1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "hostdep.h" 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #endif /* DEBUG_REMAP */ 12 13 #include "exec/user/abitypes.h" 14 15 #include "exec/user/thunk.h" 16 #include "syscall_defs.h" 17 #include "target_syscall.h" 18 #include "exec/gdbstub.h" 19 #include "qemu/queue.h" 20 21 /* This is the size of the host kernel's sigset_t, needed where we make 22 * direct system calls that take a sigset_t pointer and a size. 23 */ 24 #define SIGSET_T_SIZE (_NSIG / 8) 25 26 /* This struct is used to hold certain information about the image. 27 * Basically, it replicates in user space what would be certain 28 * task_struct fields in the kernel 29 */ 30 struct image_info { 31 abi_ulong load_bias; 32 abi_ulong load_addr; 33 abi_ulong start_code; 34 abi_ulong end_code; 35 abi_ulong start_data; 36 abi_ulong end_data; 37 abi_ulong start_brk; 38 abi_ulong brk; 39 abi_ulong start_mmap; 40 abi_ulong start_stack; 41 abi_ulong stack_limit; 42 abi_ulong entry; 43 abi_ulong code_offset; 44 abi_ulong data_offset; 45 abi_ulong saved_auxv; 46 abi_ulong auxv_len; 47 abi_ulong arg_start; 48 abi_ulong arg_end; 49 abi_ulong arg_strings; 50 abi_ulong env_strings; 51 abi_ulong file_string; 52 uint32_t elf_flags; 53 int personality; 54 #ifdef CONFIG_USE_FDPIC 55 abi_ulong loadmap_addr; 56 uint16_t nsegs; 57 void *loadsegs; 58 abi_ulong pt_dynamic_addr; 59 struct image_info *other_info; 60 #endif 61 }; 62 63 #ifdef TARGET_I386 64 /* Information about the current linux thread */ 65 struct vm86_saved_state { 66 uint32_t eax; /* return code */ 67 uint32_t ebx; 68 uint32_t ecx; 69 uint32_t edx; 70 uint32_t esi; 71 uint32_t edi; 72 uint32_t ebp; 73 uint32_t esp; 74 uint32_t eflags; 75 uint32_t eip; 76 uint16_t cs, ss, ds, es, fs, gs; 77 }; 78 #endif 79 80 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 81 /* FPU emulator */ 82 #include "nwfpe/fpa11.h" 83 #endif 84 85 #define MAX_SIGQUEUE_SIZE 1024 86 87 struct emulated_sigtable { 88 int pending; /* true if signal is pending */ 89 target_siginfo_t info; 90 }; 91 92 /* NOTE: we force a big alignment so that the stack stored after is 93 aligned too */ 94 typedef struct TaskState { 95 pid_t ts_tid; /* tid (or pid) of this task */ 96 #ifdef TARGET_ARM 97 # ifdef TARGET_ABI32 98 /* FPA state */ 99 FPA11 fpa; 100 # endif 101 int swi_errno; 102 #endif 103 #ifdef TARGET_UNICORE32 104 int swi_errno; 105 #endif 106 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 107 abi_ulong target_v86; 108 struct vm86_saved_state vm86_saved_regs; 109 struct target_vm86plus_struct vm86plus; 110 uint32_t v86flags; 111 uint32_t v86mask; 112 #endif 113 abi_ulong child_tidptr; 114 #ifdef TARGET_M68K 115 int sim_syscalls; 116 abi_ulong tp_value; 117 #endif 118 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 119 /* Extra fields for semihosted binaries. */ 120 abi_ulong heap_base; 121 abi_ulong heap_limit; 122 #endif 123 abi_ulong stack_base; 124 int used; /* non zero if used */ 125 struct image_info *info; 126 struct linux_binprm *bprm; 127 128 struct emulated_sigtable sync_signal; 129 struct emulated_sigtable sigtab[TARGET_NSIG]; 130 /* This thread's signal mask, as requested by the guest program. 131 * The actual signal mask of this thread may differ: 132 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 133 * + sometimes we block all signals to avoid races 134 */ 135 sigset_t signal_mask; 136 /* The signal mask imposed by a guest sigsuspend syscall, if we are 137 * currently in the middle of such a syscall 138 */ 139 sigset_t sigsuspend_mask; 140 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 141 int in_sigsuspend; 142 143 /* Nonzero if process_pending_signals() needs to do something (either 144 * handle a pending signal or unblock signals). 145 * This flag is written from a signal handler so should be accessed via 146 * the atomic_read() and atomic_write() functions. (It is not accessed 147 * from multiple threads.) 148 */ 149 int signal_pending; 150 151 } __attribute__((aligned(16))) TaskState; 152 153 extern char *exec_path; 154 void init_task_state(TaskState *ts); 155 void task_settid(TaskState *); 156 void stop_all_tasks(void); 157 extern const char *qemu_uname_release; 158 extern unsigned long mmap_min_addr; 159 160 /* ??? See if we can avoid exposing so much of the loader internals. */ 161 162 /* Read a good amount of data initially, to hopefully get all the 163 program headers loaded. */ 164 #define BPRM_BUF_SIZE 1024 165 166 /* 167 * This structure is used to hold the arguments that are 168 * used when loading binaries. 