1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "hostdep.h" 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #endif /* DEBUG_REMAP */ 12 13 #include "exec/user/abitypes.h" 14 15 #include "exec/user/thunk.h" 16 #include "syscall_defs.h" 17 #include "target_syscall.h" 18 #include "exec/gdbstub.h" 19 20 /* This is the size of the host kernel's sigset_t, needed where we make 21 * direct system calls that take a sigset_t pointer and a size. 22 */ 23 #define SIGSET_T_SIZE (_NSIG / 8) 24 25 /* This struct is used to hold certain information about the image. 26 * Basically, it replicates in user space what would be certain 27 * task_struct fields in the kernel 28 */ 29 struct image_info { 30 abi_ulong load_bias; 31 abi_ulong load_addr; 32 abi_ulong start_code; 33 abi_ulong end_code; 34 abi_ulong start_data; 35 abi_ulong end_data; 36 abi_ulong start_brk; 37 abi_ulong brk; 38 abi_ulong reserve_brk; 39 abi_ulong start_mmap; 40 abi_ulong start_stack; 41 abi_ulong stack_limit; 42 abi_ulong entry; 43 abi_ulong code_offset; 44 abi_ulong data_offset; 45 abi_ulong saved_auxv; 46 abi_ulong auxv_len; 47 abi_ulong arg_start; 48 abi_ulong arg_end; 49 abi_ulong arg_strings; 50 abi_ulong env_strings; 51 abi_ulong file_string; 52 uint32_t elf_flags; 53 int personality; 54 abi_ulong alignment; 55 56 /* The fields below are used in FDPIC mode. */ 57 abi_ulong loadmap_addr; 58 uint16_t nsegs; 59 void *loadsegs; 60 abi_ulong pt_dynamic_addr; 61 abi_ulong interpreter_loadmap_addr; 62 abi_ulong interpreter_pt_dynamic_addr; 63 struct image_info *other_info; 64 #ifdef TARGET_MIPS 65 int fp_abi; 66 int interp_fp_abi; 67 #endif 68 }; 69 70 #ifdef TARGET_I386 71 /* Information about the current linux thread */ 72 struct vm86_saved_state { 73 uint32_t eax; /* return code */ 74 uint32_t ebx; 75 uint32_t ecx; 76 uint32_t edx; 77 uint32_t esi; 78 uint32_t edi; 79 uint32_t ebp; 80 uint32_t esp; 81 uint32_t eflags; 82 uint32_t eip; 83 uint16_t cs, ss, ds, es, fs, gs; 84 }; 85 #endif 86 87 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 88 /* FPU emulator */ 89 #include "nwfpe/fpa11.h" 90 #endif 91 92 #define MAX_SIGQUEUE_SIZE 1024 93 94 struct emulated_sigtable { 95 int pending; /* true if signal is pending */ 96 target_siginfo_t info; 97 }; 98 99 /* NOTE: we force a big alignment so that the stack stored after is 100 aligned too */ 101 typedef struct TaskState { 102 pid_t ts_tid; /* tid (or pid) of this task */ 103 #ifdef TARGET_ARM 104 # ifdef TARGET_ABI32 105 /* FPA state */ 106 FPA11 fpa; 107 # endif 108 int swi_errno; 109 #endif 110 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 111 abi_ulong target_v86; 112 struct vm86_saved_state vm86_saved_regs; 113 struct target_vm86plus_struct vm86plus; 114 uint32_t v86flags; 115 uint32_t v86mask; 116 #endif 117 abi_ulong child_tidptr; 118 #ifdef TARGET_M68K 119 abi_ulong tp_value; 120 #endif 121 #if defined(TARGET_ARM) || defined(TARGET_M68K) 122 /* Extra fields for semihosted binaries. */ 123 abi_ulong heap_base; 124 abi_ulong heap_limit; 125 #endif 126 abi_ulong stack_base; 127 int used; /* non zero if used */ 128 struct image_info *info; 129 struct linux_binprm *bprm; 130 131 struct emulated_sigtable sync_signal; 132 struct emulated_sigtable sigtab[TARGET_NSIG]; 133 /* This thread's signal mask, as requested by the guest program. 134 * The actual signal mask of this thread may differ: 135 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 136 * + sometimes we block all signals to avoid races 137 */ 138 sigset_t signal_mask; 139 /* The signal mask imposed by a guest sigsuspend syscall, if we are 140 * currently in the middle of such a syscall 141 */ 142 sigset_t sigsuspend_mask; 143 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 144 int in_sigsuspend; 145 146 /* Nonzero if process_pending_signals() needs to do something (either 147 * handle a pending signal or unblock signals). 148 * This flag is written from a signal handler so should be accessed via 149 * the atomic_read() and atomic_set() functions. (It is not accessed 150 * from multiple threads.) 151 */ 152 int signal_pending; 153 154 /* This thread's sigaltstack, if it has one */ 155 struct target_sigaltstack sigaltstack_used; 156 } __attribute__((aligned(16))) TaskState; 157 158 extern char *exec_path; 159 void init_task_state(TaskState *ts); 160 void task_settid(TaskState *); 161 void stop_all_tasks(void); 162 extern const char *qemu_uname_release; 163 extern unsigned long mmap_min_addr; 164 165 /* ??? See if we can avoid exposing so much of the loader internals. */ 166 167 /* Read a good amount of data initially, to hopefully get all the 168 program headers loaded. */ 169 #define BPRM_BUF_SIZE 1024 170 171 /* 172 * This structure is used to hold the arguments that are 173 * used when loading binaries. 