1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "hostdep.h" 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #endif /* DEBUG_REMAP */ 12 13 #include "exec/user/abitypes.h" 14 15 #include "exec/user/thunk.h" 16 #include "syscall_defs.h" 17 #include "target_syscall.h" 18 #include "exec/gdbstub.h" 19 #include "qemu/queue.h" 20 21 #define THREAD __thread 22 23 /* This struct is used to hold certain information about the image. 24 * Basically, it replicates in user space what would be certain 25 * task_struct fields in the kernel 26 */ 27 struct image_info { 28 abi_ulong load_bias; 29 abi_ulong load_addr; 30 abi_ulong start_code; 31 abi_ulong end_code; 32 abi_ulong start_data; 33 abi_ulong end_data; 34 abi_ulong start_brk; 35 abi_ulong brk; 36 abi_ulong start_mmap; 37 abi_ulong start_stack; 38 abi_ulong stack_limit; 39 abi_ulong entry; 40 abi_ulong code_offset; 41 abi_ulong data_offset; 42 abi_ulong saved_auxv; 43 abi_ulong auxv_len; 44 abi_ulong arg_start; 45 abi_ulong arg_end; 46 uint32_t elf_flags; 47 int personality; 48 #ifdef CONFIG_USE_FDPIC 49 abi_ulong loadmap_addr; 50 uint16_t nsegs; 51 void *loadsegs; 52 abi_ulong pt_dynamic_addr; 53 struct image_info *other_info; 54 #endif 55 }; 56 57 #ifdef TARGET_I386 58 /* Information about the current linux thread */ 59 struct vm86_saved_state { 60 uint32_t eax; /* return code */ 61 uint32_t ebx; 62 uint32_t ecx; 63 uint32_t edx; 64 uint32_t esi; 65 uint32_t edi; 66 uint32_t ebp; 67 uint32_t esp; 68 uint32_t eflags; 69 uint32_t eip; 70 uint16_t cs, ss, ds, es, fs, gs; 71 }; 72 #endif 73 74 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 75 /* FPU emulator */ 76 #include "nwfpe/fpa11.h" 77 #endif 78 79 #define MAX_SIGQUEUE_SIZE 1024 80 81 struct emulated_sigtable { 82 int pending; /* true if signal is pending */ 83 target_siginfo_t info; 84 }; 85 86 /* NOTE: we force a big alignment so that the stack stored after is 87 aligned too */ 88 typedef struct TaskState { 89 pid_t ts_tid; /* tid (or pid) of this task */ 90 #ifdef TARGET_ARM 91 # ifdef TARGET_ABI32 92 /* FPA state */ 93 FPA11 fpa; 94 # endif 95 int swi_errno; 96 #endif 97 #ifdef TARGET_UNICORE32 98 int swi_errno; 99 #endif 100 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 101 abi_ulong target_v86; 102 struct vm86_saved_state vm86_saved_regs; 103 struct target_vm86plus_struct vm86plus; 104 uint32_t v86flags; 105 uint32_t v86mask; 106 #endif 107 abi_ulong child_tidptr; 108 #ifdef TARGET_M68K 109 int sim_syscalls; 110 abi_ulong tp_value; 111 #endif 112 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 113 /* Extra fields for semihosted binaries. */ 114 uint32_t heap_base; 115 uint32_t heap_limit; 116 #endif 117 uint32_t stack_base; 118 int used; /* non zero if used */ 119 struct image_info *info; 120 struct linux_binprm *bprm; 121 122 struct emulated_sigtable sync_signal; 123 struct emulated_sigtable sigtab[TARGET_NSIG]; 124 /* This thread's signal mask, as requested by the guest program. 125 * The actual signal mask of this thread may differ: 126 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 127 * + sometimes we block all signals to avoid races 128 */ 129 sigset_t signal_mask; 130 /* The signal mask imposed by a guest sigsuspend syscall, if we are 131 * currently in the middle of such a syscall 132 */ 133 sigset_t sigsuspend_mask; 134 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 135 int in_sigsuspend; 136 137 /* Nonzero if process_pending_signals() needs to do something (either 138 * handle a pending signal or unblock signals). 139 * This flag is written from a signal handler so should be accessed via 140 * the atomic_read() and atomic_write() functions. (It is not accessed 141 * from multiple threads.) 142 */ 143 int signal_pending; 144 145 } __attribute__((aligned(16))) TaskState; 146 147 extern char *exec_path; 148 void init_task_state(TaskState *ts); 149 void task_settid(TaskState *); 150 void stop_all_tasks(void); 151 extern const char *qemu_uname_release; 152 extern unsigned long mmap_min_addr; 153 154 /* ??? See if we can avoid exposing so much of the loader internals. */ 155 156 /* Read a good amount of data initially, to hopefully get all the 157 program headers loaded. */ 158 #define BPRM_BUF_SIZE 1024 159 160 /* 161 * This structure is used to hold the arguments that are 162 * used when loading binaries. 