1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "hostdep.h" 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #endif /* DEBUG_REMAP */ 12 13 #include "exec/user/abitypes.h" 14 15 #include "exec/user/thunk.h" 16 #include "syscall_defs.h" 17 #include "target_syscall.h" 18 #include "exec/gdbstub.h" 19 #include "qemu/queue.h" 20 21 #define THREAD __thread 22 23 /* This is the size of the host kernel's sigset_t, needed where we make 24 * direct system calls that take a sigset_t pointer and a size. 25 */ 26 #define SIGSET_T_SIZE (_NSIG / 8) 27 28 /* This struct is used to hold certain information about the image. 29 * Basically, it replicates in user space what would be certain 30 * task_struct fields in the kernel 31 */ 32 struct image_info { 33 abi_ulong load_bias; 34 abi_ulong load_addr; 35 abi_ulong start_code; 36 abi_ulong end_code; 37 abi_ulong start_data; 38 abi_ulong end_data; 39 abi_ulong start_brk; 40 abi_ulong brk; 41 abi_ulong start_mmap; 42 abi_ulong start_stack; 43 abi_ulong stack_limit; 44 abi_ulong entry; 45 abi_ulong code_offset; 46 abi_ulong data_offset; 47 abi_ulong saved_auxv; 48 abi_ulong auxv_len; 49 abi_ulong arg_start; 50 abi_ulong arg_end; 51 abi_ulong arg_strings; 52 abi_ulong env_strings; 53 abi_ulong file_string; 54 uint32_t elf_flags; 55 int personality; 56 #ifdef CONFIG_USE_FDPIC 57 abi_ulong loadmap_addr; 58 uint16_t nsegs; 59 void *loadsegs; 60 abi_ulong pt_dynamic_addr; 61 struct image_info *other_info; 62 #endif 63 }; 64 65 #ifdef TARGET_I386 66 /* Information about the current linux thread */ 67 struct vm86_saved_state { 68 uint32_t eax; /* return code */ 69 uint32_t ebx; 70 uint32_t ecx; 71 uint32_t edx; 72 uint32_t esi; 73 uint32_t edi; 74 uint32_t ebp; 75 uint32_t esp; 76 uint32_t eflags; 77 uint32_t eip; 78 uint16_t cs, ss, ds, es, fs, gs; 79 }; 80 #endif 81 82 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 83 /* FPU emulator */ 84 #include "nwfpe/fpa11.h" 85 #endif 86 87 #define MAX_SIGQUEUE_SIZE 1024 88 89 struct emulated_sigtable { 90 int pending; /* true if signal is pending */ 91 target_siginfo_t info; 92 }; 93 94 /* NOTE: we force a big alignment so that the stack stored after is 95 aligned too */ 96 typedef struct TaskState { 97 pid_t ts_tid; /* tid (or pid) of this task */ 98 #ifdef TARGET_ARM 99 # ifdef TARGET_ABI32 100 /* FPA state */ 101 FPA11 fpa; 102 # endif 103 int swi_errno; 104 #endif 105 #ifdef TARGET_UNICORE32 106 int swi_errno; 107 #endif 108 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 109 abi_ulong target_v86; 110 struct vm86_saved_state vm86_saved_regs; 111 struct target_vm86plus_struct vm86plus; 112 uint32_t v86flags; 113 uint32_t v86mask; 114 #endif 115 abi_ulong child_tidptr; 116 #ifdef TARGET_M68K 117 int sim_syscalls; 118 abi_ulong tp_value; 119 #endif 120 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 121 /* Extra fields for semihosted binaries. */ 122 abi_ulong heap_base; 123 abi_ulong heap_limit; 124 #endif 125 abi_ulong stack_base; 126 int used; /* non zero if used */ 127 struct image_info *info; 128 struct linux_binprm *bprm; 129 130 struct emulated_sigtable sync_signal; 131 struct emulated_sigtable sigtab[TARGET_NSIG]; 132 /* This thread's signal mask, as requested by the guest program. 133 * The actual signal mask of this thread may differ: 134 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 135 * + sometimes we block all signals to avoid races 136 */ 137 sigset_t signal_mask; 138 /* The signal mask imposed by a guest sigsuspend syscall, if we are 139 * currently in the middle of such a syscall 140 */ 141 sigset_t sigsuspend_mask; 142 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 143 int in_sigsuspend; 144 145 /* Nonzero if process_pending_signals() needs to do something (either 146 * handle a pending signal or unblock signals). 147 * This flag is written from a signal handler so should be accessed via 148 * the atomic_read() and atomic_write() functions. (It is not accessed 149 * from multiple threads.) 150 */ 151 int signal_pending; 152 153 } __attribute__((aligned(16))) TaskState; 154 155 extern char *exec_path; 156 void init_task_state(TaskState *ts); 157 void task_settid(TaskState *); 158 void stop_all_tasks(void); 159 extern const char *qemu_uname_release; 160 extern unsigned long mmap_min_addr; 161 162 /* ??? See if we can avoid exposing so much of the loader internals. */ 163 164 /* Read a good amount of data initially, to hopefully get all the 165 program headers loaded. */ 166 #define BPRM_BUF_SIZE 1024 167 168 /* 169 * This structure is used to hold the arguments that are 170 * used when loading binaries. 