174 */ 175 struct linux_binprm { 176 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 177 abi_ulong p; 178 int fd; 179 int e_uid, e_gid; 180 int argc, envc; 181 char **argv; 182 char **envp; 183 char * filename; /* Name of binary */ 184 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 185 }; 186 187 typedef struct IOCTLEntry IOCTLEntry; 188 189 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, 190 int fd, int cmd, abi_long arg); 191 192 struct IOCTLEntry { 193 int target_cmd; 194 unsigned int host_cmd; 195 const char *name; 196 int access; 197 do_ioctl_fn *do_ioctl; 198 const argtype arg_type[5]; 199 }; 200 201 extern IOCTLEntry ioctl_entries[]; 202 203 #define IOC_R 0x0001 204 #define IOC_W 0x0002 205 #define IOC_RW (IOC_R | IOC_W) 206 207 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 208 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 209 abi_ulong stringp, int push_ptr); 210 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 211 struct target_pt_regs * regs, struct image_info *infop, 212 struct linux_binprm *); 213 214 /* Returns true if the image uses the FDPIC ABI. If this is the case, 215 * we have to provide some information (loadmap, pt_dynamic_info) such 216 * that the program can be relocated adequately. This is also useful 217 * when handling signals. 218 */ 219 int info_is_fdpic(struct image_info *info); 220 221 uint32_t get_elf_eflags(int fd); 222 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 223 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 224 225 abi_long memcpy_to_target(abi_ulong dest, const void *src, 226 unsigned long len); 227 void target_set_brk(abi_ulong new_brk); 228 abi_long do_brk(abi_ulong new_brk); 229 void syscall_init(void); 230 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 231 abi_long arg2, abi_long arg3, abi_long arg4, 232 abi_long arg5, abi_long arg6, abi_long arg7, 233 abi_long arg8); 234 extern __thread CPUState *thread_cpu; 235 void cpu_loop(CPUArchState *env); 236 const char *target_strerror(int err); 237 int get_osversion(void); 238 void init_qemu_uname_release(void); 239 void fork_start(void); 240 void fork_end(int child); 241 242 /** 243 * probe_guest_base: 244 * @image_name: the executable being loaded 245 * @loaddr: the lowest fixed address in the executable 246 * @hiaddr: the highest fixed address in the executable 247 * 248 * Creates the initial guest address space in the host memory space. 249 * 250 * If @loaddr == 0, then no address in the executable is fixed, 251 * i.e. it is fully relocatable. In that case @hiaddr is the size 252 * of the executable. 253 * 254 * This function will not return if a valid value for guest_base 255 * cannot be chosen. On return, the executable loader can expect 256 * 257 * target_mmap(loaddr, hiaddr - loaddr, ...) 258 * 259 * to succeed. 260 */ 261 void probe_guest_base(const char *image_name, 262 abi_ulong loaddr, abi_ulong hiaddr); 263 264 #include "qemu/log.h" 265 266 /* safe_syscall.S */ 267 268 /** 269 * safe_syscall: 270 * @int number: number of system call to make 271 * ...: arguments to the system call 272 * 273 * Call a system call if guest signal not pending. 274 * This has the same API as the libc syscall() function, except that it 275 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. 276 * 277 * Returns: the system call result, or -1 with an error code in errno 278 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing 279 * with any of the host errno values.) 280 */ 281 282 /* A guide to using safe_syscall() to handle interactions between guest 283 * syscalls and guest signals: 284 * 285 * Guest syscalls come in two flavours: 286 * 287 * (1) Non-interruptible syscalls 288 * 289 * These are guest syscalls that never get interrupted by signals and 290 * so never return EINTR. They can be implemented straightforwardly in 291 * QEMU: just make sure that if the implementation code has to make any 292 * blocking calls that those calls are retried if they return EINTR. 293 * It's also OK to implement these with safe_syscall, though it will be 294 * a little less efficient if a signal is delivered at the 'wrong' moment. 