163 */ 164 struct linux_binprm { 165 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 166 abi_ulong p; 167 int fd; 168 int e_uid, e_gid; 169 int argc, envc; 170 char **argv; 171 char **envp; 172 char * filename; /* Name of binary */ 173 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 174 }; 175 176 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 177 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 178 abi_ulong stringp, int push_ptr); 179 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 180 struct target_pt_regs * regs, struct image_info *infop, 181 struct linux_binprm *); 182 183 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 184 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 185 186 abi_long memcpy_to_target(abi_ulong dest, const void *src, 187 unsigned long len); 188 void target_set_brk(abi_ulong new_brk); 189 abi_long do_brk(abi_ulong new_brk); 190 void syscall_init(void); 191 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 192 abi_long arg2, abi_long arg3, abi_long arg4, 193 abi_long arg5, abi_long arg6, abi_long arg7, 194 abi_long arg8); 195 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 196 extern THREAD CPUState *thread_cpu; 197 void cpu_loop(CPUArchState *env); 198 const char *target_strerror(int err); 199 int get_osversion(void); 200 void init_qemu_uname_release(void); 201 void fork_start(void); 202 void fork_end(int child); 203 204 /* Creates the initial guest address space in the host memory space using 205 * the given host start address hint and size. The guest_start parameter 206 * specifies the start address of the guest space. guest_base will be the 207 * difference between the host start address computed by this function and 208 * guest_start. If fixed is specified, then the mapped address space must 209 * start at host_start. The real start address of the mapped memory space is 210 * returned or -1 if there was an error. 211 */ 212 unsigned long init_guest_space(unsigned long host_start, 213 unsigned long host_size, 214 unsigned long guest_start, 215 bool fixed); 216 217 #include "qemu/log.h" 218 219 /* safe_syscall.S */ 220 221 /** 222 * safe_syscall: 223 * @int number: number of system call to make 224 * ...: arguments to the system call 225 * 226 * Call a system call if guest signal not pending. 227 * This has the same API as the libc syscall() function, except that it 228 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. 229 * 230 * Returns: the system call result, or -1 with an error code in errno 231 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing 232 * with any of the host errno values.) 233 */ 234 235 /* A guide to using safe_syscall() to handle interactions between guest 236 * syscalls and guest signals: 237 * 238 * Guest syscalls come in two flavours: 239 * 240 * (1) Non-interruptible syscalls 241 * 242 * These are guest syscalls that never get interrupted by signals and 243 * so never return EINTR. They can be implemented straightforwardly in 244 * QEMU: just make sure that if the implementation code has to make any 245 * blocking calls that those calls are retried if they return EINTR. 246 * It's also OK to implement these with safe_syscall, though it will be 247 * a little less efficient if a signal is delivered at the 'wrong' moment. 248 * 249 * Some non-interruptible syscalls need to be handled using block_signals() 250 * to block signals for the duration of the syscall. This mainly applies 251 * to code which needs to modify the data structures used by the 252 * host_signal_handler() function and the functions it calls, including 253 * all syscalls which change the thread's signal mask. 254 * 255 * (2) Interruptible syscalls 256 * 257 * These are guest syscalls that can be interrupted by signals and 258 * for which we need to either return EINTR or arrange for the guest 259 * syscall to be restarted. This category includes both syscalls which 260 * always restart (and in the kernel return -ERESTARTNOINTR), ones 261 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND 262 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart 263 * if the handler was registered with SA_RESTART (kernel returns 264 * -ERESTARTSYS). System calls which are only interruptible in some 265 * situations (like 'open') also need to be handled this way. 266 * 267 * Here it is important that the host syscall is made 268 * via this safe_syscall() function, and *not* via the host libc. 269 * If the host libc is used then the implementation will appear to work 270 * most of the time, but there will be a race condition where a 271 * signal could arrive just before we make the host syscall inside libc, 272 * and then then guest syscall will not correctly be interrupted. 