169 */ 170 struct linux_binprm { 171 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 172 abi_ulong p; 173 int fd; 174 int e_uid, e_gid; 175 int argc, envc; 176 char **argv; 177 char **envp; 178 char * filename; /* Name of binary */ 179 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 180 }; 181 182 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 183 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 184 abi_ulong stringp, int push_ptr); 185 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 186 struct target_pt_regs * regs, struct image_info *infop, 187 struct linux_binprm *); 188 189 uint32_t get_elf_eflags(int fd); 190 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 191 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 192 193 abi_long memcpy_to_target(abi_ulong dest, const void *src, 194 unsigned long len); 195 void target_set_brk(abi_ulong new_brk); 196 abi_long do_brk(abi_ulong new_brk); 197 void syscall_init(void); 198 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 199 abi_long arg2, abi_long arg3, abi_long arg4, 200 abi_long arg5, abi_long arg6, abi_long arg7, 201 abi_long arg8); 202 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 203 extern __thread CPUState *thread_cpu; 204 void cpu_loop(CPUArchState *env); 205 const char *target_strerror(int err); 206 int get_osversion(void); 207 void init_qemu_uname_release(void); 208 void fork_start(void); 209 void fork_end(int child); 210 211 /* Creates the initial guest address space in the host memory space using 212 * the given host start address hint and size. The guest_start parameter 213 * specifies the start address of the guest space. guest_base will be the 214 * difference between the host start address computed by this function and 215 * guest_start. If fixed is specified, then the mapped address space must 216 * start at host_start. The real start address of the mapped memory space is 217 * returned or -1 if there was an error. 218 */ 219 unsigned long init_guest_space(unsigned long host_start, 220 unsigned long host_size, 221 unsigned long guest_start, 222 bool fixed); 223 224 #include "qemu/log.h" 225 226 /* safe_syscall.S */ 227 228 /** 229 * safe_syscall: 230 * @int number: number of system call to make 231 * ...: arguments to the system call 232 * 233 * Call a system call if guest signal not pending. 234 * This has the same API as the libc syscall() function, except that it 235 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. 236 * 237 * Returns: the system call result, or -1 with an error code in errno 238 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing 239 * with any of the host errno values.) 240 */ 241 242 /* A guide to using safe_syscall() to handle interactions between guest 243 * syscalls and guest signals: 244 * 245 * Guest syscalls come in two flavours: 246 * 247 * (1) Non-interruptible syscalls 248 * 249 * These are guest syscalls that never get interrupted by signals and 250 * so never return EINTR. They can be implemented straightforwardly in 251 * QEMU: just make sure that if the implementation code has to make any 252 * blocking calls that those calls are retried if they return EINTR. 253 * It's also OK to implement these with safe_syscall, though it will be 254 * a little less efficient if a signal is delivered at the 'wrong' moment. 255 * 256 * Some non-interruptible syscalls need to be handled using block_signals() 257 * to block signals for the duration of the syscall. This mainly applies 258 * to code which needs to modify the data structures used by the 259 * host_signal_handler() function and the functions it calls, including 260 * all syscalls which change the thread's signal mask. 261 * 262 * (2) Interruptible syscalls 263 * 264 * These are guest syscalls that can be interrupted by signals and 265 * for which we need to either return EINTR or arrange for the guest 266 * syscall to be restarted. This category includes both syscalls which 267 * always restart (and in the kernel return -ERESTARTNOINTR), ones 268 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND 269 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart 270 * if the handler was registered with SA_RESTART (kernel returns 271 * -ERESTARTSYS). System calls which are only interruptible in some 272 * situations (like 'open') also need to be handled this way. 273 * 274 * Here it is important that the host syscall is made 275 * via this safe_syscall() function, and *not* via the host libc. 276 * If the host libc is used then the implementation will appear to work 277 * most of the time, but there will be a race condition where a 278 * signal could arrive just before we make the host syscall inside libc, 279 * and then then guest syscall will not correctly be interrupted. 