295 * 296 * Some non-interruptible syscalls need to be handled using block_signals() 297 * to block signals for the duration of the syscall. This mainly applies 298 * to code which needs to modify the data structures used by the 299 * host_signal_handler() function and the functions it calls, including 300 * all syscalls which change the thread's signal mask. 301 * 302 * (2) Interruptible syscalls 303 * 304 * These are guest syscalls that can be interrupted by signals and 305 * for which we need to either return EINTR or arrange for the guest 306 * syscall to be restarted. This category includes both syscalls which 307 * always restart (and in the kernel return -ERESTARTNOINTR), ones 308 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND 309 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart 310 * if the handler was registered with SA_RESTART (kernel returns 311 * -ERESTARTSYS). System calls which are only interruptible in some 312 * situations (like 'open') also need to be handled this way. 313 * 314 * Here it is important that the host syscall is made 315 * via this safe_syscall() function, and *not* via the host libc. 316 * If the host libc is used then the implementation will appear to work 317 * most of the time, but there will be a race condition where a 318 * signal could arrive just before we make the host syscall inside libc, 319 * and then then guest syscall will not correctly be interrupted. 320 * Instead the implementation of the guest syscall can use the safe_syscall 321 * function but otherwise just return the result or errno in the usual 322 * way; the main loop code will take care of restarting the syscall 323 * if appropriate. 324 * 325 * (If the implementation needs to make multiple host syscalls this is 326 * OK; any which might really block must be via safe_syscall(); for those 327 * which are only technically blocking (ie which we know in practice won't 328 * stay in the host kernel indefinitely) it's OK to use libc if necessary. 329 * You must be able to cope with backing out correctly if some safe_syscall 330 * you make in the implementation returns either -TARGET_ERESTARTSYS or 331 * EINTR though.) 332 * 333 * block_signals() cannot be used for interruptible syscalls. 334 * 335 * 336 * How and why the safe_syscall implementation works: 337 * 338 * The basic setup is that we make the host syscall via a known 339 * section of host native assembly. If a signal occurs, our signal 340 * handler checks the interrupted host PC against the addresse of that 341 * known section. If the PC is before or at the address of the syscall 342 * instruction then we change the PC to point at a "return 343 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler 344 * (causing the safe_syscall() call to immediately return that value). 345 * Then in the main.c loop if we see this magic return value we adjust 346 * the guest PC to wind it back to before the system call, and invoke 347 * the guest signal handler as usual. 348 * 349 * This winding-back will happen in two cases: 350 * (1) signal came in just before we took the host syscall (a race); 351 * in this case we'll take the guest signal and have another go 352 * at the syscall afterwards, and this is indistinguishable for the 353 * guest from the timing having been different such that the guest 354 * signal really did win the race 355 * (2) signal came in while the host syscall was blocking, and the 356 * host kernel decided the syscall should be restarted; 357 * in this case we want to restart the guest syscall also, and so 358 * rewinding is the right thing. (Note that "restart" semantics mean 359 * "first call the signal handler, then reattempt the syscall".) 360 * The other situation to consider is when a signal came in while the 361 * host syscall was blocking, and the host kernel decided that the syscall 362 * should not be restarted; in this case QEMU's host signal handler will 363 * be invoked with the PC pointing just after the syscall instruction, 364 * with registers indicating an EINTR return; the special code in the 365 * handler will not kick in, and we will return EINTR to the guest as 366 * we should. 367 * 368 * Notice that we can leave the host kernel to make the decision for 369 * us about whether to do a restart of the syscall or not; we do not 370 * need to check SA_RESTART flags in QEMU or distinguish the various 371 * kinds of restartability. 