1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include <signal.h> 5 #include <string.h> 6 7 #include "cpu.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #include <stdlib.h> 12 #endif /* DEBUG_REMAP */ 13 14 #include "exec/user/abitypes.h" 15 16 #include "exec/user/thunk.h" 17 #include "syscall_defs.h" 18 #include "syscall.h" 19 #include "exec/gdbstub.h" 20 #include "qemu/queue.h" 21 22 #define THREAD __thread 23 24 /* This struct is used to hold certain information about the image. 25 * Basically, it replicates in user space what would be certain 26 * task_struct fields in the kernel 27 */ 28 struct image_info { 29 abi_ulong load_bias; 30 abi_ulong load_addr; 31 abi_ulong start_code; 32 abi_ulong end_code; 33 abi_ulong start_data; 34 abi_ulong end_data; 35 abi_ulong start_brk; 36 abi_ulong brk; 37 abi_ulong start_mmap; 38 abi_ulong mmap; 39 abi_ulong rss; 40 abi_ulong start_stack; 41 abi_ulong stack_limit; 42 abi_ulong entry; 43 abi_ulong code_offset; 44 abi_ulong data_offset; 45 abi_ulong saved_auxv; 46 abi_ulong auxv_len; 47 abi_ulong arg_start; 48 abi_ulong arg_end; 49 uint32_t elf_flags; 50 int personality; 51 #ifdef CONFIG_USE_FDPIC 52 abi_ulong loadmap_addr; 53 uint16_t nsegs; 54 void *loadsegs; 55 abi_ulong pt_dynamic_addr; 56 struct image_info *other_info; 57 #endif 58 }; 59 60 #ifdef TARGET_I386 61 /* Information about the current linux thread */ 62 struct vm86_saved_state { 63 uint32_t eax; /* return code */ 64 uint32_t ebx; 65 uint32_t ecx; 66 uint32_t edx; 67 uint32_t esi; 68 uint32_t edi; 69 uint32_t ebp; 70 uint32_t esp; 71 uint32_t eflags; 72 uint32_t eip; 73 uint16_t cs, ss, ds, es, fs, gs; 74 }; 75 #endif 76 77 #ifdef TARGET_ARM 78 /* FPU emulator */ 79 #include "nwfpe/fpa11.h" 80 #endif 81 82 #define MAX_SIGQUEUE_SIZE 1024 83 84 struct sigqueue { 85 struct sigqueue *next; 86 target_siginfo_t info; 87 }; 88 89 struct emulated_sigtable { 90 int pending; /* true if signal is pending */ 91 struct sigqueue *first; 92 struct sigqueue info; /* in order to always have memory for the 93 first signal, we put it here */ 94 }; 95 96 /* NOTE: we force a big alignment so that the stack stored after is 97 aligned too */ 98 typedef struct TaskState { 99 pid_t ts_tid; /* tid (or pid) of this task */ 100 #ifdef TARGET_ARM 101 /* FPA state */ 102 FPA11 fpa; 103 int swi_errno; 104 #endif 105 #ifdef TARGET_UNICORE32 106 int swi_errno; 107 #endif 108 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 109 abi_ulong target_v86; 110 struct vm86_saved_state vm86_saved_regs; 111 struct target_vm86plus_struct vm86plus; 112 uint32_t v86flags; 113 uint32_t v86mask; 114 #endif 115 abi_ulong child_tidptr; 116 #ifdef TARGET_M68K 117 int sim_syscalls; 118 abi_ulong tp_value; 119 #endif 120 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 121 /* Extra fields for semihosted binaries. */ 122 uint32_t heap_base; 123 uint32_t heap_limit; 124 #endif 125 uint32_t stack_base; 126 int used; /* non zero if used */ 127 struct image_info *info; 128 struct linux_binprm *bprm; 129 130 struct emulated_sigtable sigtab[TARGET_NSIG]; 131 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 132 struct sigqueue *first_free; /* first free siginfo queue entry */ 133 int signal_pending; /* non zero if a signal may be pending */ 134 } __attribute__((aligned(16))) TaskState; 135 136 extern char *exec_path; 137 void init_task_state(TaskState *ts); 138 void task_settid(TaskState *); 139 void stop_all_tasks(void); 140 extern const char *qemu_uname_release; 141 extern unsigned long mmap_min_addr; 142 143 /* ??? See if we can avoid exposing so much of the loader internals. */ 144 /* 145 * MAX_ARG_PAGES defines the number of pages allocated for arguments 146 * and envelope for the new program. 32 should suffice, this gives 147 * a maximum env+arg of 128kB w/4KB pages! 148 */ 149 #define MAX_ARG_PAGES 33 150 151 /* Read a good amount of data initially, to hopefully get all the 152 program headers loaded. */ 153 #define BPRM_BUF_SIZE 1024 154 155 /* 156 * This structure is used to hold the arguments that are 157 * used when loading binaries. 158 */ 159 struct linux_binprm { 160 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 161 void *page[MAX_ARG_PAGES]; 162 abi_ulong p; 163 int fd; 164 int e_uid, e_gid; 165 int argc, envc; 166 char **argv; 167 char **envp; 168 char * filename; /* Name of binary */ 169 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 170 }; 171 172 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 173 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 174 abi_ulong stringp, int push_ptr); 175 int loader_exec(const char * filename, char ** argv, char ** envp, 176 struct target_pt_regs * regs, struct image_info *infop, 177 struct linux_binprm *); 178 179 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 180 struct image_info * info); 181 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 182 struct image_info * info); 183 184 