171 */ 172 struct linux_binprm { 173 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 174 abi_ulong p; 175 int fd; 176 int e_uid, e_gid; 177 int argc, envc; 178 char **argv; 179 char **envp; 180 char * filename; /* Name of binary */ 181 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 182 }; 183 184 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 185 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 186 abi_ulong stringp, int push_ptr); 187 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 188 struct target_pt_regs * regs, struct image_info *infop, 189 struct linux_binprm *); 190 191 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 192 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 193 194 abi_long memcpy_to_target(abi_ulong dest, const void *src, 195 unsigned long len); 196 void target_set_brk(abi_ulong new_brk); 197 abi_long do_brk(abi_ulong new_brk); 198 void syscall_init(void); 199 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 200 abi_long arg2, abi_long arg3, abi_long arg4, 201 abi_long arg5, abi_long arg6, abi_long arg7, 202 abi_long arg8); 203 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 204 extern THREAD CPUState *thread_cpu; 205 void cpu_loop(CPUArchState *env); 206 const char *target_strerror(int err); 207 int get_osversion(void); 208 void init_qemu_uname_release(void); 209 void fork_start(void); 210 void fork_end(int child); 211 212 /* Creates the initial guest address space in the host memory space using 213 * the given host start address hint and size. The guest_start parameter 214 * specifies the start address of the guest space. guest_base will be the 215 * difference between the host start address computed by this function and 216 * guest_start. If fixed is specified, then the mapped address space must 217 * start at host_start. The real start address of the mapped memory space is 218 * returned or -1 if there was an error. 219 */ 220 unsigned long init_guest_space(unsigned long host_start, 221 unsigned long host_size, 222 unsigned long guest_start, 223 bool fixed); 224 225 #include "qemu/log.h" 226 227 /* safe_syscall.S */ 228 229 /** 230 * safe_syscall: 231 * @int number: number of system call to make 232 * ...: arguments to the system call 233 * 234 * Call a system call if guest signal not pending. 235 * This has the same API as the libc syscall() function, except that it 236 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. 237 * 238 * Returns: the system call result, or -1 with an error code in errno 239 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing 240 * with any of the host errno values.) 241 */ 242 243 /* A guide to using safe_syscall() to handle interactions between guest 244 * syscalls and guest signals: 245 * 246 * Guest syscalls come in two flavours: 247 * 248 * (1) Non-interruptible syscalls 249 * 250 * These are guest syscalls that never get interrupted by signals and 251 * so never return EINTR. They can be implemented straightforwardly in 252 * QEMU: just make sure that if the implementation code has to make any 253 * blocking calls that those calls are retried if they return EINTR. 254 * It's also OK to implement these with safe_syscall, though it will be 255 * a little less efficient if a signal is delivered at the 'wrong' moment. 256 * 257 * Some non-interruptible syscalls need to be handled using block_signals() 258 * to block signals for the duration of the syscall. This mainly applies 259 * to code which needs to modify the data structures used by the 260 * host_signal_handler() function and the functions it calls, including 261 * all syscalls which change the thread's signal mask. 262 * 263 * (2) Interruptible syscalls 264 * 265 * These are guest syscalls that can be interrupted by signals and 266 * for which we need to either return EINTR or arrange for the guest 267 * syscall to be restarted. This category includes both syscalls which 268 * always restart (and in the kernel return -ERESTARTNOINTR), ones 269 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND 270 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart 271 * if the handler was registered with SA_RESTART (kernel returns 272 * -ERESTARTSYS). System calls which are only interruptible in some 273 * situations (like 'open') also need to be handled this way. 274 * 275 * Here it is important that the host syscall is made 276 * via this safe_syscall() function, and *not* via the host libc. 277 * If the host libc is used then the implementation will appear to work 278 * most of the time, but there will be a race condition where a 279 * signal could arrive just before we make the host syscall inside libc, 280 * and then then guest syscall will not correctly be interrupted. 