372 */ 373 #ifdef HAVE_SAFE_SYSCALL 374 /* The core part of this function is implemented in assembly */ 375 extern long safe_syscall_base(int *pending, long number, ...); 376 377 #define safe_syscall(...) \ 378 ({ \ 379 long ret_; \ 380 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ 381 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ 382 if (is_error(ret_)) { \ 383 errno = -ret_; \ 384 ret_ = -1; \ 385 } \ 386 ret_; \ 387 }) 388 389 #else 390 391 /* Fallback for architectures which don't yet provide a safe-syscall assembly 392 * fragment; note that this is racy! 393 * This should go away when all host architectures have been updated. 394 */ 395 #define safe_syscall syscall 396 397 #endif 398 399 /* syscall.c */ 400 int host_to_target_waitstatus(int status); 401 402 /* strace.c */ 403 void print_syscall(void *cpu_env, int num, 404 abi_long arg1, abi_long arg2, abi_long arg3, 405 abi_long arg4, abi_long arg5, abi_long arg6); 406 void print_syscall_ret(void *cpu_env, int num, abi_long ret, 407 abi_long arg1, abi_long arg2, abi_long arg3, 408 abi_long arg4, abi_long arg5, abi_long arg6); 409 /** 410 * print_taken_signal: 411 * @target_signum: target signal being taken 412 * @tinfo: target_siginfo_t which will be passed to the guest for the signal 413 * 414 * Print strace output indicating that this signal is being taken by the guest, 415 * in a format similar to: 416 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- 417 */ 418 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); 419 420 /* signal.c */ 421 void process_pending_signals(CPUArchState *cpu_env); 422 void signal_init(void); 423 int queue_signal(CPUArchState *env, int sig, int si_type, 424 target_siginfo_t *info); 425 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 426 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 427 int target_to_host_signal(int sig); 428 int host_to_target_signal(int sig); 429 long do_sigreturn(CPUArchState *env); 430 long do_rt_sigreturn(CPUArchState *env); 431 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 432 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 433 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx, 434 abi_ulong unew_ctx, abi_long ctx_size); 435 /** 436 * block_signals: block all signals while handling this guest syscall 437 * 438 * Block all signals, and arrange that the signal mask is returned to 439 * its correct value for the guest before we resume execution of guest code. 440 * If this function returns non-zero, then the caller should immediately 441 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending 442 * signal and restart execution of the syscall. 443 * If block_signals() returns zero, then the caller can continue with 444 * emulation of the system call knowing that no signals can be taken 445 * (and therefore that no race conditions will result). 446 * This should only be called once, because if it is called a second time 447 * it will always return non-zero. (Think of it like a mutex that can't 448 * be recursively locked.) 449 * Signals will be unblocked again by process_pending_signals(). 450 * 451 * Return value: non-zero if there was a pending signal, zero if not. 452 */ 453 int block_signals(void); /* Returns non zero if signal pending */ 454 455 #ifdef TARGET_I386 456 /* vm86.c */ 457 void save_v86_state(CPUX86State *env); 458 void handle_vm86_trap(CPUX86State *env, int trapno); 459 void handle_vm86_fault(CPUX86State *env); 460 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 461 #elif defined(TARGET_SPARC64) 462 void sparc64_set_context(CPUSPARCState *env); 463 void sparc64_get_context(CPUSPARCState *env); 464 #endif 465 466 /* mmap.c */ 467 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 468 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 469 int flags, int fd, abi_ulong offset); 470 int target_munmap(abi_ulong start, abi_ulong len); 471 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 472 abi_ulong new_size, unsigned long flags, 473 abi_ulong new_addr); 474 extern unsigned long last_brk; 475 extern abi_ulong mmap_next_start; 476 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong); 477 void mmap_fork_start(void); 478 void mmap_fork_end(int child); 479 480 /* main.c */ 481 extern unsigned long guest_stack_size; 482 483 /* user access */ 484 485 #define VERIFY_READ 0 486 #define VERIFY_WRITE 1 /* implies read access */ 487 488 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 489 { 490 return guest_addr_valid(addr) && 491 (size == 0 || guest_addr_valid(addr + size - 1)) && 492 page_check_range((target_ulong)addr, size, 493 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 494 } 495 496 /* NOTE __get_user and __put_user use host pointers and don't check access. 