abi_long memcpy_to_target(abi_ulong dest, const void *src, 185 unsigned long len); 186 void target_set_brk(abi_ulong new_brk); 187 abi_long do_brk(abi_ulong new_brk); 188 void syscall_init(void); 189 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 190 abi_long arg2, abi_long arg3, abi_long arg4, 191 abi_long arg5, abi_long arg6, abi_long arg7, 192 abi_long arg8); 193 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 194 extern THREAD CPUState *thread_cpu; 195 void cpu_loop(CPUArchState *env); 196 char *target_strerror(int err); 197 int get_osversion(void); 198 void fork_start(void); 199 void fork_end(int child); 200 201 /* Creates the initial guest address space in the host memory space using 202 * the given host start address hint and size. The guest_start parameter 203 * specifies the start address of the guest space. guest_base will be the 204 * difference between the host start address computed by this function and 205 * guest_start. If fixed is specified, then the mapped address space must 206 * start at host_start. The real start address of the mapped memory space is 207 * returned or -1 if there was an error. 208 */ 209 unsigned long init_guest_space(unsigned long host_start, 210 unsigned long host_size, 211 unsigned long guest_start, 212 bool fixed); 213 214 #include "qemu/log.h" 215 216 /* syscall.c */ 217 int host_to_target_waitstatus(int status); 218 219 /* strace.c */ 220 void print_syscall(int num, 221 abi_long arg1, abi_long arg2, abi_long arg3, 222 abi_long arg4, abi_long arg5, abi_long arg6); 223 void print_syscall_ret(int num, abi_long arg1); 224 extern int do_strace; 225 226 /* signal.c */ 227 void process_pending_signals(CPUArchState *cpu_env); 228 void signal_init(void); 229 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 230 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 231 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 232 int target_to_host_signal(int sig); 233 int host_to_target_signal(int sig); 234 long do_sigreturn(CPUArchState *env); 235 long do_rt_sigreturn(CPUArchState *env); 236 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 237 238 #ifdef TARGET_I386 239 /* vm86.c */ 240 void save_v86_state(CPUX86State *env); 241 void handle_vm86_trap(CPUX86State *env, int trapno); 242 void handle_vm86_fault(CPUX86State *env); 243 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 244 #elif defined(TARGET_SPARC64) 245 void sparc64_set_context(CPUSPARCState *env); 246 void sparc64_get_context(CPUSPARCState *env); 247 #endif 248 249 /* mmap.c */ 250 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 251 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 252 int flags, int fd, abi_ulong offset); 253 int target_munmap(abi_ulong start, abi_ulong len); 254 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 255 abi_ulong new_size, unsigned long flags, 256 abi_ulong new_addr); 257 int target_msync(abi_ulong start, abi_ulong len, int flags); 258 extern unsigned long last_brk; 259 extern abi_ulong mmap_next_start; 260 void mmap_lock(void); 261 void mmap_unlock(void); 262 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 263 void cpu_list_lock(void); 264 void cpu_list_unlock(void); 265 void mmap_fork_start(void); 266 void mmap_fork_end(int child); 267 268 /* main.c */ 269 extern unsigned long guest_stack_size; 270 271 /* user access */ 272 273 #define VERIFY_READ 0 274 #define VERIFY_WRITE 1 /* implies read access */ 275 276 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 277 { 278 return page_check_range((target_ulong)addr, size, 279 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 280 } 281 282 /* NOTE __get_user and __put_user use host pointers and don't check access. 283 These are usually used to access struct data members once the struct has 284 been locked - usually with lock_user_struct. */ 285 286 /* Tricky points: 287 - Use __builtin_choose_expr to avoid type promotion from ?:, 288 - Invalid sizes result in a compile time error stemming from 289 the fact that abort has no parameters. 290 - It's easier to use the endian-specific unaligned load/store 291 functions than host-endian unaligned load/store plus tswapN. */ 292 293 #define __put_user_e(x, hptr, e) \ 294 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 295 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 296 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 297 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 298 ((hptr), (x)), 0) 299 300 #define __get_user_e(x, hptr, e) \ 301 ((x) = (typeof(*hptr))( \ 302 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 303 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 304 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 305 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 306 (hptr)), 0) 307 308 #ifdef TARGET_WORDS_BIGENDIAN 309 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 310 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 