280 * Instead the implementation of the guest syscall can use the safe_syscall 281 * function but otherwise just return the result or errno in the usual 282 * way; the main loop code will take care of restarting the syscall 283 * if appropriate. 284 * 285 * (If the implementation needs to make multiple host syscalls this is 286 * OK; any which might really block must be via safe_syscall(); for those 287 * which are only technically blocking (ie which we know in practice won't 288 * stay in the host kernel indefinitely) it's OK to use libc if necessary. 289 * You must be able to cope with backing out correctly if some safe_syscall 290 * you make in the implementation returns either -TARGET_ERESTARTSYS or 291 * EINTR though.) 292 * 293 * block_signals() cannot be used for interruptible syscalls. 294 * 295 * 296 * How and why the safe_syscall implementation works: 297 * 298 * The basic setup is that we make the host syscall via a known 299 * section of host native assembly. If a signal occurs, our signal 300 * handler checks the interrupted host PC against the addresse of that 301 * known section. If the PC is before or at the address of the syscall 302 * instruction then we change the PC to point at a "return 303 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler 304 * (causing the safe_syscall() call to immediately return that value). 305 * Then in the main.c loop if we see this magic return value we adjust 306 * the guest PC to wind it back to before the system call, and invoke 307 * the guest signal handler as usual. 308 * 309 * This winding-back will happen in two cases: 310 * (1) signal came in just before we took the host syscall (a race); 311 * in this case we'll take the guest signal and have another go 312 * at the syscall afterwards, and this is indistinguishable for the 313 * guest from the timing having been different such that the guest 314 * signal really did win the race 315 * (2) signal came in while the host syscall was blocking, and the 316 * host kernel decided the syscall should be restarted; 317 * in this case we want to restart the guest syscall also, and so 318 * rewinding is the right thing. (Note that "restart" semantics mean 319 * "first call the signal handler, then reattempt the syscall".) 320 * The other situation to consider is when a signal came in while the 321 * host syscall was blocking, and the host kernel decided that the syscall 322 * should not be restarted; in this case QEMU's host signal handler will 323 * be invoked with the PC pointing just after the syscall instruction, 324 * with registers indicating an EINTR return; the special code in the 325 * handler will not kick in, and we will return EINTR to the guest as 326 * we should. 327 * 328 * Notice that we can leave the host kernel to make the decision for 329 * us about whether to do a restart of the syscall or not; we do not 330 * need to check SA_RESTART flags in QEMU or distinguish the various 331 * kinds of restartability. 332 */ 333 #ifdef HAVE_SAFE_SYSCALL 334 /* The core part of this function is implemented in assembly */ 335 extern long safe_syscall_base(int *pending, long number, ...); 336 337 #define safe_syscall(...) \ 338 ({ \ 339 long ret_; \ 340 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ 341 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ 342 if (is_error(ret_)) { \ 343 errno = -ret_; \ 344 ret_ = -1; \ 345 } \ 346 ret_; \ 347 }) 348 349 #else 350 351 /* Fallback for architectures which don't yet provide a safe-syscall assembly 352 * fragment; note that this is racy! 353 * This should go away when all host architectures have been updated. 354 */ 355 #define safe_syscall syscall 356 357 #endif 358 359 /* syscall.c */ 360 int host_to_target_waitstatus(int status); 361 362 /* strace.c */ 363 void print_syscall(int num, 364 abi_long arg1, abi_long arg2, abi_long arg3, 365 abi_long arg4, abi_long arg5, abi_long arg6); 366 void print_syscall_ret(int num, abi_long arg1); 367 /** 368 * print_taken_signal: 369 * @target_signum: target signal being taken 370 * @tinfo: target_siginfo_t which will be passed to the guest for the signal 371 * 372 * Print strace output indicating that this signal is being taken by the guest, 373 * in a format similar to: 374 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- 375 */ 376 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); 377 extern int do_strace; 378 379 /* signal.c */ 380 void process_pending_signals(CPUArchState *cpu_env); 381 void