497 These are usually used to access struct data members once the struct has 498 been locked - usually with lock_user_struct. */ 499 500 /* 501 * Tricky points: 502 * - Use __builtin_choose_expr to avoid type promotion from ?:, 503 * - Invalid sizes result in a compile time error stemming from 504 * the fact that abort has no parameters. 505 * - It's easier to use the endian-specific unaligned load/store 506 * functions than host-endian unaligned load/store plus tswapN. 507 * - The pragmas are necessary only to silence a clang false-positive 508 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 . 509 * - gcc has bugs in its _Pragma() support in some versions, eg 510 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only 511 * include the warning-suppression pragmas for clang 512 */ 513 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member") 514 #define PRAGMA_DISABLE_PACKED_WARNING \ 515 _Pragma("GCC diagnostic push"); \ 516 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"") 517 518 #define PRAGMA_REENABLE_PACKED_WARNING \ 519 _Pragma("GCC diagnostic pop") 520 521 #else 522 #define PRAGMA_DISABLE_PACKED_WARNING 523 #define PRAGMA_REENABLE_PACKED_WARNING 524 #endif 525 526 #define __put_user_e(x, hptr, e) \ 527 do { \ 528 PRAGMA_DISABLE_PACKED_WARNING; \ 529 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 530 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 531 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 532 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 533 ((hptr), (x)), (void)0); \ 534 PRAGMA_REENABLE_PACKED_WARNING; \ 535 } while (0) 536 537 #define __get_user_e(x, hptr, e) \ 538 do { \ 539 PRAGMA_DISABLE_PACKED_WARNING; \ 540 ((x) = (typeof(*hptr))( \ 541 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 542 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 543 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 544 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 545 (hptr)), (void)0); \ 546 PRAGMA_REENABLE_PACKED_WARNING; \ 547 } while (0) 548 549 550 #ifdef TARGET_WORDS_BIGENDIAN 551 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 552 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 553 #else 554 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 555 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 556 #endif 557 558 /* put_user()/get_user() take a guest address and check access */ 559 /* These are usually used to access an atomic data type, such as an int, 560 * that has been passed by address. These internally perform locking 561 * and unlocking on the data type. 562 */ 563 #define put_user(x, gaddr, target_type) \ 564 ({ \ 565 abi_ulong __gaddr = (gaddr); \ 566 target_type *__hptr; \ 567 abi_long __ret = 0; \ 568 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 569 __put_user((x), __hptr); \ 570 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 571 } else \ 572 __ret = -TARGET_EFAULT; \ 573 __ret; \ 574 }) 575 576 #define get_user(x, gaddr, target_type) \ 577 ({ \ 578 abi_ulong __gaddr = (gaddr); \ 579 target_type *__hptr; \ 580 abi_long __ret = 0; \ 581 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 582 __get_user((x), __hptr); \ 583 unlock_user(__hptr, __gaddr, 0); \ 584 } else { \ 585 /* avoid warning */ \ 586 (x) = 0; \ 587 __ret = -TARGET_EFAULT; \ 588 } \ 589 __ret; \ 590 }) 591 592 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 593 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 594 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 595 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 596 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 597 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 598 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 599 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 600 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 601 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 602 603 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 604 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 605 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 606 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 607 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 608 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 609 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 610 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 611 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 612 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 613 614 /* copy_from_user() and copy_to_user() are usually used to copy data 615 * buffers between the target and host. These internally perform 616 * locking/unlocking of the memory. 