1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include <signal.h> 5 #include <string.h> 6 7 #include "cpu.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #include <stdlib.h> 12 #endif /* DEBUG_REMAP */ 13 14 #include "exec/user/abitypes.h" 15 16 #include "exec/user/thunk.h" 17 #include "syscall_defs.h" 18 #include "syscall.h" 19 #include "exec/gdbstub.h" 20 #include "qemu/queue.h" 21 22 #define THREAD __thread 23 24 /* This struct is used to hold certain information about the image. 25 * Basically, it replicates in user space what would be certain 26 * task_struct fields in the kernel 27 */ 28 struct image_info { 29 abi_ulong load_bias; 30 abi_ulong load_addr; 31 abi_ulong start_code; 32 abi_ulong end_code; 33 abi_ulong start_data; 34 abi_ulong end_data; 35 abi_ulong start_brk; 36 abi_ulong brk; 37 abi_ulong start_mmap; 38 abi_ulong mmap; 39 abi_ulong rss; 40 abi_ulong start_stack; 41 abi_ulong stack_limit; 42 abi_ulong entry; 43 abi_ulong code_offset; 44 abi_ulong data_offset; 45 abi_ulong saved_auxv; 46 abi_ulong auxv_len; 47 abi_ulong arg_start; 48 abi_ulong arg_end; 49 uint32_t elf_flags; 50 int personality; 51 #ifdef CONFIG_USE_FDPIC 52 abi_ulong loadmap_addr; 53 uint16_t nsegs; 54 void *loadsegs; 55 abi_ulong pt_dynamic_addr; 56 struct image_info *other_info; 57 #endif 58 }; 59 60 #ifdef TARGET_I386 61 /* Information about the current linux thread */ 62 struct vm86_saved_state { 63 uint32_t eax; /* return code */ 64 uint32_t ebx; 65 uint32_t ecx; 66 uint32_t edx; 67 uint32_t esi; 68 uint32_t edi; 69 uint32_t ebp; 70 uint32_t esp; 71 uint32_t eflags; 72 uint32_t eip; 73 uint16_t cs, ss, ds, es, fs, gs; 74 }; 75 #endif 76 77 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 78 /* FPU emulator */ 79 #include "nwfpe/fpa11.h" 80 #endif 81 82 #define MAX_SIGQUEUE_SIZE 1024 83 84 struct sigqueue { 85 struct sigqueue *next; 86 target_siginfo_t info; 87 }; 88 89 struct emulated_sigtable { 90 int pending; /* true if signal is pending */ 91 struct sigqueue *first; 92 struct sigqueue info; /* in order to always have memory for the 93 first signal, we put it here */ 94 }; 95 96 /* NOTE: we force a big alignment so that the stack stored after is 97 aligned too */ 98 typedef struct TaskState { 99 pid_t ts_tid; /* tid (or pid) of this task */ 100 #ifdef TARGET_ARM 101 # ifdef TARGET_ABI32 102 /* FPA state */ 103 FPA11 fpa; 104 # endif 105 int swi_errno; 106 #endif 107 #ifdef TARGET_UNICORE32 108 int swi_errno; 109 #endif 110 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 111 abi_ulong target_v86; 112 struct vm86_saved_state vm86_saved_regs; 113 struct target_vm86plus_struct vm86plus; 114 uint32_t v86flags; 115 uint32_t v86mask; 116 #endif 117 abi_ulong child_tidptr; 118 #ifdef TARGET_M68K 119 int sim_syscalls; 120 abi_ulong tp_value; 121 #endif 122 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 123 /* Extra fields for semihosted binaries. */ 124 uint32_t heap_base; 125 uint32_t heap_limit; 126 #endif 127 uint32_t stack_base; 128 int used; /* non zero if used */ 129 struct image_info *info; 130 struct linux_binprm *bprm; 131 132 struct emulated_sigtable sigtab[TARGET_NSIG]; 133 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 134 struct sigqueue *first_free; /* first free siginfo queue entry */ 135 int signal_pending; /* non zero if a signal may be pending */ 136 } __attribute__((aligned(16))) TaskState; 137 138 extern char *exec_path; 139 void init_task_state(TaskState *ts); 140 void task_settid(TaskState *); 141 void stop_all_tasks(void); 142 extern const char *qemu_uname_release; 143 extern unsigned long mmap_min_addr; 144 145 /* ??? See if we can avoid exposing so much of the loader internals. */ 146 /* 147 * MAX_ARG_PAGES defines the number of pages allocated for arguments 148 * and envelope for the new program. 32 should suffice, this gives 149 * a maximum env+arg of 128kB w/4KB pages! 150 */ 151 #define MAX_ARG_PAGES 33 152 153 /* Read a good amount of data initially, to hopefully get all the 154 program headers loaded. */ 155 #define BPRM_BUF_SIZE 1024 156 157 /* 158 * This structure is used to hold the arguments that are 159 * used when loading binaries. 160 */ 161 struct linux_binprm { 162 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 163 void *page[MAX_ARG_PAGES]; 164 abi_ulong p; 165 int fd; 166 int e_uid, e_gid; 167 int argc, envc; 168 char **argv; 169 char **envp; 170 char * filename; /* Name of binary */ 171 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 172 }; 173 174 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 175 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 176 abi_ulong stringp, int push_ptr); 177 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 178 struct target_pt_regs * regs, struct image_info *infop, 179 struct linux_binprm *); 180 181 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 182 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 183 184 abi_long memcpy_to_target(abi_ulong