xref: /openbmc/qemu/linux-user/qemu.h (revision cfc58cf37362a931990efc75f3f580dfec49ac1e)
1 #ifndef QEMU_H
2 #define QEMU_H
3 
4 
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
8 
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
12 
13 #include "exec/user/abitypes.h"
14 
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19 #include "qemu/queue.h"
20 
21 #define THREAD __thread
22 
23 /* This struct is used to hold certain information about the image.
24  * Basically, it replicates in user space what would be certain
25  * task_struct fields in the kernel
26  */
27 struct image_info {
28         abi_ulong       load_bias;
29         abi_ulong       load_addr;
30         abi_ulong       start_code;
31         abi_ulong       end_code;
32         abi_ulong       start_data;
33         abi_ulong       end_data;
34         abi_ulong       start_brk;
35         abi_ulong       brk;
36         abi_ulong       start_mmap;
37         abi_ulong       start_stack;
38         abi_ulong       stack_limit;
39         abi_ulong       entry;
40         abi_ulong       code_offset;
41         abi_ulong       data_offset;
42         abi_ulong       saved_auxv;
43         abi_ulong       auxv_len;
44         abi_ulong       arg_start;
45         abi_ulong       arg_end;
46         uint32_t        elf_flags;
47 	int		personality;
48 #ifdef CONFIG_USE_FDPIC
49         abi_ulong       loadmap_addr;
50         uint16_t        nsegs;
51         void           *loadsegs;
52         abi_ulong       pt_dynamic_addr;
53         struct image_info *other_info;
54 #endif
55 };
56 
57 #ifdef TARGET_I386
58 /* Information about the current linux thread */
59 struct vm86_saved_state {
60     uint32_t eax; /* return code */
61     uint32_t ebx;
62     uint32_t ecx;
63     uint32_t edx;
64     uint32_t esi;
65     uint32_t edi;
66     uint32_t ebp;
67     uint32_t esp;
68     uint32_t eflags;
69     uint32_t eip;
70     uint16_t cs, ss, ds, es, fs, gs;
71 };
72 #endif
73 
74 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
75 /* FPU emulator */
76 #include "nwfpe/fpa11.h"
77 #endif
78 
79 #define MAX_SIGQUEUE_SIZE 1024
80 
81 struct sigqueue {
82     struct sigqueue *next;
83     target_siginfo_t info;
84 };
85 
86 struct emulated_sigtable {
87     int pending; /* true if signal is pending */
88     struct sigqueue *first;
89     struct sigqueue info; /* in order to always have memory for the
90                              first signal, we put it here */
91 };
92 
93 /* NOTE: we force a big alignment so that the stack stored after is
94    aligned too */
95 typedef struct TaskState {
96     pid_t ts_tid;     /* tid (or pid) of this task */
97 #ifdef TARGET_ARM
98 # ifdef TARGET_ABI32
99     /* FPA state */
100     FPA11 fpa;
101 # endif
102     int swi_errno;
103 #endif
104 #ifdef TARGET_UNICORE32
105     int swi_errno;
106 #endif
107 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
108     abi_ulong target_v86;
109     struct vm86_saved_state vm86_saved_regs;
110     struct target_vm86plus_struct vm86plus;
111     uint32_t v86flags;
112     uint32_t v86mask;
113 #endif
114     abi_ulong child_tidptr;
115 #ifdef TARGET_M68K
116     int sim_syscalls;
117     abi_ulong tp_value;
118 #endif
119 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
120     /* Extra fields for semihosted binaries.  */
121     uint32_t heap_base;
122     uint32_t heap_limit;
123 #endif
124     uint32_t stack_base;
125     int used; /* non zero if used */
126     bool sigsegv_blocked; /* SIGSEGV blocked by guest */
127     struct image_info *info;
128     struct linux_binprm *bprm;
129 
130     struct emulated_sigtable sigtab[TARGET_NSIG];
131     struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
132     struct sigqueue *first_free; /* first free siginfo queue entry */
133     int signal_pending; /* non zero if a signal may be pending */
134 } __attribute__((aligned(16))) TaskState;
135 
136 extern char *exec_path;
137 void init_task_state(TaskState *ts);
138 void task_settid(TaskState *);
139 void stop_all_tasks(void);
140 extern const char *qemu_uname_release;
141 extern unsigned long mmap_min_addr;
142 
143 /* ??? See if we can avoid exposing so much of the loader internals.  */
144 
145 /* Read a good amount of data initially, to hopefully get all the
146    program headers loaded.  */
147 #define BPRM_BUF_SIZE  1024
148 
149 /*
150  * This structure is used to hold the arguments that are
151  * used when loading binaries.
