIGRTMAX && tsig <= TARGET_NSIG;
544          hsig++, tsig++) {
545         host_to_target_signal_table[hsig] = tsig;
546     }
547 
548     /* Invert the mapping that has already been assigned. */
549     for (hsig = 1; hsig < _NSIG; hsig++) {
550         tsig = host_to_target_signal_table[hsig];
551         if (tsig) {
552             assert(target_to_host_signal_table[tsig] == 0);
553             target_to_host_signal_table[tsig] = hsig;
554         }
555     }
556 
557     host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT;
558 
559     /* Map everything else out-of-bounds. */
560     for (hsig = 1; hsig < _NSIG; hsig++) {
561         if (host_to_target_signal_table[hsig] == 0) {
562             host_to_target_signal_table[hsig] = TARGET_NSIG + 1;
563         }
564     }
565     for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) {
566         if (target_to_host_signal_table[tsig] == 0) {
567             target_to_host_signal_table[tsig] = _NSIG;
568             count++;
569         }
570     }
571 
572     trace_signal_table_init(count);
573 }
574 
575 void signal_init(void)
576 {
577     TaskState *ts = get_task_state(thread_cpu);
578     struct sigaction act, oact;
579 
580     /* initialize signal conversion tables */
581     signal_table_init();
582 
583     /* Set the signal mask from the host mask. */
584     sigprocmask(0, 0, &ts->signal_mask);
585 
586     sigfillset(&act.sa_mask);
587     act.sa_flags = SA_SIGINFO;
588     act.sa_sigaction = host_signal_handler;
589 
590     /*
591      * A parent process may configure ignored signals, but all other
592      * signals are default.  For any target signals that have no host
593      * mapping, set to ignore.  For all core_dump_signal, install our
594      * host signal handler so that we may invoke dump_core_and_abort.
595      * This includes SIGSEGV and SIGBUS, which are also need our signal
596      * handler for paging and exceptions.
597      */
598     for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) {
599         int hsig = target_to_host_signal(tsig);
600         abi_ptr thand = TARGET_SIG_IGN;
601 
602         if (hsig >= _NSIG) {
603             continue;
604         }
605 
606         /* As we force remap SIGABRT, cannot probe and install in one step. */
607         if (tsig == TARGET_SIGABRT) {
608             sigaction(SIGABRT, NULL, &oact);
609             sigaction(hsig, &act, NULL);
610         } else {
611             struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL;
612             sigaction(hsig, iact, &oact);
613         }
614 
615         if (oact.sa_sigaction != (void *)SIG_IGN) {
616             thand = TARGET_SIG_DFL;
617         }
618         sigact_table[tsig - 1]._sa_handler = thand;
619     }
620 }
621 
622 /* Force a synchronously taken signal. The kernel force_sig() function
623  * also forces the signal to "not blocked, not ignored", but for QEMU
624  * that work is done in process_pending_signals().
625  */
626 void force_sig(int sig)
627 {
628     CPUState *cpu = thread_cpu;
629     target_siginfo_t info = {};
630 
631     info.si_signo = sig;
632     info.si_errno = 0;
633     info.si_code = TARGET_SI_KERNEL;
634     info._sifields._kill._pid = 0;
635     info._sifields._kill._uid = 0;
636     queue_signal(cpu_env(cpu), info.si_signo, QEMU_SI_KILL, &info);
637 }
638 
639 /*
640  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
641  * 'force' part is handled in process_pending_signals().
642  */
643 void force_sig_fault(int sig, int code, abi_ulong addr)
644 {
645     CPUState *cpu = thread_cpu;
646     target_siginfo_t info = {};
647 
648     info.si_signo = sig;
649     info.si_errno = 0;
650     info.si_code = code;
651     info._sifields._sigfault._addr = addr;
652     queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
653 }
654 
655 /* Force a SIGSEGV if we couldn't write to memory trying to set
656  * up the signal frame. oldsig is the signal we were trying to handle
657  * at the point of failure.