617 */ 618 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 619 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 620 621 /* Functions for accessing guest memory. The tget and tput functions 622 read/write single values, byteswapping as necessary. The lock_user function 623 gets a pointer to a contiguous area of guest memory, but does not perform 624 any byteswapping. lock_user may return either a pointer to the guest 625 memory, or a temporary buffer. */ 626 627 /* Lock an area of guest memory into the host. If copy is true then the 628 host area will have the same contents as the guest. */ 629 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 630 { 631 if (!access_ok(type, guest_addr, len)) 632 return NULL; 633 #ifdef DEBUG_REMAP 634 { 635 void *addr; 636 addr = g_malloc(len); 637 if (copy) 638 memcpy(addr, g2h(guest_addr), len); 639 else 640 memset(addr, 0, len); 641 return addr; 642 } 643 #else 644 return g2h(guest_addr); 645 #endif 646 } 647 648 /* Unlock an area of guest memory. The first LEN bytes must be 649 flushed back to guest memory. host_ptr = NULL is explicitly 650 allowed and does nothing. */ 651 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 652 long len) 653 { 654 655 #ifdef DEBUG_REMAP 656 if (!host_ptr) 657 return; 658 if (host_ptr == g2h(guest_addr)) 659 return; 660 if (len > 0) 661 memcpy(g2h(guest_addr), host_ptr, len); 662 g_free(host_ptr); 663 #endif 664 } 665 666 /* Return the length of a string in target memory or -TARGET_EFAULT if 667 access error. */ 668 abi_long target_strlen(abi_ulong gaddr); 669 670 /* Like lock_user but for null terminated strings. */ 671 static inline void *lock_user_string(abi_ulong guest_addr) 672 { 673 abi_long len; 674 len = target_strlen(guest_addr); 675 if (len < 0) 676 return NULL; 677 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 678 } 679 680 /* Helper macros for locking/unlocking a target struct. */ 681 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 682 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 683 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 684 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 685 686 #include <pthread.h> 687 688 static inline int is_error(abi_long ret) 689 { 690 return (abi_ulong)ret >= (abi_ulong)(-4096); 691 } 692 693 #if TARGET_ABI_BITS == 32 694 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) 695 { 696 #ifdef TARGET_WORDS_BIGENDIAN 697 return ((uint64_t)word0 << 32) | word1; 698 #else 699 return ((uint64_t)word1 << 32) | word0; 700 #endif 701 } 702 #else /* TARGET_ABI_BITS == 32 */ 703 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) 704 { 705 return word0; 706 } 707 #endif /* TARGET_ABI_BITS != 32 */ 708 709 void print_termios(void *arg); 710 711 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ 712 #ifdef TARGET_ARM 713 static inline int regpairs_aligned(void *cpu_env, int num) 714 { 715 return ((((CPUARMState *)cpu_env)->eabi) == 1) ; 716 } 717 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32) 718 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 719 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) 720 /* 721 * SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs 722 * of registers which translates to the same as ARM/MIPS, because we start with 723 * r3 as arg1 724 */ 725 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 726 #elif defined(TARGET_SH4) 727 /* SH4 doesn't align register pairs, except for p{read,write}64 */ 728 static inline int regpairs_aligned(void *cpu_env, int num) 729 { 730 switch (num) { 731 case TARGET_NR_pread64: 732 case TARGET_NR_pwrite64: 733 return 1; 734 735 default: 736 return 0; 737 } 738 } 739 #elif defined(TARGET_XTENSA) 740 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 741 #else 742 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; } 743 #endif 744 745 /** 746 * preexit_cleanup: housekeeping before the guest exits 747 * 748 * env: the CPU state 749 * code: the exit code 750 */ 751 void preexit_cleanup(CPUArchState *env, int code); 752 753 /* Include target-specific struct and function definitions; 754 * they may need access to the target-independent structures 755 * above, so include them last. 756 */ 757 #include "target_cpu.h" 758 #include "target_structs.h" 759 760 #endif /* QEMU_H */ 761