dest, const void *src, 185 unsigned long len); 186 void target_set_brk(abi_ulong new_brk); 187 abi_long do_brk(abi_ulong new_brk); 188 void syscall_init(void); 189 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 190 abi_long arg2, abi_long arg3, abi_long arg4, 191 abi_long arg5, abi_long arg6, abi_long arg7, 192 abi_long arg8); 193 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 194 extern THREAD CPUState *thread_cpu; 195 void cpu_loop(CPUArchState *env); 196 char *target_strerror(int err); 197 int get_osversion(void); 198 void init_qemu_uname_release(void); 199 void fork_start(void); 200 void fork_end(int child); 201 202 /* Creates the initial guest address space in the host memory space using 203 * the given host start address hint and size. The guest_start parameter 204 * specifies the start address of the guest space. guest_base will be the 205 * difference between the host start address computed by this function and 206 * guest_start. If fixed is specified, then the mapped address space must 207 * start at host_start. The real start address of the mapped memory space is 208 * returned or -1 if there was an error. 209 */ 210 unsigned long init_guest_space(unsigned long host_start, 211 unsigned long host_size, 212 unsigned long guest_start, 213 bool fixed); 214 215 #include "qemu/log.h" 216 217 /* syscall.c */ 218 int host_to_target_waitstatus(int status); 219 220 /* strace.c */ 221 void print_syscall(int num, 222 abi_long arg1, abi_long arg2, abi_long arg3, 223 abi_long arg4, abi_long arg5, abi_long arg6); 224 void print_syscall_ret(int num, abi_long arg1); 225 extern int do_strace; 226 227 /* signal.c */ 228 void process_pending_signals(CPUArchState *cpu_env); 229 void signal_init(void); 230 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 231 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 232 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 233 int target_to_host_signal(int sig); 234 int host_to_target_signal(int sig); 235 long do_sigreturn(CPUArchState *env); 236 long do_rt_sigreturn(CPUArchState *env); 237 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 238 239 #ifdef TARGET_I386 240 /* vm86.c */ 241 void save_v86_state(CPUX86State *env); 242 void handle_vm86_trap(CPUX86State *env, int trapno); 243 void handle_vm86_fault(CPUX86State *env); 244 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 245 #elif defined(TARGET_SPARC64) 246 void sparc64_set_context(CPUSPARCState *env); 247 void sparc64_get_context(CPUSPARCState *env); 248 #endif 249 250 /* mmap.c */ 251 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 252 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 253 int flags, int fd, abi_ulong offset); 254 int target_munmap(abi_ulong start, abi_ulong len); 255 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 256 abi_ulong new_size, unsigned long flags, 257 abi_ulong new_addr); 258 int target_msync(abi_ulong start, abi_ulong len, int flags); 259 extern unsigned long last_brk; 260 extern abi_ulong mmap_next_start; 261 void mmap_lock(void); 262 void mmap_unlock(void); 263 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 264 void cpu_list_lock(void); 265 void cpu_list_unlock(void); 266 void mmap_fork_start(void); 267 void mmap_fork_end(int child); 268 269 /* main.c */ 270 extern unsigned long guest_stack_size; 271 272 /* user access */ 273 274 #define VERIFY_READ 0 275 #define VERIFY_WRITE 1 /* implies read access */ 276 277 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 278 { 279 return page_check_range((target_ulong)addr, size, 280 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 281 } 282 283 /* NOTE __get_user and __put_user use host pointers and don't check access. 284 These are usually used to access struct data members once the struct has 285 been locked - usually with lock_user_struct. */ 286 287 /* Tricky points: 288 - Use __builtin_choose_expr to avoid type promotion from ?:, 289 - Invalid sizes result in a compile time error stemming from 290 the fact that abort has no parameters. 291 - It's easier to use the endian-specific unaligned load/store 292 functions than host-endian unaligned load/store plus tswapN. */ 293 294 #define __put_user_e(x, hptr, e) \ 295 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 296 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 297 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 298 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 299 ((hptr), (x)), 0) 300 301 #define __get_user_e(x, hptr, e) \ 302 ((x) = (typeof(*hptr))( \ 303 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 304 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 305 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 306 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 307 (hptr)), 0) 308 309 #ifdef TARGET_WORDS_BIGENDIAN 310 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 311 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 312 #else 313 