273 * Instead the implementation of the guest syscall can use the safe_syscall 274 * function but otherwise just return the result or errno in the usual 275 * way; the main loop code will take care of restarting the syscall 276 * if appropriate. 277 * 278 * (If the implementation needs to make multiple host syscalls this is 279 * OK; any which might really block must be via safe_syscall(); for those 280 * which are only technically blocking (ie which we know in practice won't 281 * stay in the host kernel indefinitely) it's OK to use libc if necessary. 282 * You must be able to cope with backing out correctly if some safe_syscall 283 * you make in the implementation returns either -TARGET_ERESTARTSYS or 284 * EINTR though.) 285 * 286 * block_signals() cannot be used for interruptible syscalls. 287 * 288 * 289 * How and why the safe_syscall implementation works: 290 * 291 * The basic setup is that we make the host syscall via a known 292 * section of host native assembly. If a signal occurs, our signal 293 * handler checks the interrupted host PC against the addresse of that 294 * known section. If the PC is before or at the address of the syscall 295 * instruction then we change the PC to point at a "return 296 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler 297 * (causing the safe_syscall() call to immediately return that value). 298 * Then in the main.c loop if we see this magic return value we adjust 299 * the guest PC to wind it back to before the system call, and invoke 300 * the guest signal handler as usual. 301 * 302 * This winding-back will happen in two cases: 303 * (1) signal came in just before we took the host syscall (a race); 304 * in this case we'll take the guest signal and have another go 305 * at the syscall afterwards, and this is indistinguishable for the 306 * guest from the timing having been different such that the guest 307 * signal really did win the race 308 * (2) signal came in while the host syscall was blocking, and the 309 * host kernel decided the syscall should be restarted; 310 * in this case we want to restart the guest syscall also, and so 311 * rewinding is the right thing. (Note that "restart" semantics mean 312 * "first call the signal handler, then reattempt the syscall".) 313 * The other situation to consider is when a signal came in while the 314 * host syscall was blocking, and the host kernel decided that the syscall 315 * should not be restarted; in this case QEMU's host signal handler will 316 * be invoked with the PC pointing just after the syscall instruction, 317 * with registers indicating an EINTR return; the special code in the 318 * handler will not kick in, and we will return EINTR to the guest as 319 * we should. 320 * 321 * Notice that we can leave the host kernel to make the decision for 322 * us about whether to do a restart of the syscall or not; we do not 323 * need to check SA_RESTART flags in QEMU or distinguish the various 324 * kinds of restartability. 325 */ 326 #ifdef HAVE_SAFE_SYSCALL 327 /* The core part of this function is implemented in assembly */ 328 extern long safe_syscall_base(int *pending, long number, ...); 329 330 #define safe_syscall(...) \ 331 ({ \ 332 long ret_; \ 333 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ 334 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ 335 if (is_error(ret_)) { \ 336 errno = -ret_; \ 337 ret_ = -1; \ 338 } \ 339 ret_; \ 340 }) 341 342 #else 343 344 /* Fallback for architectures which don't yet provide a safe-syscall assembly 345 * fragment; note that this is racy! 346 * This should go away when all host architectures have been updated. 347 */ 348 #define safe_syscall syscall 349 350 #endif 351 352 /* syscall.c */ 353 int host_to_target_waitstatus(int status); 354 355 /* strace.c */ 356 void print_syscall(int num, 357 abi_long arg1, abi_long arg2, abi_long arg3, 358 abi_long arg4, abi_long arg5, abi_long arg6); 359 void print_syscall_ret(int num, abi_long arg1); 360 extern int do_strace; 361 362 /* signal.c */ 363 void process_pending_signals(CPUArchState *cpu_env); 364 void signal_init(void); 365 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 366 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 367 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 368 int target_to_host_signal(int sig); 369 int host_to_target_signal(int sig); 370 long do_sigreturn(CPUArchState *env); 371 long do_rt_sigreturn(CPUArchState *env); 372 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 373 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 374 /** 375 * block_signals: block all signals while handling this guest syscall 376 * 377 * Block all signals, and arrange that the signal mask is returned to 378 * its correct value for the guest before we resume execution of guest code. 379 * If this function returns non-zero, then the caller should immediately 380 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending 381 * signal and restart execution of the syscall. 