signal_init(void); 382 int queue_signal(CPUArchState *env, int sig, int si_type, 383 target_siginfo_t *info); 384 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 385 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 386 int target_to_host_signal(int sig); 387 int host_to_target_signal(int sig); 388 long do_sigreturn(CPUArchState *env); 389 long do_rt_sigreturn(CPUArchState *env); 390 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 391 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 392 /** 393 * block_signals: block all signals while handling this guest syscall 394 * 395 * Block all signals, and arrange that the signal mask is returned to 396 * its correct value for the guest before we resume execution of guest code. 397 * If this function returns non-zero, then the caller should immediately 398 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending 399 * signal and restart execution of the syscall. 400 * If block_signals() returns zero, then the caller can continue with 401 * emulation of the system call knowing that no signals can be taken 402 * (and therefore that no race conditions will result). 403 * This should only be called once, because if it is called a second time 404 * it will always return non-zero. (Think of it like a mutex that can't 405 * be recursively locked.) 406 * Signals will be unblocked again by process_pending_signals(). 407 * 408 * Return value: non-zero if there was a pending signal, zero if not. 409 */ 410 int block_signals(void); /* Returns non zero if signal pending */ 411 412 #ifdef TARGET_I386 413 /* vm86.c */ 414 void save_v86_state(CPUX86State *env); 415 void handle_vm86_trap(CPUX86State *env, int trapno); 416 void handle_vm86_fault(CPUX86State *env); 417 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 418 #elif defined(TARGET_SPARC64) 419 void sparc64_set_context(CPUSPARCState *env); 420 void sparc64_get_context(CPUSPARCState *env); 421 #endif 422 423 /* mmap.c */ 424 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 425 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 426 int flags, int fd, abi_ulong offset); 427 int target_munmap(abi_ulong start, abi_ulong len); 428 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 429 abi_ulong new_size, unsigned long flags, 430 abi_ulong new_addr); 431 int target_msync(abi_ulong start, abi_ulong len, int flags); 432 extern unsigned long last_brk; 433 extern abi_ulong mmap_next_start; 434 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 435 void mmap_fork_start(void); 436 void mmap_fork_end(int child); 437 438 /* main.c */ 439 extern unsigned long guest_stack_size; 440 441 /* user access */ 442 443 #define VERIFY_READ 0 444 #define VERIFY_WRITE 1 /* implies read access */ 445 446 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 447 { 448 return page_check_range((target_ulong)addr, size, 449 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 450 } 451 452 /* NOTE __get_user and __put_user use host pointers and don't check access. 453 These are usually used to access struct data members once the struct has 454 been locked - usually with lock_user_struct. */ 455 456 /* Tricky points: 457 - Use __builtin_choose_expr to avoid type promotion from ?:, 458 - Invalid sizes result in a compile time error stemming from 459 the fact that abort has no parameters. 460 - It's easier to use the endian-specific unaligned load/store 461 functions than host-endian unaligned load/store plus tswapN. */ 462 463 #define __put_user_e(x, hptr, e) \ 464 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 465 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 466 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 467 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 468 ((hptr), (x)), (void)0) 469 470 #define __get_user_e(x, hptr, e) \ 471 ((x) = (typeof(*hptr))( \ 472 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 473 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 474 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 475 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 476 (hptr)), (void)0) 477 478 #ifdef TARGET_WORDS_BIGENDIAN 479 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 480 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 481 #else 482 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 483 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 484 #endif 485 486 /* put_user()/get_user() take a guest address and check access */ 487 /* These are usually used to access an atomic data type, such as an int, 488 * that has been passed by address. These internally perform locking 