1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "cpu.h" 5 #include "exec/cpu_ldst.h" 6 7 #undef DEBUG_REMAP 8 9 #include "exec/user/abitypes.h" 10 11 #include "syscall_defs.h" 12 #include "target_syscall.h" 13 14 /* 15 * This is the size of the host kernel's sigset_t, needed where we make 16 * direct system calls that take a sigset_t pointer and a size. 17 */ 18 #define SIGSET_T_SIZE (_NSIG / 8) 19 20 /* 21 * This struct is used to hold certain information about the image. 22 * Basically, it replicates in user space what would be certain 23 * task_struct fields in the kernel 24 */ 25 struct image_info { 26 abi_ulong load_bias; 27 abi_ulong load_addr; 28 abi_ulong start_code; 29 abi_ulong end_code; 30 abi_ulong start_data; 31 abi_ulong end_data; 32 abi_ulong start_brk; 33 abi_ulong brk; 34 abi_ulong reserve_brk; 35 abi_ulong start_mmap; 36 abi_ulong start_stack; 37 abi_ulong stack_limit; 38 abi_ulong entry; 39 abi_ulong code_offset; 40 abi_ulong data_offset; 41 abi_ulong saved_auxv; 42 abi_ulong auxv_len; 43 abi_ulong argc; 44 abi_ulong argv; 45 abi_ulong envc; 46 abi_ulong envp; 47 abi_ulong file_string; 48 uint32_t elf_flags; 49 int personality; 50 abi_ulong alignment; 51 52 /* Generic semihosting knows about these pointers. */ 53 abi_ulong arg_strings; /* strings for argv */ 54 abi_ulong env_strings; /* strings for envp; ends arg_strings */ 55 56 /* The fields below are used in FDPIC mode. */ 57 abi_ulong loadmap_addr; 58 uint16_t nsegs; 59 void *loadsegs; 60 abi_ulong pt_dynamic_addr; 61 abi_ulong interpreter_loadmap_addr; 62 abi_ulong interpreter_pt_dynamic_addr; 63 struct image_info *other_info; 64 65 /* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */ 66 uint32_t note_flags; 67 68 #ifdef TARGET_MIPS 69 int fp_abi; 70 int interp_fp_abi; 71 #endif 72 }; 73 74 #ifdef TARGET_I386 75 /* Information about the current linux thread */ 76 struct vm86_saved_state { 77 uint32_t eax; /* return code */ 78 uint32_t ebx; 79 uint32_t ecx; 80 uint32_t edx; 81 uint32_t esi; 82 uint32_t edi; 83 uint32_t ebp; 84 uint32_t esp; 85 uint32_t eflags; 86 uint32_t eip; 87 uint16_t cs, ss, ds, es, fs, gs; 88 }; 89 #endif 90 91 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 92 /* FPU emulator */ 93 #include "nwfpe/fpa11.h" 94 #endif 95 96 struct emulated_sigtable { 97 int pending; /* true if signal is pending */ 98 target_siginfo_t info; 99 }; 100 101 typedef struct TaskState { 102 pid_t ts_tid; /* tid (or pid) of this task */ 103 #ifdef TARGET_ARM 104 # ifdef TARGET_ABI32 105 /* FPA state */ 106 FPA11 fpa; 107 # endif 108 #endif 109 #if defined(TARGET_ARM) || defined(TARGET_RISCV) 110 int swi_errno; 111 #endif 112 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 113 abi_ulong target_v86; 114 struct vm86_saved_state vm86_saved_regs; 115 struct target_vm86plus_struct vm86plus; 116 uint32_t v86flags; 117 uint32_t v86mask; 118 #endif 119 abi_ulong child_tidptr; 120 #ifdef TARGET_M68K 121 abi_ulong tp_value; 122 #endif 123 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_RISCV) 124 /* Extra fields for semihosted binaries. */ 125 abi_ulong heap_base; 126 abi_ulong heap_limit; 127 #endif 128 abi_ulong stack_base; 129 int used; /* non zero if used */ 130 struct image_info *info; 131 struct linux_binprm *bprm; 132 133 struct emulated_sigtable sync_signal; 134 struct emulated_sigtable sigtab[TARGET_NSIG]; 135 /* 136 * This thread's signal mask, as requested by the guest program. 137 * The actual signal mask of this thread may differ: 138 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 139 * + sometimes we block all signals to avoid races 140 */ 141 sigset_t signal_mask; 142 /* 143 * The signal mask imposed by a guest sigsuspend syscall, if we are 144 * currently in the middle of such a syscall 145 */ 146 sigset_t sigsuspend_mask; 147 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 148 int in_sigsuspend; 149 150 /* 151 * Nonzero if process_pending_signals() needs to do something (either 152 * handle a pending signal or unblock signals). 153 * This flag is written from a signal handler so should be accessed via 154 * the qatomic_read() and qatomic_set() functions. (It is not accessed 155 * from multiple threads.) 156 */ 157 int signal_pending; 158 159 /* This thread's sigaltstack, if it has one */ 160 struct target_sigaltstack sigaltstack_used; 161 162 /* Start time of task after system boot in clock ticks */ 163 uint64_t start_boottime; 164 } TaskState; 165 166 abi_long do_brk(abi_ulong new_brk); 167 168 /* user access */ 169 170 #define VERIFY_READ PAGE_READ 171 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE) 172 173 static inline bool access_ok_untagged(int type, abi_ulong addr, abi_ulong size) 174 { 175 if (size == 0 176 ? !guest_addr_valid_untagged(addr) 177 : !guest_range_valid_untagged(addr, size)) { 178 return false; 179 } 180 return page_check_range((target_ulong)addr, size, type) == 0; 181 } 182 183 static inline bool access_ok(CPUState *cpu, int type, 184 abi_ulong addr, abi_ulong size) 185 { 186 return access_ok_untagged(type, cpu_untagged_addr(cpu, addr), size); 187 } 188 189 /* NOTE __get_user and __put_user use host pointers and don't check access. 190 These are usually used to access struct data members once the struct has 191 been locked - usually with lock_user_struct. */ 192 193 /* 194 * Tricky points: 195 * - Use __builtin_choose_expr to avoid type promotion from ?:, 196 * - Invalid sizes result in a compile time error stemming from 197 * the fact that abort has no parameters. 198 * - It's easier to use the endian-specific unaligned load/store 199 * functions than host-endian unaligned load/store plus tswapN. 200 * - The pragmas are necessary only to silence a clang false-positive 201 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 . 