382 * If block_signals() returns zero, then the caller can continue with 383 * emulation of the system call knowing that no signals can be taken 384 * (and therefore that no race conditions will result). 385 * This should only be called once, because if it is called a second time 386 * it will always return non-zero. (Think of it like a mutex that can't 387 * be recursively locked.) 388 * Signals will be unblocked again by process_pending_signals(). 389 * 390 * Return value: non-zero if there was a pending signal, zero if not. 391 */ 392 int block_signals(void); /* Returns non zero if signal pending */ 393 394 #ifdef TARGET_I386 395 /* vm86.c */ 396 void save_v86_state(CPUX86State *env); 397 void handle_vm86_trap(CPUX86State *env, int trapno); 398 void handle_vm86_fault(CPUX86State *env); 399 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 400 #elif defined(TARGET_SPARC64) 401 void sparc64_set_context(CPUSPARCState *env); 402 void sparc64_get_context(CPUSPARCState *env); 403 #endif 404 405 /* mmap.c */ 406 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 407 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 408 int flags, int fd, abi_ulong offset); 409 int target_munmap(abi_ulong start, abi_ulong len); 410 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 411 abi_ulong new_size, unsigned long flags, 412 abi_ulong new_addr); 413 int target_msync(abi_ulong start, abi_ulong len, int flags); 414 extern unsigned long last_brk; 415 extern abi_ulong mmap_next_start; 416 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 417 void cpu_list_lock(void); 418 void cpu_list_unlock(void); 419 void mmap_fork_start(void); 420 void mmap_fork_end(int child); 421 422 /* main.c */ 423 extern unsigned long guest_stack_size; 424 425 /* user access */ 426 427 #define VERIFY_READ 0 428 #define VERIFY_WRITE 1 /* implies read access */ 429 430 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 431 { 432 return page_check_range((target_ulong)addr, size, 433 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 434 } 435 436 /* NOTE __get_user and __put_user use host pointers and don't check access. 437 These are usually used to access struct data members once the struct has 438 been locked - usually with lock_user_struct. */ 439 440 /* Tricky points: 441 - Use __builtin_choose_expr to avoid type promotion from ?:, 442 - Invalid sizes result in a compile time error stemming from 443 the fact that abort has no parameters. 444 - It's easier to use the endian-specific unaligned load/store 445 functions than host-endian unaligned load/store plus tswapN. */ 446 447 #define __put_user_e(x, hptr, e) \ 448 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 449 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 450 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 451 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 452 ((hptr), (x)), (void)0) 453 454 #define __get_user_e(x, hptr, e) \ 455 ((x) = (typeof(*hptr))( \ 456 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 457 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 458 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 459 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 460 (hptr)), (void)0) 461 462 #ifdef TARGET_WORDS_BIGENDIAN 463 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 464 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 465 #else 466 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 467 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 468 #endif 469 470 /* put_user()/get_user() take a guest address and check access */ 471 /* These are usually used to access an atomic data type, such as an int, 472 * that has been passed by address. These internally perform locking 473 * and unlocking on the data type. 474 */ 475 #define put_user(x, gaddr, target_type) \ 476 ({ \ 477 abi_ulong __gaddr = (gaddr); \ 