658  */
659 #if !defined(TARGET_RISCV)
660 void force_sigsegv(int oldsig)
661 {
662     if (oldsig == SIGSEGV) {
663         /* Make sure we don't try to deliver the signal again; this will
664          * end up with handle_pending_signal() calling dump_core_and_abort().
665          */
666         sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
667     }
668     force_sig(TARGET_SIGSEGV);
669 }
670 #endif
671 
672 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
673                            MMUAccessType access_type, bool maperr, uintptr_t ra)
674 {
675     const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
676 
677     if (tcg_ops->record_sigsegv) {
678         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
679     }
680 
681     force_sig_fault(TARGET_SIGSEGV,
682                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
683                     addr);
684     cpu->exception_index = EXCP_INTERRUPT;
685     cpu_loop_exit_restore(cpu, ra);
686 }
687 
688 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
689                           MMUAccessType access_type, uintptr_t ra)
690 {
691     const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
692 
693     if (tcg_ops->record_sigbus) {
694         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
695     }
696 
697     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
698     cpu->exception_index = EXCP_INTERRUPT;
699     cpu_loop_exit_restore(cpu, ra);
700 }
701 
702 /* abort execution with signal */
703 static G_NORETURN
704 void die_with_signal(int host_sig)
705 {
706     struct sigaction act = {
707         .sa_handler = SIG_DFL,
708     };
709 
710     /*
711      * The proper exit code for dying from an uncaught signal is -<signal>.
712      * The kernel doesn't allow exit() or _exit() to pass a negative value.
713      * To get the proper exit code we need to actually die from an uncaught
714      * signal.  Here the default signal handler is installed, we send
715      * the signal and we wait for it to arrive.
716      */
717     sigfillset(&act.sa_mask);
718     sigaction(host_sig, &act, NULL);
719 
720     kill(getpid(), host_sig);
721 
722     /* Make sure the signal isn't masked (reusing the mask inside of act). */
723     sigdelset(&act.sa_mask, host_sig);
724     sigsuspend(&act.sa_mask);
725 
726     /* unreachable */
727     _exit(EXIT_FAILURE);
728 }
729 
730 static G_NORETURN
731 void dump_core_and_abort(CPUArchState *env, int target_sig)
732 {
733     CPUState *cpu = env_cpu(env);
734     TaskState *ts = get_task_state(cpu);
735     int host_sig, core_dumped = 0;
736 
737     /* On exit, undo the remapping of SIGABRT. */
738     if (target_sig == TARGET_SIGABRT) {
739         host_sig = SIGABRT;
740     } else {
741         host_sig = target_to_host_signal(target_sig);
742     }
743     trace_user_dump_core_and_abort(env, target_sig, host_sig);
744     gdb_signalled(env, target_sig);
745 
746     /* dump core if supported by target binary format */
747     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
748         stop_all_tasks();
749         core_dumped =
750             ((*ts->bprm->core_dump)(target_sig, env) == 0);
751     }
752     if (core_dumped) {
753         /* we already dumped the core of target process, we don't want
754          * a coredump of qemu itself */
755         struct rlimit nodump;
756         getrlimit(RLIMIT_CORE, &nodump);
757         nodump.rlim_cur=0;
758         setrlimit(RLIMIT_CORE, &nodump);
759         (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
760             target_sig, strsignal(host_sig), "core dumped" );
761     }
762 
763     preexit_cleanup(env, 128 + target_sig);
764     die_with_signal(host_sig);
765 }
766 
767 /* queue a signal so that it will be send to the virtual CPU as soon
768    as possible */
769 void queue_signal(CPUArchState *env, int sig, int si_type,
770                   target_siginfo_t *info)
771 {
772     CPUState *cpu = env_cpu(env);
773     TaskState *ts = get_task_state(cpu);
