1 #ifndef QEMU_H 2 #define QEMU_H 3 4 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #endif /* DEBUG_REMAP */ 12 13 #include "exec/user/abitypes.h" 14 15 #include "exec/user/thunk.h" 16 #include "syscall_defs.h" 17 #include "target_syscall.h" 18 #include "exec/gdbstub.h" 19 #include "qemu/queue.h" 20 21 #define THREAD __thread 22 23 /* This struct is used to hold certain information about the image. 24 * Basically, it replicates in user space what would be certain 25 * task_struct fields in the kernel 26 */ 27 struct image_info { 28 abi_ulong load_bias; 29 abi_ulong load_addr; 30 abi_ulong start_code; 31 abi_ulong end_code; 32 abi_ulong start_data; 33 abi_ulong end_data; 34 abi_ulong start_brk; 35 abi_ulong brk; 36 abi_ulong start_mmap; 37 abi_ulong start_stack; 38 abi_ulong stack_limit; 39 abi_ulong entry; 40 abi_ulong code_offset; 41 abi_ulong data_offset; 42 abi_ulong saved_auxv; 43 abi_ulong auxv_len; 44 abi_ulong arg_start; 45 abi_ulong arg_end; 46 uint32_t elf_flags; 47 int personality; 48 #ifdef CONFIG_USE_FDPIC 49 abi_ulong loadmap_addr; 50 uint16_t nsegs; 51 void *loadsegs; 52 abi_ulong pt_dynamic_addr; 53 struct image_info *other_info; 54 #endif 55 }; 56 57 #ifdef TARGET_I386 58 /* Information about the current linux thread */ 59 struct vm86_saved_state { 60 uint32_t eax; /* return code */ 61 uint32_t ebx; 62 uint32_t ecx; 63 uint32_t edx; 64 uint32_t esi; 65 uint32_t edi; 66 uint32_t ebp; 67 uint32_t esp; 68 uint32_t eflags; 69 uint32_t eip; 70 uint16_t cs, ss, ds, es, fs, gs; 71 }; 72 #endif 73 74 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 75 /* FPU emulator */ 76 #include "nwfpe/fpa11.h" 77 #endif 78 79 #define MAX_SIGQUEUE_SIZE 1024 80 81 struct sigqueue { 82 struct sigqueue *next; 83 target_siginfo_t info; 84 }; 85 86 struct emulated_sigtable { 87 int pending; /* true if signal is pending */ 88 struct sigqueue *first; 89 struct sigqueue info; /* in order to always have memory for the 90 first signal, we put it here */ 91 }; 92 93 /* NOTE: we force a big alignment so that the stack stored after is 94 aligned too */ 95 typedef struct TaskState { 96 pid_t ts_tid; /* tid (or pid) of this task */ 97 #ifdef TARGET_ARM 98 # ifdef TARGET_ABI32 99 /* FPA state */ 100 FPA11 fpa; 101 # endif 102 int swi_errno; 103 #endif 104 #ifdef TARGET_UNICORE32 105 int swi_errno; 106 #endif 107 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 108 abi_ulong target_v86; 109 struct vm86_saved_state vm86_saved_regs; 110 struct target_vm86plus_struct vm86plus; 111 uint32_t v86flags; 112 uint32_t v86mask; 113 #endif 114 abi_ulong child_tidptr; 115 #ifdef TARGET_M68K 116 int sim_syscalls; 117 abi_ulong tp_value; 118 #endif 119 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 120 /* Extra fields for semihosted binaries. */ 121 uint32_t heap_base; 122 uint32_t heap_limit; 123 #endif 124 uint32_t stack_base; 125 int used; /* non zero if used */ 126 bool sigsegv_blocked; /* SIGSEGV blocked by guest */ 127 struct image_info *info; 128 struct linux_binprm *bprm; 129 130 struct emulated_sigtable sigtab[TARGET_NSIG]; 131 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 132 struct sigqueue *first_free; /* first free siginfo queue entry */ 133 int signal_pending; /* non zero if a signal may be pending */ 134 } __attribute__((aligned(16))) TaskState; 135 136 extern char *exec_path; 137 void init_task_state(TaskState *ts); 138 void task_settid(TaskState *); 139 void stop_all_tasks(void); 140 extern const char *qemu_uname_release; 141 extern unsigned long mmap_min_addr; 142 143 /* ??? See if we can avoid exposing so much of the loader internals. */ 144 145 /* Read a good amount of data initially, to hopefully get all the 146 program headers loaded. */ 147 #define BPRM_BUF_SIZE 1024 148 149 /* 150 * This structure is used to hold the arguments that are 151 * used when loading binaries. 152 */ 153 struct linux_binprm { 154 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 155 abi_ulong p; 156 int fd; 157 int e_uid, e_gid; 158 int argc, envc; 159 char **argv; 160 char **envp; 161 char * filename; /* Name of binary */ 162 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 163 }; 164 165 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 166 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 167 abi_ulong stringp, int push_ptr); 168 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 169 struct target_pt_regs * regs, struct image_info *infop, 170 struct linux_binprm *); 171 172 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 173 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 174 175 abi_long memcpy_to_target(abi_ulong dest, const void *src, 176 unsigned long len); 177 void target_set_brk(abi_ulong new_brk); 178 abi_long do_brk(abi_ulong new_brk); 179 void syscall_init(void); 180 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 181 