489 * and unlocking on the data type. 490 */ 491 #define put_user(x, gaddr, target_type) \ 492 ({ \ 493 abi_ulong __gaddr = (gaddr); \ 494 target_type *__hptr; \ 495 abi_long __ret = 0; \ 496 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 497 __put_user((x), __hptr); \ 498 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 499 } else \ 500 __ret = -TARGET_EFAULT; \ 501 __ret; \ 502 }) 503 504 #define get_user(x, gaddr, target_type) \ 505 ({ \ 506 abi_ulong __gaddr = (gaddr); \ 507 target_type *__hptr; \ 508 abi_long __ret = 0; \ 509 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 510 __get_user((x), __hptr); \ 511 unlock_user(__hptr, __gaddr, 0); \ 512 } else { \ 513 /* avoid warning */ \ 514 (x) = 0; \ 515 __ret = -TARGET_EFAULT; \ 516 } \ 517 __ret; \ 518 }) 519 520 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 521 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 522 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 523 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 524 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 525 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 526 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 527 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 528 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 529 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 530 531 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 532 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 533 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 534 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 535 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 536 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 537 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 538 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 539 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 540 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 541 542 /* copy_from_user() and copy_to_user() are usually used to copy data 543 * buffers between the target and host. These internally perform 544 * locking/unlocking of the memory. 545 */ 546 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 547 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 548 549 /* Functions for accessing guest memory. The tget and tput functions 550 read/write single values, byteswapping as necessary. The lock_user function 551 gets a pointer to a contiguous area of guest memory, but does not perform 552 any byteswapping. lock_user may return either a pointer to the guest 553 memory, or a temporary buffer. */ 554 555 /* Lock an area of guest memory into the host. If copy is true then the 556 host area will have the same contents as the guest. */ 557 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 558 { 559 if (!access_ok(type, guest_addr, len)) 560 return NULL; 561 #ifdef DEBUG_REMAP 562 { 563 void *addr; 564 addr = g_malloc(len); 565 if (copy) 566 memcpy(addr, g2h(guest_addr), len); 567 else 568 memset(addr, 0, len); 569 return addr; 570 } 571 #else 572 return g2h(guest_addr); 573 #endif 574 } 575 576 /* Unlock an area of guest memory. The first LEN bytes must be 577 flushed back to guest memory. host_ptr = NULL is explicitly 578 allowed and does nothing. */ 579 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 580 long len) 581 { 582 583 #ifdef DEBUG_REMAP 584 if (!host_ptr) 585 return; 586 if (host_ptr == g2h(guest_addr)) 587 return; 588 if (len > 0) 589 memcpy(g2h(guest_addr), host_ptr, len); 590 g_free(host_ptr); 591 #endif 592 } 593 594 /* Return the length of a string in target memory or -TARGET_EFAULT if 595 access error. */ 596 abi_long target_strlen(abi_ulong gaddr); 597 598 /* Like lock_user but for null terminated strings. */ 599 static inline void *lock_user_string(abi_ulong guest_addr) 600 { 601 abi_long len; 602 len = target_strlen(guest_addr); 603 if (len < 0) 604 return NULL; 605 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 606 } 607 608 /* Helper macros for locking/unlocking a target struct. */ 609 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 610 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 611 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 612 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 613 614 #include <pthread.h> 615 616 /* Include target-specific struct and function definitions; 617 * they may need access to the target-independent structures 618 * above, so include them last. 619 */ 620 #include "target_cpu.h" 621 #include "target_signal.h" 622 #include "target_structs.h" 623 624 #endif /* QEMU_H */ 625