774 
775     trace_user_queue_signal(env, sig);
776 
777     info->si_code = deposit32(info->si_code, 16, 16, si_type);
778 
779     ts->sync_signal.info = *info;
780     ts->sync_signal.pending = sig;
781     /* signal that a new signal is pending */
782     qatomic_set(&ts->signal_pending, 1);
783 }
784 
785 
786 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
787 static inline void rewind_if_in_safe_syscall(void *puc)
788 {
789     host_sigcontext *uc = (host_sigcontext *)puc;
790     uintptr_t pcreg = host_signal_pc(uc);
791 
792     if (pcreg > (uintptr_t)safe_syscall_start
793         && pcreg < (uintptr_t)safe_syscall_end) {
794         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
795     }
796 }
797 
798 static G_NORETURN
799 void die_from_signal(siginfo_t *info)
800 {
801     char sigbuf[4], codebuf[12];
802     const char *sig, *code = NULL;
803 
804     switch (info->si_signo) {
805     case SIGSEGV:
806         sig = "SEGV";
807         switch (info->si_code) {
808         case SEGV_MAPERR:
809             code = "MAPERR";
810             break;
811         case SEGV_ACCERR:
812             code = "ACCERR";
813             break;
814         }
815         break;
816     case SIGBUS:
817         sig = "BUS";
818         switch (info->si_code) {
819         case BUS_ADRALN:
820             code = "ADRALN";
821             break;
822         case BUS_ADRERR:
823             code = "ADRERR";
824             break;
825         }
826         break;
827     case SIGILL:
828         sig = "ILL";
829         switch (info->si_code) {
830         case ILL_ILLOPC:
831             code = "ILLOPC";
832             break;
833         case ILL_ILLOPN:
834             code = "ILLOPN";
835             break;
836         case ILL_ILLADR:
837             code = "ILLADR";
838             break;
839         case ILL_PRVOPC:
840             code = "PRVOPC";
841             break;
842         case ILL_PRVREG:
843             code = "PRVREG";
844             break;
845         case ILL_COPROC:
846             code = "COPROC";
847             break;
848         }
849         break;
850     case SIGFPE:
851         sig = "FPE";
852         switch (info->si_code) {
853         case FPE_INTDIV:
854             code = "INTDIV";
855             break;
856         case FPE_INTOVF:
857             code = "INTOVF";
858             break;
859         }
860         break;
861     case SIGTRAP:
862         sig = "TRAP";
863         break;
864     default:
865         snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo);
866         sig = sigbuf;
867         break;
868     }
869     if (code == NULL) {
870         snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code);
871         code = codebuf;
872     }
873 
874     error_report("QEMU internal SIG%s {code=%s, addr=%p}",
875                  sig, code, info->si_addr);
876     die_with_signal(info->si_signo);
877 }
878 
879 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info,
880                                  host_sigcontext *uc)
881 {
882     uintptr_t host_addr = (uintptr_t)info->si_addr;
883     /*
884      * Convert forcefully to guest address space: addresses outside
885      * reserved_va are still valid to report via SEGV_MAPERR.
886      */
887     bool is_valid = h2g_valid(host_addr);
888     abi_ptr guest_addr = h2g_nocheck(host_addr);
889     uintptr_t pc = host_signal_pc(uc);
890     bool is_write = host_signal_write(info, uc);
891     MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
892     bool maperr;
893 
894     /* If this was a write to a TB protected page, restart. */
895     if (is_write
896         && is_valid
897         && info->si_code == SEGV_ACCERR
898         && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc),
899                                        pc, guest_addr)) {
900         return;
901     }
902 
903     /*
904      * If the access was not on behalf of the guest, within the executable
905      * mapping of the generated code buffer, then it is a host bug.
