1 #ifndef QEMU_H 2 #define QEMU_H 3 4 5 #include "cpu.h" 6 #include "exec/cpu_ldst.h" 7 8 #undef DEBUG_REMAP 9 #ifdef DEBUG_REMAP 10 #endif /* DEBUG_REMAP */ 11 12 #include "exec/user/abitypes.h" 13 14 #include "exec/user/thunk.h" 15 #include "syscall_defs.h" 16 #include "target_syscall.h" 17 #include "exec/gdbstub.h" 18 #include "qemu/queue.h" 19 20 #define THREAD __thread 21 22 /* This struct is used to hold certain information about the image. 23 * Basically, it replicates in user space what would be certain 24 * task_struct fields in the kernel 25 */ 26 struct image_info { 27 abi_ulong load_bias; 28 abi_ulong load_addr; 29 abi_ulong start_code; 30 abi_ulong end_code; 31 abi_ulong start_data; 32 abi_ulong end_data; 33 abi_ulong start_brk; 34 abi_ulong brk; 35 abi_ulong start_mmap; 36 abi_ulong start_stack; 37 abi_ulong stack_limit; 38 abi_ulong entry; 39 abi_ulong code_offset; 40 abi_ulong data_offset; 41 abi_ulong saved_auxv; 42 abi_ulong auxv_len; 43 abi_ulong arg_start; 44 abi_ulong arg_end; 45 uint32_t elf_flags; 46 int personality; 47 #ifdef CONFIG_USE_FDPIC 48 abi_ulong loadmap_addr; 49 uint16_t nsegs; 50 void *loadsegs; 51 abi_ulong pt_dynamic_addr; 52 struct image_info *other_info; 53 #endif 54 }; 55 56 #ifdef TARGET_I386 57 /* Information about the current linux thread */ 58 struct vm86_saved_state { 59 uint32_t eax; /* return code */ 60 uint32_t ebx; 61 uint32_t ecx; 62 uint32_t edx; 63 uint32_t esi; 64 uint32_t edi; 65 uint32_t ebp; 66 uint32_t esp; 67 uint32_t eflags; 68 uint32_t eip; 69 uint16_t cs, ss, ds, es, fs, gs; 70 }; 71 #endif 72 73 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 74 /* FPU emulator */ 75 #include "nwfpe/fpa11.h" 76 #endif 77 78 #define MAX_SIGQUEUE_SIZE 1024 79 80 struct sigqueue { 81 struct sigqueue *next; 82 target_siginfo_t info; 83 }; 84 85 struct emulated_sigtable { 86 int pending; /* true if signal is pending */ 87 struct sigqueue *first; 88 struct sigqueue info; /* in order to always have memory for the 89 first signal, we put it here */ 90 }; 91 92 /* NOTE: we force a big alignment so that the stack stored after is 93 aligned too */ 94 typedef struct TaskState { 95 pid_t ts_tid; /* tid (or pid) of this task */ 96 #ifdef TARGET_ARM 97 # ifdef TARGET_ABI32 98 /* FPA state */ 99 FPA11 fpa; 100 # endif 101 int swi_errno; 102 #endif 103 #ifdef TARGET_UNICORE32 104 int swi_errno; 105 #endif 106 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 107 abi_ulong target_v86; 108 struct vm86_saved_state vm86_saved_regs; 109 struct target_vm86plus_struct vm86plus; 110 uint32_t v86flags; 111 uint32_t v86mask; 112 #endif 113 abi_ulong child_tidptr; 114 #ifdef TARGET_M68K 115 int sim_syscalls; 116 abi_ulong tp_value; 117 #endif 118 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 119 /* Extra fields for semihosted binaries. */ 120 uint32_t heap_base; 121 uint32_t heap_limit; 122 #endif 123 uint32_t stack_base; 124 int used; /* non zero if used */ 125 bool sigsegv_blocked; /* SIGSEGV blocked by guest */ 126 struct image_info *info; 127 struct linux_binprm *bprm; 128 129 struct emulated_sigtable sigtab[TARGET_NSIG]; 130 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 131 struct sigqueue *first_free; /* first free siginfo queue entry */ 132 int signal_pending; /* non zero if a signal may be pending */ 133 } __attribute__((aligned(16))) TaskState; 134 135 extern char *exec_path; 136 void init_task_state(TaskState *ts); 137 void task_settid(TaskState *); 138 void stop_all_tasks(void); 139 extern const char *qemu_uname_release; 140 extern unsigned long mmap_min_addr; 141 142 /* ??? See if we can avoid exposing so much of the loader internals. */ 143 144 /* Read a good amount of data initially, to hopefully get all the 145 program headers loaded. */ 146 #define BPRM_BUF_SIZE 1024 147 148 /* 149 * This structure is used to hold the arguments that are 150 * used when loading binaries. 151 */ 152 struct linux_binprm { 153 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 154 abi_ulong p; 155 int fd; 156 int e_uid, e_gid; 157 int argc, envc; 158 char **argv; 159 char **envp; 160 char * filename; /* Name of binary */ 161 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 162 }; 163 164 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 165 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 166 abi_ulong stringp, int push_ptr); 167 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 168 struct target_pt_regs * regs, struct image_info *infop, 169 struct linux_binprm *); 170 171 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 172 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 173 174 abi_long memcpy_to_target(abi_ulong dest, const void *src, 175 unsigned long len); 176 void target_set_brk(abi_ulong new_brk); 177 abi_long do_brk(abi_ulong new_brk); 178 void syscall_init(void); 179 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 