abi_long arg2, abi_long arg3, abi_long arg4, 182 abi_long arg5, abi_long arg6, abi_long arg7, 183 abi_long arg8); 184 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 185 extern THREAD CPUState *thread_cpu; 186 void cpu_loop(CPUArchState *env); 187 char *target_strerror(int err); 188 int get_osversion(void); 189 void init_qemu_uname_release(void); 190 void fork_start(void); 191 void fork_end(int child); 192 193 /* Creates the initial guest address space in the host memory space using 194 * the given host start address hint and size. The guest_start parameter 195 * specifies the start address of the guest space. guest_base will be the 196 * difference between the host start address computed by this function and 197 * guest_start. If fixed is specified, then the mapped address space must 198 * start at host_start. The real start address of the mapped memory space is 199 * returned or -1 if there was an error. 200 */ 201 unsigned long init_guest_space(unsigned long host_start, 202 unsigned long host_size, 203 unsigned long guest_start, 204 bool fixed); 205 206 #include "qemu/log.h" 207 208 /* syscall.c */ 209 int host_to_target_waitstatus(int status); 210 211 /* strace.c */ 212 void print_syscall(int num, 213 abi_long arg1, abi_long arg2, abi_long arg3, 214 abi_long arg4, abi_long arg5, abi_long arg6); 215 void print_syscall_ret(int num, abi_long arg1); 216 extern int do_strace; 217 218 /* signal.c */ 219 void process_pending_signals(CPUArchState *cpu_env); 220 void signal_init(void); 221 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 222 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 223 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 224 int target_to_host_signal(int sig); 225 int host_to_target_signal(int sig); 226 long do_sigreturn(CPUArchState *env); 227 long do_rt_sigreturn(CPUArchState *env); 228 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 229 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 230 231 #ifdef TARGET_I386 232 /* vm86.c */ 233 void save_v86_state(CPUX86State *env); 234 void handle_vm86_trap(CPUX86State *env, int trapno); 235 void handle_vm86_fault(CPUX86State *env); 236 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 237 #elif defined(TARGET_SPARC64) 238 void sparc64_set_context(CPUSPARCState *env); 239 void sparc64_get_context(CPUSPARCState *env); 240 #endif 241 242 /* mmap.c */ 243 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 244 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 245 int flags, int fd, abi_ulong offset); 246 int target_munmap(abi_ulong start, abi_ulong len); 247 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 248 abi_ulong new_size, unsigned long flags, 249 abi_ulong new_addr); 250 int target_msync(abi_ulong start, abi_ulong len, int flags); 251 extern unsigned long last_brk; 252 extern abi_ulong mmap_next_start; 253 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 254 void cpu_list_lock(void); 255 void cpu_list_unlock(void); 256 void mmap_fork_start(void); 257 void mmap_fork_end(int child); 258 259 /* main.c */ 260 extern unsigned long guest_stack_size; 261 262 /* user access */ 263 264 #define VERIFY_READ 0 265 #define VERIFY_WRITE 1 /* implies read access */ 266 267 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 268 { 269 return page_check_range((target_ulong)addr, size, 270 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 271 } 272 273 /* NOTE __get_user and __put_user use host pointers and don't check access. 274 These are usually used to access struct data members once the struct has 275 been locked - usually with lock_user_struct. */ 276 277 /* Tricky points: 278 - Use __builtin_choose_expr to avoid type promotion from ?:, 279 - Invalid sizes result in a compile time error stemming from 280 the fact that abort has no parameters. 281 - It's easier to use the endian-specific unaligned load/store 282 functions than host-endian unaligned load/store plus tswapN. */ 283 284 #define __put_user_e(x, hptr, e) \ 285 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 286 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 287 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 288 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 289 ((hptr), (x)), (void)0) 290 291 #define __get_user_e(x, hptr, e) \ 292 ((x) = (typeof(*hptr))( \ 293 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 294 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 295 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 296 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 297 (hptr)), (void)0) 298 299 #ifdef TARGET_WORDS_BIGENDIAN 300 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 301 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 302 #else 303 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 304 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 