906      */
907     if (access_type != MMU_INST_FETCH
908         && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
909         die_from_signal(info);
910     }
911 
912     maperr = true;
913     if (is_valid && info->si_code == SEGV_ACCERR) {
914         /*
915          * With reserved_va, the whole address space is PROT_NONE,
916          * which means that we may get ACCERR when we want MAPERR.
917          */
918         if (page_get_flags(guest_addr) & PAGE_VALID) {
919             maperr = false;
920         } else {
921             info->si_code = SEGV_MAPERR;
922         }
923     }
924 
925     sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
926     cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
927 }
928 
929 static uintptr_t host_sigbus_handler(CPUState *cpu, siginfo_t *info,
930                                 host_sigcontext *uc)
931 {
932     uintptr_t pc = host_signal_pc(uc);
933     bool is_write = host_signal_write(info, uc);
934     MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
935 
936     /*
937      * If the access was not on behalf of the guest, within the executable
938      * mapping of the generated code buffer, then it is a host bug.
939      */
940     if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
941         die_from_signal(info);
942     }
943 
944     if (info->si_code == BUS_ADRALN) {
945         uintptr_t host_addr = (uintptr_t)info->si_addr;
946         abi_ptr guest_addr = h2g_nocheck(host_addr);
947 
948         sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
949         cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
950     }
951     return pc;
952 }
953 
954 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
955 {
956     CPUState *cpu = thread_cpu;
957     CPUArchState *env = cpu_env(cpu);
958     TaskState *ts = get_task_state(cpu);
959     target_siginfo_t tinfo;
960     host_sigcontext *uc = puc;
961     struct emulated_sigtable *k;
962     int guest_sig;
963     uintptr_t pc = 0;
964     bool sync_sig = false;
965     void *sigmask;
966 
967     /*
968      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
969      * handling wrt signal blocking and unwinding.  Non-spoofed SIGILL,
970      * SIGFPE, SIGTRAP are always host bugs.
971      */
972     if (info->si_code > 0) {
973         switch (host_sig) {
974         case SIGSEGV:
975             /* Only returns on handle_sigsegv_accerr_write success. */
976             host_sigsegv_handler(cpu, info, uc);
977             return;
978         case SIGBUS:
979             pc = host_sigbus_handler(cpu, info, uc);
980             sync_sig = true;
981             break;
982         case SIGILL:
983         case SIGFPE:
984         case SIGTRAP:
985             die_from_signal(info);
986         }
987     }
988 
989     /* get target signal number */
990     guest_sig = host_to_target_signal(host_sig);
991     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
992         return;
993     }
994     trace_user_host_signal(env, host_sig, guest_sig);
995 
996     host_to_target_siginfo_noswap(&tinfo, info);
997     k = &ts->sigtab[guest_sig - 1];
998     k->info = tinfo;
999     k->pending = guest_sig;
1000     ts->signal_pending = 1;
1001 
1002     /*
1003      * For synchronous signals, unwind the cpu state to the faulting
1004      * insn and then exit back to the main loop so that the signal
1005      * is delivered immediately.
1006      */
1007     if (sync_sig) {
1008         cpu->exception_index = EXCP_INTERRUPT;
1009         cpu_loop_exit_restore(cpu, pc);
1010     }
1011 
1012     rewind_if_in_safe_syscall(puc);
1013 
1014     /*
1015      * Block host signals until target signal handler entered. We
1016      * can't block SIGSEGV or SIGBUS while we're executing guest
1017      * code in case the guest code provokes one in the window between
1018      * now and it getting out to the main loop. Signals will be
1019      * unblocked again in process_pending_signals().
1020      *
1021      * WARNING: we cannot use sigfillset() here because the sigmask
1022      * field is a kernel sigset_t, which is much smaller than the
1023      * libc sigset_t which sigfillset() operates on. Using sigfillset()
1024      * would write 0xff bytes off the end of the structure and trash
1025      * data on the struct.