281 * Instead the implementation of the guest syscall can use the safe_syscall 282 * function but otherwise just return the result or errno in the usual 283 * way; the main loop code will take care of restarting the syscall 284 * if appropriate. 285 * 286 * (If the implementation needs to make multiple host syscalls this is 287 * OK; any which might really block must be via safe_syscall(); for those 288 * which are only technically blocking (ie which we know in practice won't 289 * stay in the host kernel indefinitely) it's OK to use libc if necessary. 290 * You must be able to cope with backing out correctly if some safe_syscall 291 * you make in the implementation returns either -TARGET_ERESTARTSYS or 292 * EINTR though.) 293 * 294 * block_signals() cannot be used for interruptible syscalls. 295 * 296 * 297 * How and why the safe_syscall implementation works: 298 * 299 * The basic setup is that we make the host syscall via a known 300 * section of host native assembly. If a signal occurs, our signal 301 * handler checks the interrupted host PC against the addresse of that 302 * known section. If the PC is before or at the address of the syscall 303 * instruction then we change the PC to point at a "return 304 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler 305 * (causing the safe_syscall() call to immediately return that value). 306 * Then in the main.c loop if we see this magic return value we adjust 307 * the guest PC to wind it back to before the system call, and invoke 308 * the guest signal handler as usual. 309 * 310 * This winding-back will happen in two cases: 311 * (1) signal came in just before we took the host syscall (a race); 312 * in this case we'll take the guest signal and have another go 313 * at the syscall afterwards, and this is indistinguishable for the 314 * guest from the timing having been different such that the guest 315 * signal really did win the race 316 * (2) signal came in while the host syscall was blocking, and the 317 * host kernel decided the syscall should be restarted; 318 * in this case we want to restart the guest syscall also, and so 319 * rewinding is the right thing. (Note that "restart" semantics mean 320 * "first call the signal handler, then reattempt the syscall".) 321 * The other situation to consider is when a signal came in while the 322 * host syscall was blocking, and the host kernel decided that the syscall 323 * should not be restarted; in this case QEMU's host signal handler will 324 * be invoked with the PC pointing just after the syscall instruction, 325 * with registers indicating an EINTR return; the special code in the 326 * handler will not kick in, and we will return EINTR to the guest as 327 * we should. 328 * 329 * Notice that we can leave the host kernel to make the decision for 330 * us about whether to do a restart of the syscall or not; we do not 331 * need to check SA_RESTART flags in QEMU or distinguish the various 332 * kinds of restartability. 333 */ 334 #ifdef HAVE_SAFE_SYSCALL 335 /* The core part of this function is implemented in assembly */ 336 extern long safe_syscall_base(int *pending, long number, ...); 337 338 #define safe_syscall(...) \ 339 ({ \ 340 long ret_; \ 341 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ 342 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ 343 if (is_error(ret_)) { \ 344 errno = -ret_; \ 345 ret_ = -1; \ 346 } \ 347 ret_; \ 348 }) 349 350 #else 351 352 /* Fallback for architectures which don't yet provide a safe-syscall assembly 353 * fragment; note that this is racy! 354 * This should go away when all host architectures have been updated. 355 */ 356 #define safe_syscall syscall 357 358 #endif 359 360 /* syscall.c */ 361 int host_to_target_waitstatus(int status); 362 363 /* strace.c */ 364 void print_syscall(int num, 365 abi_long arg1, abi_long arg2, abi_long arg3, 366 abi_long arg4, abi_long arg5, abi_long arg6); 367 void print_syscall_ret(int num, abi_long arg1); 368 /** 369 * print_taken_signal: 370 * @target_signum: target signal being taken 371 * @tinfo: target_siginfo_t which will be passed to the guest for the signal 372 * 373 * Print strace output indicating that this signal is being taken by the guest, 374 * in a format similar to: 375 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- 376 */ 377 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); 378 extern int do_strace; 379 380 /* signal.c */ 381 void process_pending_signals(CPUArchState *cpu_env); 382 void