152  */
153 struct linux_binprm {
154         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
155         abi_ulong p;
156 	int fd;
157         int e_uid, e_gid;
158         int argc, envc;
159         char **argv;
160         char **envp;
161         char * filename;        /* Name of binary */
162         int (*core_dump)(int, const CPUArchState *); /* coredump routine */
163 };
164 
165 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
166 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
167                               abi_ulong stringp, int push_ptr);
168 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
169              struct target_pt_regs * regs, struct image_info *infop,
170              struct linux_binprm *);
171 
172 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
173 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
174 
175 abi_long memcpy_to_target(abi_ulong dest, const void *src,
176                           unsigned long len);
177 void target_set_brk(abi_ulong new_brk);
178 abi_long do_brk(abi_ulong new_brk);
179 void syscall_init(void);
180 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
181                     abi_long arg2, abi_long arg3, abi_long arg4,
182                     abi_long arg5, abi_long arg6, abi_long arg7,
183                     abi_long arg8);
184 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
185 extern THREAD CPUState *thread_cpu;
186 void cpu_loop(CPUArchState *env);
187 char *target_strerror(int err);
188 int get_osversion(void);
189 void init_qemu_uname_release(void);
190 void fork_start(void);
191 void fork_end(int child);
192 
193 /* Creates the initial guest address space in the host memory space using
194  * the given host start address hint and size.  The guest_start parameter
195  * specifies the start address of the guest space.  guest_base will be the
196  * difference between the host start address computed by this function and
197  * guest_start.  If fixed is specified, then the mapped address space must
198  * start at host_start.  The real start address of the mapped memory space is
199  * returned or -1 if there was an error.
200  */
201 unsigned long init_guest_space(unsigned long host_start,
202                                unsigned long host_size,
203                                unsigned long guest_start,
204                                bool fixed);
205 
206 #include "qemu/log.h"
207 
208 /* syscall.c */
209 int host_to_target_waitstatus(int status);
210 
211 /* strace.c */
212 void print_syscall(int num,
213                    abi_long arg1, abi_long arg2, abi_long arg3,
214                    abi_long arg4, abi_long arg5, abi_long arg6);
215 void print_syscall_ret(int num, abi_long arg1);
216 extern int do_strace;
217 
218 /* signal.c */
219 void process_pending_signals(CPUArchState *cpu_env);
220 void signal_init(void);
221 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
222 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
223 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
224 int target_to_host_signal(int sig);
225 int host_to_target_signal(int sig);
226 long do_sigreturn(CPUArchState *env);
227 long do_rt_sigreturn(CPUArchState *env);
228 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
229 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
230 
231 #ifdef TARGET_I386
232 /* vm86.c */
233 void save_v86_state(CPUX86State *env);
234 void handle_vm86_trap(CPUX86State *env, int trapno);
235 void handle_vm86_fault(CPUX86State *env);
236 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
237 #elif defined(TARGET_SPARC64)
238 void sparc64_set_context(CPUSPARCState *env);
239 void sparc64_get_context(CPUSPARCState *env);
240 #endif
241 
242 /* mmap.c */
243 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
244 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
245                      int flags, int fd, abi_ulong offset);
246 int target_munmap(abi_ulong start, abi_ulong len);
247 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
248                        abi_ulong new_size, unsigned long flags,
249                        abi_ulong new_addr);
250 int target_msync(abi_ulong start, abi_ulong len, int flags);
251 extern unsigned long last_brk;
252 extern abi_ulong mmap_next_start;
253 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
254 void cpu_list_lock(void);
255 void cpu_list_unlock(void);
256 void mmap_fork_start(void);
257 void mmap_fork_end(int child);
258 
259 /* main.c */
260 extern unsigned long guest_stack_size;
261 
262 /* user access */
263 
264 #define VERIFY_READ 0
265 #define VERIFY_WRITE 1 /* implies read access */
266 
267 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
268 {
269     return page_check_range((target_ulong)addr, size,
270                             (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
271 }
272 
273 /* NOTE __get_user and __put_user use host pointers and don't check access.
274    These are usually used to access struct data members once the struct has
275    been locked - usually with lock_user_struct.  */
276 
277 /* Tricky points:
278    - Use __builtin_choose_expr to avoid type promotion from ?:,
279    - Invalid sizes result in a compile time error stemming from
280      the fact that abort has no parameters.