1026      */
1027     sigmask = host_signal_mask(uc);
1028     memset(sigmask, 0xff, SIGSET_T_SIZE);
1029     sigdelset(sigmask, SIGSEGV);
1030     sigdelset(sigmask, SIGBUS);
1031 
1032     /* interrupt the virtual CPU as soon as possible */
1033     cpu_exit(thread_cpu);
1034 }
1035 
1036 /* do_sigaltstack() returns target values and errnos. */
1037 /* compare linux/kernel/signal.c:do_sigaltstack() */
1038 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
1039                         CPUArchState *env)
1040 {
1041     target_stack_t oss, *uoss = NULL;
1042     abi_long ret = -TARGET_EFAULT;
1043 
1044     if (uoss_addr) {
1045         /* Verify writability now, but do not alter user memory yet. */
1046         if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
1047             goto out;
1048         }
1049         target_save_altstack(&oss, env);
1050     }
1051 
1052     if (uss_addr) {
1053         target_stack_t *uss;
1054 
1055         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
1056             goto out;
1057         }
1058         ret = target_restore_altstack(uss, env);
1059         if (ret) {
1060             goto out;
1061         }
1062     }
1063 
1064     if (uoss_addr) {
1065         memcpy(uoss, &oss, sizeof(oss));
1066         unlock_user_struct(uoss, uoss_addr, 1);
1067         uoss = NULL;
1068     }
1069     ret = 0;
1070 
1071  out:
1072     if (uoss) {
1073         unlock_user_struct(uoss, uoss_addr, 0);
1074     }
1075     return ret;
1076 }
1077 
1078 /* do_sigaction() return target values and host errnos */
1079 int do_sigaction(int sig, const struct target_sigaction *act,
1080                  struct target_sigaction *oact, abi_ulong ka_restorer)
1081 {
1082     struct target_sigaction *k;
1083     int host_sig;
1084     int ret = 0;
1085 
1086     trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
1087 
1088     if (sig < 1 || sig > TARGET_NSIG) {
1089         return -TARGET_EINVAL;
1090     }
1091 
1092     if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) {
1093         return -TARGET_EINVAL;
1094     }
1095 
1096     if (block_signals()) {
1097         return -QEMU_ERESTARTSYS;
1098     }
1099 
1100     k = &sigact_table[sig - 1];
1101     if (oact) {
1102         __put_user(k->_sa_handler, &oact->_sa_handler);
1103         __put_user(k->sa_flags, &oact->sa_flags);
1104 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1105         __put_user(k->sa_restorer, &oact->sa_restorer);
1106 #endif
1107         /* Not swapped.  */
1108         oact->sa_mask = k->sa_mask;
1109     }
1110     if (act) {
1111         __get_user(k->_sa_handler, &act->_sa_handler);
1112         __get_user(k->sa_flags, &act->sa_flags);
1113 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1114         __get_user(k->sa_restorer, &act->sa_restorer);
1115 #endif
1116 #ifdef TARGET_ARCH_HAS_KA_RESTORER
1117         k->ka_restorer = ka_restorer;
1118 #endif
1119         /* To be swapped in target_to_host_sigset.  */
1120         k->sa_mask = act->sa_mask;
1121 
1122         /* we update the host linux signal state */
1123         host_sig = target_to_host_signal(sig);
1124         trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
1125         if (host_sig > SIGRTMAX) {
1126             /* we don't have enough host signals to map all target signals */
1127             qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
1128                           sig);
1129             /*
1130              * we don't return an error here because some programs try to
1131              * register an handler for all possible rt signals even if they
1132              * don't need it.
1133              * An error here can abort them whereas there can be no problem
1134              * to not have the signal available later.
1135              * This is the case for golang,
1136              *   See https://github.com/golang/go/issues/33746
1137              * So we silently ignore the error.