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 314 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 315 #endif 316 317 /* put_user()/get_user() take a guest address and check access */ 318 /* These are usually used to access an atomic data type, such as an int, 319 * that has been passed by address. These internally perform locking 320 * and unlocking on the data type. 321 */ 322 #define put_user(x, gaddr, target_type) \ 323 ({ \ 324 abi_ulong __gaddr = (gaddr); \ 325 target_type *__hptr; \ 326 abi_long __ret; \ 327 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 328 __ret = __put_user((x), __hptr); \ 329 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 330 } else \ 331 __ret = -TARGET_EFAULT; \ 332 __ret; \ 333 }) 334 335 #define get_user(x, gaddr, target_type) \ 336 ({ \ 337 abi_ulong __gaddr = (gaddr); \ 338 target_type *__hptr; \ 339 abi_long __ret; \ 340 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 341 __ret = __get_user((x), __hptr); \ 342 unlock_user(__hptr, __gaddr, 0); \ 343 } else { \ 344 /* avoid warning */ \ 345 (x) = 0; \ 346 __ret = -TARGET_EFAULT; \ 347 } \ 348 __ret; \ 349 }) 350 351 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 352 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 353 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 354 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 355 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 356 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 357 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 358 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 359 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 360 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 361 362 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 363 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 364 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 365 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 366 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 367 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 368 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 369 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 370 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 371 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 372 373 /* copy_from_user() and copy_to_user() are usually used to copy data 374 * buffers between the target and host. These internally perform 375 * locking/unlocking of the memory. 376 */ 377 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 378 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 379 380 /* Functions for accessing guest memory. The tget and tput functions 381 read/write single values, byteswapping as necessary. The lock_user function 382 gets a pointer to a contiguous area of guest memory, but does not perform 383 any byteswapping. lock_user may return either a pointer to the guest 384 memory, or a temporary buffer. */ 385 386 /* Lock an area of guest memory into the host. If copy is true then the 387 host area will have the same contents as the guest. */ 388 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 389 { 390 if (!access_ok(type, guest_addr, len)) 391 return NULL; 392 #ifdef DEBUG_REMAP 393 { 394 void *addr; 395 addr = malloc(len); 396 if (copy) 397 memcpy(addr, g2h(guest_addr), len); 398 else 399 memset(addr, 0, len); 400 return addr; 401 } 402 #else 403 return g2h(guest_addr); 404 #endif 405 } 406 407 /* Unlock an area of guest memory. The first LEN bytes must be 408 flushed back to guest memory. host_ptr = NULL is explicitly 409 allowed and does nothing. */ 410 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 411 long len) 412 { 413 414 #ifdef DEBUG_REMAP 415 if (!host_ptr) 416 return; 417 if (host_ptr == g2h(guest_addr)) 418 return; 419 if (len > 0) 420 memcpy(g2h(guest_addr), host_ptr, len); 421 free(host_ptr); 422 #endif 423 } 424 425 /* Return the length of a string in target memory or -TARGET_EFAULT if 426 access error. */ 427 abi_long target_strlen(abi_ulong gaddr); 428 429 /* Like lock_user but for null terminated strings. */ 430 static inline void *lock_user_string(abi_ulong guest_addr) 431 { 432 abi_long len; 433 len = target_strlen(guest_addr); 434 if (len < 0) 435 return NULL; 436 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 437 } 438 439 /* Helper macros for locking/unlocking a target struct. */ 440 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 441 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 442 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 443 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 444 445 #include <pthread.h> 446 447 /* Include target-specific struct and function definitions; 448 * they may need access to the target-independent structures 449 * above, so include them last. 450 */ 451 #include "target_cpu.h" 452 #include "target_signal.h" 453 #include "target_structs.h" 454 455 #endif /* QEMU_H */ 456