signal_init(void); 383 int queue_signal(CPUArchState *env, int sig, int si_type, 384 target_siginfo_t *info); 385 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 386 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 387 int target_to_host_signal(int sig); 388 int host_to_target_signal(int sig); 389 long do_sigreturn(CPUArchState *env); 390 long do_rt_sigreturn(CPUArchState *env); 391 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 392 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 393 /** 394 * block_signals: block all signals while handling this guest syscall 395 * 396 * Block all signals, and arrange that the signal mask is returned to 397 * its correct value for the guest before we resume execution of guest code. 398 * If this function returns non-zero, then the caller should immediately 399 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending 400 * signal and restart execution of the syscall. 401 * If block_signals() returns zero, then the caller can continue with 402 * emulation of the system call knowing that no signals can be taken 403 * (and therefore that no race conditions will result). 404 * This should only be called once, because if it is called a second time 405 * it will always return non-zero. (Think of it like a mutex that can't 406 * be recursively locked.) 407 * Signals will be unblocked again by process_pending_signals(). 408 * 409 * Return value: non-zero if there was a pending signal, zero if not. 410 */ 411 int block_signals(void); /* Returns non zero if signal pending */ 412 413 #ifdef TARGET_I386 414 /* vm86.c */ 415 void save_v86_state(CPUX86State *env); 416 void handle_vm86_trap(CPUX86State *env, int trapno); 417 void handle_vm86_fault(CPUX86State *env); 418 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 419 #elif defined(TARGET_SPARC64) 420 void sparc64_set_context(CPUSPARCState *env); 421 void sparc64_get_context(CPUSPARCState *env); 422 #endif 423 424 /* mmap.c */ 425 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 426 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 427 int flags, int fd, abi_ulong offset); 428 int target_munmap(abi_ulong start, abi_ulong len); 429 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 430 abi_ulong new_size, unsigned long flags, 431 abi_ulong new_addr); 432 int target_msync(abi_ulong start, abi_ulong len, int flags); 433 extern unsigned long last_brk; 434 extern abi_ulong mmap_next_start; 435 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 436 void mmap_fork_start(void); 437 void mmap_fork_end(int child); 438 439 /* main.c */ 440 extern unsigned long guest_stack_size; 441 442 /* user access */ 443 444 #define VERIFY_READ 0 445 #define VERIFY_WRITE 1 /* implies read access */ 446 447 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 448 { 449 return page_check_range((target_ulong)addr, size, 450 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 451 } 452 453 /* NOTE __get_user and __put_user use host pointers and don't check access. 454 These are usually used to access struct data members once the struct has 455 been locked - usually with lock_user_struct. */ 456 457 /* Tricky points: 458 - Use __builtin_choose_expr to avoid type promotion from ?:, 459 - Invalid sizes result in a compile time error stemming from 460 the fact that abort has no parameters. 461 - It's easier to use the endian-specific unaligned load/store 462 functions than host-endian unaligned load/store plus tswapN. */ 463 464 #define __put_user_e(x, hptr, e) \ 465 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 466 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 467 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 468 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 469 ((hptr), (x)), (void)0) 470 471 #define __get_user_e(x, hptr, e) \ 472 ((x) = (typeof(*hptr))( \ 473 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 474 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 475 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 476 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 477 (hptr)), (void)0) 478 479 #ifdef TARGET_WORDS_BIGENDIAN 480 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 481 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 482 #else 483 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 484 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 485 #endif 486 487 /* put_user()/get_user() take a guest address and check access */ 488 /* These are usually used to access an atomic data type, such as an int, 489 * that has been passed by address. These internally perform locking 490 * and unlocking on the data type. 491 */ 492 #define put_user(x, gaddr, target_type) \ 493 ({ \ 494 abi_ulong __gaddr = (gaddr); \ 495 target_type *__hptr; \ 496 abi_long __ret = 0; \ 497 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 498 __put_user((x), __hptr); \ 499 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 500 } else \ 501 __ret = -TARGET_EFAULT; \ 502 __ret; \ 503 }) 504 505 #define get_user(x, gaddr, target_type) \ 506 ({ \ 507 abi_ulong __gaddr = (gaddr); \ 508 target_type *__hptr; \ 509 abi_long __ret = 0; \ 510 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 511 __get_user((x), __hptr); \ 512 unlock_user(__hptr, __gaddr, 0); \ 513 } else { \ 514 /* avoid warning */ \ 515 (x) = 0; \ 516 __ret = -TARGET_EFAULT; \ 517 } \ 518 __ret; \ 519 }) 520 521 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 522 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 523 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 524 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 525 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 526 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 527 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 528 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 529 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 530 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 531 532 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 533 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 534 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 535 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 536 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 537 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 538 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 539 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 540 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 541 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 542 543 /* copy_from_user() and copy_to_user() are usually used to copy data 544 * buffers between the target and host. These internally perform 545 * locking/unlocking of the memory. 546 */ 547 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 548 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 549 550 /* Functions for accessing guest memory. The tget and tput functions 551 read/write single values, byteswapping as necessary. The lock_user function 552 gets a pointer to a contiguous area of guest memory, but does not perform 553 any byteswapping. lock_user may return either a pointer to the guest 554 memory, or a temporary buffer. */ 555 556 /* Lock an area of guest memory into the host. If copy is true then the 557 host area will have the same contents as the guest. */ 558 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 559 { 560 if (!access_ok(type, guest_addr, len)) 561 return NULL; 562 #ifdef DEBUG_REMAP 563 { 564 void *addr; 565 addr = g_malloc(len); 566 if (copy) 567 memcpy(addr, g2h(guest_addr), len); 568 else 569 memset(addr, 0, len); 570 return addr; 571 } 572 #else 573 return g2h(guest_addr); 574 #endif 575 } 576 577 /* Unlock an area of guest memory. The first LEN bytes must be 578 flushed back to guest memory. host_ptr = NULL is explicitly 579 allowed and does nothing. */ 580 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 581 long len) 582 { 583 584 #ifdef DEBUG_REMAP 585 if (!host_ptr) 586 return; 587 if (host_ptr == g2h(guest_addr)) 588 return; 589 if (len > 0) 590 memcpy(g2h(guest_addr), host_ptr, len); 591 g_free(host_ptr); 592 #endif 593 } 594 595 /* Return the length of a string in target memory or -TARGET_EFAULT if 596 access error. */ 597 abi_long target_strlen(abi_ulong gaddr); 598 599 /* Like lock_user but for null terminated strings. */ 600 static inline void *lock_user_string(abi_ulong guest_addr) 601 { 602 abi_long len; 603 len = target_strlen(guest_addr); 604 if (len < 0) 605 return NULL; 606 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 607 } 608 609 /* Helper macros for locking/unlocking a target struct. */ 610 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 611 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 612 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 613 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 614 615 #include <pthread.h> 616 617 /* Include target-specific struct and function definitions; 618 * they may need access to the target-independent structures 619 * above, so include them last. 620 */ 621 #include "target_cpu.h" 622 #include "target_signal.h" 623 #include "target_structs.h" 624 625 #endif /* QEMU_H */ 626