1138              */
1139             return 0;
1140         }
1141         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
1142             struct sigaction act1;
1143 
1144             sigfillset(&act1.sa_mask);
1145             act1.sa_flags = SA_SIGINFO;
1146             if (k->_sa_handler == TARGET_SIG_IGN) {
1147                 /*
1148                  * It is important to update the host kernel signal ignore
1149                  * state to avoid getting unexpected interrupted syscalls.
1150                  */
1151                 act1.sa_sigaction = (void *)SIG_IGN;
1152             } else if (k->_sa_handler == TARGET_SIG_DFL) {
1153                 if (core_dump_signal(sig)) {
1154                     act1.sa_sigaction = host_signal_handler;
1155                 } else {
1156                     act1.sa_sigaction = (void *)SIG_DFL;
1157                 }
1158             } else {
1159                 act1.sa_sigaction = host_signal_handler;
1160                 if (k->sa_flags & TARGET_SA_RESTART) {
1161                     act1.sa_flags |= SA_RESTART;
1162                 }
1163             }
1164             ret = sigaction(host_sig, &act1, NULL);
1165         }
1166     }
1167     return ret;
1168 }
1169 
1170 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
1171                                   struct emulated_sigtable *k)
1172 {
1173     CPUState *cpu = env_cpu(cpu_env);
1174     abi_ulong handler;
1175     sigset_t set;
1176     target_siginfo_t unswapped;
1177     target_sigset_t target_old_set;
1178     struct target_sigaction *sa;
1179     TaskState *ts = get_task_state(cpu);
1180 
1181     trace_user_handle_signal(cpu_env, sig);
1182     /* dequeue signal */
1183     k->pending = 0;
1184 
1185     /*
1186      * Writes out siginfo values byteswapped, accordingly to the target.
1187      * It also cleans the si_type from si_code making it correct for
1188      * the target.  We must hold on to the original unswapped copy for
1189      * strace below, because si_type is still required there.
1190      */
1191     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1192         unswapped = k->info;
1193     }
1194     tswap_siginfo(&k->info, &k->info);
1195 
1196     sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info));
1197     if (!sig) {
1198         sa = NULL;
1199         handler = TARGET_SIG_IGN;
1200     } else {
1201         sa = &sigact_table[sig - 1];
1202         handler = sa->_sa_handler;
1203     }
1204 
1205     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1206         print_taken_signal(sig, &unswapped);
1207     }
1208 
1209     if (handler == TARGET_SIG_DFL) {
1210         /* default handler : ignore some signal. The other are job control or fatal */
1211         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
1212             kill(getpid(),SIGSTOP);
1213         } else if (sig != TARGET_SIGCHLD &&
1214                    sig != TARGET_SIGURG &&
1215                    sig != TARGET_SIGWINCH &&
1216                    sig != TARGET_SIGCONT) {
1217             dump_core_and_abort(cpu_env, sig);
1218         }
1219     } else if (handler == TARGET_SIG_IGN) {
1220         /* ignore sig */
1221     } else if (handler == TARGET_SIG_ERR) {
1222         dump_core_and_abort(cpu_env, sig);
1223     } else {
1224         /* compute the blocked signals during the handler execution */
1225         sigset_t *blocked_set;
1226 
1227         target_to_host_sigset(&set, &sa->sa_mask);
1228         /* SA_NODEFER indicates that the current signal should not be
1229            blocked during the handler */
1230         if (!(sa->sa_flags & TARGET_SA_NODEFER))
1231             sigaddset(&set, target_to_host_signal(sig));
1232 
1233         /* save the previous blocked signal state to restore it at the
1234            end of the signal execution (see do_sigreturn) */
1235         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
1236 
1237         /* block signals in the handler */
1238         blocked_set = ts->in_sigsuspend ?