311 #else 312 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 313 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 314 #endif 315 316 /* put_user()/get_user() take a guest address and check access */ 317 /* These are usually used to access an atomic data type, such as an int, 318 * that has been passed by address. These internally perform locking 319 * and unlocking on the data type. 320 */ 321 #define put_user(x, gaddr, target_type) \ 322 ({ \ 323 abi_ulong __gaddr = (gaddr); \ 324 target_type *__hptr; \ 325 abi_long __ret; \ 326 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 327 __ret = __put_user((x), __hptr); \ 328 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 329 } else \ 330 __ret = -TARGET_EFAULT; \ 331 __ret; \ 332 }) 333 334 #define get_user(x, gaddr, target_type) \ 335 ({ \ 336 abi_ulong __gaddr = (gaddr); \ 337 target_type *__hptr; \ 338 abi_long __ret; \ 339 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 340 __ret = __get_user((x), __hptr); \ 341 unlock_user(__hptr, __gaddr, 0); \ 342 } else { \ 343 /* avoid warning */ \ 344 (x) = 0; \ 345 __ret = -TARGET_EFAULT; \ 346 } \ 347 __ret; \ 348 }) 349 350 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 351 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 352 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 353 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 354 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 355 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 356 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 357 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 358 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 359 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 360 361 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 362 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 363 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 364 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 365 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 366 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 367 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 368 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 369 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 370 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 371 372 /* copy_from_user() and copy_to_user() are usually used to copy data 373 * buffers between the target and host. These internally perform 374 * locking/unlocking of the memory. 375 */ 376 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 377 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 378 379 /* Functions for accessing guest memory. The tget and tput functions 380 read/write single values, byteswapping as necessary. The lock_user 381 gets a pointer to a contiguous area of guest memory, but does not perform 382 and byteswapping. lock_user may return either a pointer to the guest 383 memory, or a temporary buffer. */ 384 385 /* Lock an area of guest memory into the host. If copy is true then the 386 host area will have the same contents as the guest. */ 387 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 388 { 389 if (!access_ok(type, guest_addr, len)) 390 return NULL; 391 #ifdef DEBUG_REMAP 392 { 393 void *addr; 394 addr = malloc(len); 395 if (copy) 396 memcpy(addr, g2h(guest_addr), len); 397 else 398 memset(addr, 0, len); 399 return addr; 400 } 401 #else 402 return g2h(guest_addr); 403 #endif 404 } 405 406 /* Unlock an area of guest memory. The first LEN bytes must be 407 flushed back to guest memory. host_ptr = NULL is explicitly 408 allowed and does nothing. */ 409 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 410 long len) 411 { 412 413 #ifdef DEBUG_REMAP 414 if (!host_ptr) 415 return; 416 if (host_ptr == g2h(guest_addr)) 417 return; 418 if (len > 0) 419 memcpy(g2h(guest_addr), host_ptr, len); 420 free(host_ptr); 421 #endif 422 } 423 424 /* Return the length of a string in target memory or -TARGET_EFAULT if 425 access error. */ 426 abi_long target_strlen(abi_ulong gaddr); 427 428 /* Like lock_user but for null terminated strings. */ 429 static inline void *lock_user_string(abi_ulong guest_addr) 430 { 431 abi_long len; 432 len = target_strlen(guest_addr); 433 if (len < 0) 434 return NULL; 435 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 436 } 437 438 /* Helper macros for locking/ulocking a target struct. */ 439 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 440 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 441 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 442 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 443 444 #include <pthread.h> 445 446 /* Include target-specific struct and function definitions; 447 * they may need access to the target-independent structures 448 * above, so include them last. 449 */ 450 #include "target_cpu.h" 451 #include "target_signal.h" 452 453 #endif /* QEMU_H */ 454