478 target_type *__hptr; \ 479 abi_long __ret = 0; \ 480 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 481 __put_user((x), __hptr); \ 482 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 483 } else \ 484 __ret = -TARGET_EFAULT; \ 485 __ret; \ 486 }) 487 488 #define get_user(x, gaddr, target_type) \ 489 ({ \ 490 abi_ulong __gaddr = (gaddr); \ 491 target_type *__hptr; \ 492 abi_long __ret = 0; \ 493 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 494 __get_user((x), __hptr); \ 495 unlock_user(__hptr, __gaddr, 0); \ 496 } else { \ 497 /* avoid warning */ \ 498 (x) = 0; \ 499 __ret = -TARGET_EFAULT; \ 500 } \ 501 __ret; \ 502 }) 503 504 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 505 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 506 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 507 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 508 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 509 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 510 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 511 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 512 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 513 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 514 515 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 516 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 517 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 518 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 519 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 520 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 521 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 522 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 523 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 524 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 525 526 /* copy_from_user() and copy_to_user() are usually used to copy data 527 * buffers between the target and host. These internally perform 528 * locking/unlocking of the memory. 529 */ 530 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 531 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 532 533 /* Functions for accessing guest memory. The tget and tput functions 534 read/write single values, byteswapping as necessary. The lock_user function 535 gets a pointer to a contiguous area of guest memory, but does not perform 536 any byteswapping. lock_user may return either a pointer to the guest 537 memory, or a temporary buffer. */ 538 539 /* Lock an area of guest memory into the host. If copy is true then the 540 host area will have the same contents as the guest. */ 541 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 542 { 543 if (!access_ok(type, guest_addr, len)) 544 return NULL; 545 #ifdef DEBUG_REMAP 546 { 547 void *addr; 548 addr = malloc(len); 549 if (copy) 550 memcpy(addr, g2h(guest_addr), len); 551 else 552 memset(addr, 0, len); 553 return addr; 554 } 555 #else 556 return g2h(guest_addr); 557 #endif 558 } 559 560 /* Unlock an area of guest memory. The first LEN bytes must be 561 flushed back to guest memory. host_ptr = NULL is explicitly 562 allowed and does nothing. */ 563 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 564 long len) 565 { 566 567 #ifdef DEBUG_REMAP 568 if (!host_ptr) 569 return; 570 if (host_ptr == g2h(guest_addr)) 571 return; 572 if (len > 0) 573 memcpy(g2h(guest_addr), host_ptr, len); 574 free(host_ptr); 575 #endif 576 } 577 578 /* Return the length of a string in target memory or -TARGET_EFAULT if 579 access error. */ 580 abi_long target_strlen(abi_ulong gaddr); 581 582 /* Like lock_user but for null terminated strings. */ 583 static inline void *lock_user_string(abi_ulong guest_addr) 584 { 585 abi_long len; 586 len = target_strlen(guest_addr); 587 if (len < 0) 588 return NULL; 589 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 590 } 591 592 /* Helper macros for locking/unlocking a target struct. */ 593 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 594 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 595 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 596 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 597 598 #include <pthread.h> 599 600 /* Include target-specific struct and function definitions; 601 * they may need access to the target-independent structures 602 * above, so include them last. 603 */ 604 #include "target_cpu.h" 605 #include "target_signal.h" 606 #include "target_structs.h" 607 608 #endif /* QEMU_H */ 609