180 abi_long arg2, abi_long arg3, abi_long arg4, 181 abi_long arg5, abi_long arg6, abi_long arg7, 182 abi_long arg8); 183 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 184 extern THREAD CPUState *thread_cpu; 185 void cpu_loop(CPUArchState *env); 186 char *target_strerror(int err); 187 int get_osversion(void); 188 void init_qemu_uname_release(void); 189 void fork_start(void); 190 void fork_end(int child); 191 192 /* Creates the initial guest address space in the host memory space using 193 * the given host start address hint and size. The guest_start parameter 194 * specifies the start address of the guest space. guest_base will be the 195 * difference between the host start address computed by this function and 196 * guest_start. If fixed is specified, then the mapped address space must 197 * start at host_start. The real start address of the mapped memory space is 198 * returned or -1 if there was an error. 199 */ 200 unsigned long init_guest_space(unsigned long host_start, 201 unsigned long host_size, 202 unsigned long guest_start, 203 bool fixed); 204 205 #include "qemu/log.h" 206 207 /* syscall.c */ 208 int host_to_target_waitstatus(int status); 209 210 /* strace.c */ 211 void print_syscall(int num, 212 abi_long arg1, abi_long arg2, abi_long arg3, 213 abi_long arg4, abi_long arg5, abi_long arg6); 214 void print_syscall_ret(int num, abi_long arg1); 215 extern int do_strace; 216 217 /* signal.c */ 218 void process_pending_signals(CPUArchState *cpu_env); 219 void signal_init(void); 220 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 221 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 222 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 223 int target_to_host_signal(int sig); 224 int host_to_target_signal(int sig); 225 long do_sigreturn(CPUArchState *env); 226 long do_rt_sigreturn(CPUArchState *env); 227 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 228 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 229 230 #ifdef TARGET_I386 231 /* vm86.c */ 232 void save_v86_state(CPUX86State *env); 233 void handle_vm86_trap(CPUX86State *env, int trapno); 234 void handle_vm86_fault(CPUX86State *env); 235 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 236 #elif defined(TARGET_SPARC64) 237 void sparc64_set_context(CPUSPARCState *env); 238 void sparc64_get_context(CPUSPARCState *env); 239 #endif 240 241 /* mmap.c */ 242 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 243 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 244 int flags, int fd, abi_ulong offset); 245 int target_munmap(abi_ulong start, abi_ulong len); 246 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 247 abi_ulong new_size, unsigned long flags, 248 abi_ulong new_addr); 249 int target_msync(abi_ulong start, abi_ulong len, int flags); 250 extern unsigned long last_brk; 251 extern abi_ulong mmap_next_start; 252 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 253 void cpu_list_lock(void); 254 void cpu_list_unlock(void); 255 void mmap_fork_start(void); 256 void mmap_fork_end(int child); 257 258 /* main.c */ 259 extern unsigned long guest_stack_size; 260 261 /* user access */ 262 263 #define VERIFY_READ 0 264 #define VERIFY_WRITE 1 /* implies read access */ 265 266 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 267 { 268 return page_check_range((target_ulong)addr, size, 269 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 270 } 271 272 /* NOTE __get_user and __put_user use host pointers and don't check access. 273 These are usually used to access struct data members once the struct has 274 been locked - usually with lock_user_struct. */ 275 276 /* Tricky points: 277 - Use __builtin_choose_expr to avoid type promotion from ?:, 278 - Invalid sizes result in a compile time error stemming from 279 the fact that abort has no parameters. 280 - It's easier to use the endian-specific unaligned load/store 281 functions than host-endian unaligned load/store plus tswapN. */ 282 283 #define __put_user_e(x, hptr, e) \ 284 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 285 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 286 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 287 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 288 ((hptr), (x)), (void)0) 289 290 #define __get_user_e(x, hptr, e) \ 291 ((x) = (typeof(*hptr))( \ 292 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 293 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 294 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 295 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 296 (hptr)), (void)0) 297 298 #ifdef TARGET_WORDS_BIGENDIAN 299 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 300 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 301 #else 302 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 303 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 