305 #endif 306 307 /* put_user()/get_user() take a guest address and check access */ 308 /* These are usually used to access an atomic data type, such as an int, 309 * that has been passed by address. These internally perform locking 310 * and unlocking on the data type. 311 */ 312 #define put_user(x, gaddr, target_type) \ 313 ({ \ 314 abi_ulong __gaddr = (gaddr); \ 315 target_type *__hptr; \ 316 abi_long __ret = 0; \ 317 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 318 __put_user((x), __hptr); \ 319 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 320 } else \ 321 __ret = -TARGET_EFAULT; \ 322 __ret; \ 323 }) 324 325 #define get_user(x, gaddr, target_type) \ 326 ({ \ 327 abi_ulong __gaddr = (gaddr); \ 328 target_type *__hptr; \ 329 abi_long __ret = 0; \ 330 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 331 __get_user((x), __hptr); \ 332 unlock_user(__hptr, __gaddr, 0); \ 333 } else { \ 334 /* avoid warning */ \ 335 (x) = 0; \ 336 __ret = -TARGET_EFAULT; \ 337 } \ 338 __ret; \ 339 }) 340 341 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 342 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 343 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 344 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 345 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 346 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 347 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 348 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 349 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 350 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 351 352 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 353 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 354 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 355 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 356 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 357 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 358 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 359 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 360 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 361 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 362 363 /* copy_from_user() and copy_to_user() are usually used to copy data 364 * buffers between the target and host. These internally perform 365 * locking/unlocking of the memory. 366 */ 367 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 368 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 369 370 /* Functions for accessing guest memory. The tget and tput functions 371 read/write single values, byteswapping as necessary. The lock_user function 372 gets a pointer to a contiguous area of guest memory, but does not perform 373 any byteswapping. lock_user may return either a pointer to the guest 374 memory, or a temporary buffer. */ 375 376 /* Lock an area of guest memory into the host. If copy is true then the 377 host area will have the same contents as the guest. */ 378 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 379 { 380 if (!access_ok(type, guest_addr, len)) 381 return NULL; 382 #ifdef DEBUG_REMAP 383 { 384 void *addr; 385 addr = malloc(len); 386 if (copy) 387 memcpy(addr, g2h(guest_addr), len); 388 else 389 memset(addr, 0, len); 390 return addr; 391 } 392 #else 393 return g2h(guest_addr); 394 #endif 395 } 396 397 /* Unlock an area of guest memory. The first LEN bytes must be 398 flushed back to guest memory. host_ptr = NULL is explicitly 399 allowed and does nothing. */ 400 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 401 long len) 402 { 403 404 #ifdef DEBUG_REMAP 405 if (!host_ptr) 406 return; 407 if (host_ptr == g2h(guest_addr)) 408 return; 409 if (len > 0) 410 memcpy(g2h(guest_addr), host_ptr, len); 411 free(host_ptr); 412 #endif 413 } 414 415 /* Return the length of a string in target memory or -TARGET_EFAULT if 416 access error. */ 417 abi_long target_strlen(abi_ulong gaddr); 418 419 /* Like lock_user but for null terminated strings. */ 420 static inline void *lock_user_string(abi_ulong guest_addr) 421 { 422 abi_long len; 423 len = target_strlen(guest_addr); 424 if (len < 0) 425 return NULL; 426 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 427 } 428 429 /* Helper macros for locking/unlocking a target struct. */ 430 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 431 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 432 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 433 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 434 435 #include <pthread.h> 436 437 /* Include target-specific struct and function definitions; 438 * they may need access to the target-independent structures 439 * above, so include them last. 440 */ 441 #include "target_cpu.h" 442 #include "target_signal.h" 443 #include "target_structs.h" 444 445 #endif /* QEMU_H */ 446