281    - It's easier to use the endian-specific unaligned load/store
282      functions than host-endian unaligned load/store plus tswapN.  */
283 
284 #define __put_user_e(x, hptr, e)                                        \
285   (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
286    __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
287    __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
288    __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
289      ((hptr), (x)), (void)0)
290 
291 #define __get_user_e(x, hptr, e)                                        \
292   ((x) = (typeof(*hptr))(                                               \
293    __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
294    __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
295    __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
296    __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
297      (hptr)), (void)0)
298 
299 #ifdef TARGET_WORDS_BIGENDIAN
300 # define __put_user(x, hptr)  __put_user_e(x, hptr, be)
301 # define __get_user(x, hptr)  __get_user_e(x, hptr, be)
302 #else
303 # define __put_user(x, hptr)  __put_user_e(x, hptr, le)
304 # define __get_user(x, hptr)  __get_user_e(x, hptr, le)
305 #endif
306 
307 /* put_user()/get_user() take a guest address and check access */
308 /* These are usually used to access an atomic data type, such as an int,
309  * that has been passed by address.  These internally perform locking
310  * and unlocking on the data type.
311  */
312 #define put_user(x, gaddr, target_type)					\
313 ({									\
314     abi_ulong __gaddr = (gaddr);					\
315     target_type *__hptr;						\
316     abi_long __ret = 0;							\
317     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
318         __put_user((x), __hptr);				\
319         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
320     } else								\
321         __ret = -TARGET_EFAULT;						\
322     __ret;								\
323 })
324 
325 #define get_user(x, gaddr, target_type)					\
326 ({									\
327     abi_ulong __gaddr = (gaddr);					\
328     target_type *__hptr;						\
329     abi_long __ret = 0;							\
330     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
331         __get_user((x), __hptr);				\
332         unlock_user(__hptr, __gaddr, 0);				\
333     } else {								\
334         /* avoid warning */						\
335         (x) = 0;							\
336         __ret = -TARGET_EFAULT;						\
337     }									\
338     __ret;								\
339 })
340 
341 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
342 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
343 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
344 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
345 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
346 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
347 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
348 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
349 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
350 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
351 
352 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
353 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
354 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
355 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
356 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
357 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
358 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
359 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
360 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
361 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
362 
363 /* copy_from_user() and copy_to_user() are usually used to copy data
364  * buffers between the target and host.  These internally perform
365  * locking/unlocking of the memory.
366  */
367 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
368 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
369 
370 /* Functions for accessing guest memory.  The tget and tput functions
371    read/write single values, byteswapping as necessary.  The lock_user function
372    gets a pointer to a contiguous area of guest memory, but does not perform
373    any byteswapping.  lock_user may return either a pointer to the guest
374    memory, or a temporary buffer.  */
375 
376 /* Lock an area of guest memory into the host.  If copy is true then the
377    host area will have the same contents as the guest.  */
378 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
379 {
380     if (!access_ok(type, guest_addr, len))
381         return NULL;
382 #ifdef DEBUG_REMAP
383     {
384         void *addr;
385         addr = malloc(len);
386         if (copy)
387             memcpy(addr, g2h(guest_addr), len);
388         else
389             memset(addr, 0, len);
390         return addr;
391     }
392 #else
393     return g2h(guest_addr);
394 #endif
395 }
396 
397 /* Unlock an area of guest memory.  The first LEN bytes must be
398    flushed back to guest memory. host_ptr = NULL is explicitly
399    allowed and does nothing. */
400 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
401                                long len)
402 {
403 
404 #ifdef DEBUG_REMAP
405     if (!host_ptr)
406         return;
407     if (host_ptr == g2h(guest_addr))
408         return;
409     if (len > 0)
410         memcpy(g2h(guest_addr), host_ptr, len);
411     free(host_ptr);
412 #endif
413 }
414 
415 /* Return the length of a string in target memory or -TARGET_EFAULT if
416    access error. */
417 abi_long target_strlen(abi_ulong gaddr);
418 
419 /* Like lock_user but for null terminated strings.  */
420 static inline void *lock_user_string(abi_ulong guest_addr)
421 {
422     abi_long len;
423     len = target_strlen(guest_addr);
424     if (len < 0)
425         return NULL;
426     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
427 }
428 
429 /* Helper macros for locking/unlocking a target struct.  */
430 #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
431     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
432 #define unlock_user_struct(host_ptr, guest_addr, copy)		\
433     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
434 
435 #include <pthread.h>
436 
437 /* Include target-specific struct and function definitions;
438  * they may need access to the target-independent structures
439  * above, so include them last.
440  */
441 #include "target_cpu.h"
442 #include "target_signal.h"
443 #include "target_structs.h"
444 
445 #endif /* QEMU_H */
446