202 * - gcc has bugs in its _Pragma() support in some versions, eg 203 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only 204 * include the warning-suppression pragmas for clang 205 */ 206 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member") 207 #define PRAGMA_DISABLE_PACKED_WARNING \ 208 _Pragma("GCC diagnostic push"); \ 209 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"") 210 211 #define PRAGMA_REENABLE_PACKED_WARNING \ 212 _Pragma("GCC diagnostic pop") 213 214 #else 215 #define PRAGMA_DISABLE_PACKED_WARNING 216 #define PRAGMA_REENABLE_PACKED_WARNING 217 #endif 218 219 #define __put_user_e(x, hptr, e) \ 220 do { \ 221 PRAGMA_DISABLE_PACKED_WARNING; \ 222 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 223 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 224 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 225 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 226 ((hptr), (x)), (void)0); \ 227 PRAGMA_REENABLE_PACKED_WARNING; \ 228 } while (0) 229 230 #define __get_user_e(x, hptr, e) \ 231 do { \ 232 PRAGMA_DISABLE_PACKED_WARNING; \ 233 ((x) = (typeof(*hptr))( \ 234 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 235 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 236 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 237 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 238 (hptr)), (void)0); \ 239 PRAGMA_REENABLE_PACKED_WARNING; \ 240 } while (0) 241 242 243 #if TARGET_BIG_ENDIAN 244 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 245 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 246 #else 247 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 248 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 249 #endif 250 251 /* put_user()/get_user() take a guest address and check access */ 252 /* These are usually used to access an atomic data type, such as an int, 253 * that has been passed by address. These internally perform locking 254 * and unlocking on the data type. 255 */ 256 #define put_user(x, gaddr, target_type) \ 257 ({ \ 258 abi_ulong __gaddr = (gaddr); \ 259 target_type *__hptr; \ 260 abi_long __ret = 0; \ 261 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 262 __put_user((x), __hptr); \ 263 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 264 } else \ 265 __ret = -TARGET_EFAULT; \ 266 __ret; \ 267 }) 268 269 #define get_user(x, gaddr, target_type) \ 270 ({ \ 271 abi_ulong __gaddr = (gaddr); \ 272 target_type *__hptr; \ 273 abi_long __ret = 0; \ 274 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 275 __get_user((x), __hptr); \ 276 unlock_user(__hptr, __gaddr, 0); \ 277 } else { \ 278 /* avoid warning */ \ 279 (x) = 0; \ 280 __ret = -TARGET_EFAULT; \ 281 } \ 282 __ret; \ 283 }) 284 285 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 286 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 287 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 288 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 289 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 290 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 291 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 292 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 293 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 294 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 295 296 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 297 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 298 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 299 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 300 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 301 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 302 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 303 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 304 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 305 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 306 307 /* copy_from_user() and copy_to_user() are usually used to copy data 308 * buffers between the target and host. These internally perform 309 * locking/unlocking of the memory. 310 */ 311 int copy_from_user(void *hptr, abi_ulong gaddr, ssize_t len); 312 int copy_to_user(abi_ulong gaddr, void *hptr, ssize_t len); 313 314 /* Functions for accessing guest memory. The tget and tput functions 315 read/write single values, byteswapping as necessary. The lock_user function 316 gets a pointer to a contiguous area of guest memory, but does not perform 317 any byteswapping. lock_user may return either a pointer to the guest 318 memory, or a temporary buffer. */ 319 320 /* Lock an area of guest memory into the host. If copy is true then the 321 host area will have the same contents as the guest. */ 322 void *lock_user(int type, abi_ulong guest_addr, ssize_t len, bool copy); 323 324 /* Unlock an area of guest memory. The first LEN bytes must be 325 flushed back to guest memory. host_ptr = NULL is explicitly 326 allowed and does nothing. */ 327 #ifndef DEBUG_REMAP 328 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 329 ssize_t len) 330 { 331 /* no-op */ 332 } 333 #else 334 void unlock_user(void *host_ptr, abi_ulong guest_addr, ssize_t len); 335 #endif 336 337 /* Return the length of a string in target memory or -TARGET_EFAULT if 338 access error. */ 339 ssize_t target_strlen(abi_ulong gaddr); 340 341 /* Like lock_user but for null terminated strings. */ 342 void *lock_user_string(abi_ulong guest_addr); 343 344 /* Helper macros for locking/unlocking a target struct. */ 345 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 346 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 347 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 348 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 349 350 #endif /* QEMU_H */ 351