304 #endif 305 306 /* put_user()/get_user() take a guest address and check access */ 307 /* These are usually used to access an atomic data type, such as an int, 308 * that has been passed by address. These internally perform locking 309 * and unlocking on the data type. 310 */ 311 #define put_user(x, gaddr, target_type) \ 312 ({ \ 313 abi_ulong __gaddr = (gaddr); \ 314 target_type *__hptr; \ 315 abi_long __ret = 0; \ 316 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 317 __put_user((x), __hptr); \ 318 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 319 } else \ 320 __ret = -TARGET_EFAULT; \ 321 __ret; \ 322 }) 323 324 #define get_user(x, gaddr, target_type) \ 325 ({ \ 326 abi_ulong __gaddr = (gaddr); \ 327 target_type *__hptr; \ 328 abi_long __ret = 0; \ 329 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 330 __get_user((x), __hptr); \ 331 unlock_user(__hptr, __gaddr, 0); \ 332 } else { \ 333 /* avoid warning */ \ 334 (x) = 0; \ 335 __ret = -TARGET_EFAULT; \ 336 } \ 337 __ret; \ 338 }) 339 340 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 341 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 342 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 343 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 344 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 345 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 346 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 347 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 348 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 349 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 350 351 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 352 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 353 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 354 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 355 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 356 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 357 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 358 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 359 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 360 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 361 362 /* copy_from_user() and copy_to_user() are usually used to copy data 363 * buffers between the target and host. These internally perform 364 * locking/unlocking of the memory. 365 */ 366 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 367 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 368 369 /* Functions for accessing guest memory. The tget and tput functions 370 read/write single values, byteswapping as necessary. The lock_user function 371 gets a pointer to a contiguous area of guest memory, but does not perform 372 any byteswapping. lock_user may return either a pointer to the guest 373 memory, or a temporary buffer. */ 374 375 /* Lock an area of guest memory into the host. If copy is true then the 376 host area will have the same contents as the guest. */ 377 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 378 { 379 if (!access_ok(type, guest_addr, len)) 380 return NULL; 381 #ifdef DEBUG_REMAP 382 { 383 void *addr; 384 addr = malloc(len); 385 if (copy) 386 memcpy(addr, g2h(guest_addr), len); 387 else 388 memset(addr, 0, len); 389 return addr; 390 } 391 #else 392 return g2h(guest_addr); 393 #endif 394 } 395 396 /* Unlock an area of guest memory. The first LEN bytes must be 397 flushed back to guest memory. host_ptr = NULL is explicitly 398 allowed and does nothing. */ 399 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 400 long len) 401 { 402 403 #ifdef DEBUG_REMAP 404 if (!host_ptr) 405 return; 406 if (host_ptr == g2h(guest_addr)) 407 return; 408 if (len > 0) 409 memcpy(g2h(guest_addr), host_ptr, len); 410 free(host_ptr); 411 #endif 412 } 413 414 /* Return the length of a string in target memory or -TARGET_EFAULT if 415 access error. */ 416 abi_long target_strlen(abi_ulong gaddr); 417 418 /* Like lock_user but for null terminated strings. */ 419 static inline void *lock_user_string(abi_ulong guest_addr) 420 { 421 abi_long len; 422 len = target_strlen(guest_addr); 423 if (len < 0) 424 return NULL; 425 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 426 } 427 428 /* Helper macros for locking/unlocking a target struct. */ 429 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 430 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 431 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 432 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 433 434 #include <pthread.h> 435 436 /* Include target-specific struct and function definitions; 437 * they may need access to the target-independent structures 438 * above, so include them last. 439 */ 440 #include "target_cpu.h" 441 #include "target_signal.h" 442 #include "target_structs.h" 443 444 #endif /* QEMU_H */ 445