1239             &ts->sigsuspend_mask : &ts->signal_mask;
1240         sigorset(&ts->signal_mask, blocked_set, &set);
1241         ts->in_sigsuspend = 0;
1242 
1243         /* if the CPU is in VM86 mode, we restore the 32 bit values */
1244 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1245         {
1246             CPUX86State *env = cpu_env;
1247             if (env->eflags & VM_MASK)
1248                 save_v86_state(env);
1249         }
1250 #endif
1251         /* prepare the stack frame of the virtual CPU */
1252 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1253         if (sa->sa_flags & TARGET_SA_SIGINFO) {
1254             setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1255         } else {
1256             setup_frame(sig, sa, &target_old_set, cpu_env);
1257         }
1258 #else
1259         /* These targets do not have traditional signals.  */
1260         setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1261 #endif
1262         if (sa->sa_flags & TARGET_SA_RESETHAND) {
1263             sa->_sa_handler = TARGET_SIG_DFL;
1264         }
1265     }
1266 }
1267 
1268 void process_pending_signals(CPUArchState *cpu_env)
1269 {
1270     CPUState *cpu = env_cpu(cpu_env);
1271     int sig;
1272     TaskState *ts = get_task_state(cpu);
1273     sigset_t set;
1274     sigset_t *blocked_set;
1275 
1276     while (qatomic_read(&ts->signal_pending)) {
1277         sigfillset(&set);
1278         sigprocmask(SIG_SETMASK, &set, 0);
1279 
1280     restart_scan:
1281         sig = ts->sync_signal.pending;
1282         if (sig) {
1283             /* Synchronous signals are forced,
1284              * see force_sig_info() and callers in Linux
1285              * Note that not all of our queue_signal() calls in QEMU correspond
1286              * to force_sig_info() calls in Linux (some are send_sig_info()).
1287              * However it seems like a kernel bug to me to allow the process
1288              * to block a synchronous signal since it could then just end up
1289              * looping round and round indefinitely.
1290              */
1291             if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
1292                 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
1293                 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
1294                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1295             }
1296 
1297             handle_pending_signal(cpu_env, sig, &ts->sync_signal);
1298         }
1299 
1300         for (sig = 1; sig <= TARGET_NSIG; sig++) {
1301             blocked_set = ts->in_sigsuspend ?
1302                 &ts->sigsuspend_mask : &ts->signal_mask;
1303 
1304             if (ts->sigtab[sig - 1].pending &&
1305                 (!sigismember(blocked_set,
1306                               target_to_host_signal_table[sig]))) {
1307                 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
1308                 /* Restart scan from the beginning, as handle_pending_signal
1309                  * might have resulted in a new synchronous signal (eg SIGSEGV).
1310                  */
1311                 goto restart_scan;
1312             }
1313         }
1314 
1315         /* if no signal is pending, unblock signals and recheck (the act
1316          * of unblocking might cause us to take another host signal which
1317          * will set signal_pending again).
1318          */
1319         qatomic_set(&ts->signal_pending, 0);
1320         ts->in_sigsuspend = 0;
1321         set = ts->signal_mask;
1322         sigdelset(&set, SIGSEGV);
1323         sigdelset(&set, SIGBUS);
1324         sigprocmask(SIG_SETMASK, &set, 0);
1325     }
1326     ts->in_sigsuspend = 0;
1327 }
1328 
1329 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset,
1330                             target_ulong sigsize)
1331 {
1332     TaskState *ts = get_task_state(thread_cpu);
1333     sigset_t *host_set = &ts->sigsuspend_mask;
1334     target_sigset_t *target_sigset;
1335 
1336     if (sigsize != sizeof(*target_sigset)) {
1337         /* Like the kernel, we enforce correct size sigsets */
1338         return -TARGET_EINVAL;
1339     }
1340 
1341     target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1);
1342     if (!target_sigset) {
1343         return -TARGET_EFAULT;
1344     }
1345     target_to_host_sigset(host_set, target_sigset);
1346     unlock_user(target_sigset, sigset, 0);
1347 
1348     *pset = host_set;
1349     return 0;
1350 }
1351