xref: /openbmc/qemu/linux-user/qemu.h (revision a9dd38db)
1 #ifndef QEMU_H
2 #define QEMU_H
3 
4 #include <signal.h>
5 #include <string.h>
6 
7 #include "cpu.h"
8 #include "exec/cpu_ldst.h"
9 
10 #undef DEBUG_REMAP
11 #ifdef DEBUG_REMAP
12 #include <stdlib.h>
13 #endif /* DEBUG_REMAP */
14 
15 #include "exec/user/abitypes.h"
16 
17 #include "exec/user/thunk.h"
18 #include "syscall_defs.h"
19 #include "syscall.h"
20 #include "exec/gdbstub.h"
21 #include "qemu/queue.h"
22 
23 #define THREAD __thread
24 
25 /* This struct is used to hold certain information about the image.
26  * Basically, it replicates in user space what would be certain
27  * task_struct fields in the kernel
28  */
29 struct image_info {
30         abi_ulong       load_bias;
31         abi_ulong       load_addr;
32         abi_ulong       start_code;
33         abi_ulong       end_code;
34         abi_ulong       start_data;
35         abi_ulong       end_data;
36         abi_ulong       start_brk;
37         abi_ulong       brk;
38         abi_ulong       start_mmap;
39         abi_ulong       mmap;
40         abi_ulong       rss;
41         abi_ulong       start_stack;
42         abi_ulong       stack_limit;
43         abi_ulong       entry;
44         abi_ulong       code_offset;
45         abi_ulong       data_offset;
46         abi_ulong       saved_auxv;
47         abi_ulong       auxv_len;
48         abi_ulong       arg_start;
49         abi_ulong       arg_end;
50         uint32_t        elf_flags;
51 	int		personality;
52 #ifdef CONFIG_USE_FDPIC
53         abi_ulong       loadmap_addr;
54         uint16_t        nsegs;
55         void           *loadsegs;
56         abi_ulong       pt_dynamic_addr;
57         struct image_info *other_info;
58 #endif
59 };
60 
61 #ifdef TARGET_I386
62 /* Information about the current linux thread */
63 struct vm86_saved_state {
64     uint32_t eax; /* return code */
65     uint32_t ebx;
66     uint32_t ecx;
67     uint32_t edx;
68     uint32_t esi;
69     uint32_t edi;
70     uint32_t ebp;
71     uint32_t esp;
72     uint32_t eflags;
73     uint32_t eip;
74     uint16_t cs, ss, ds, es, fs, gs;
75 };
76 #endif
77 
78 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
79 /* FPU emulator */
80 #include "nwfpe/fpa11.h"
81 #endif
82 
83 #define MAX_SIGQUEUE_SIZE 1024
84 
85 struct sigqueue {
86     struct sigqueue *next;
87     target_siginfo_t info;
88 };
89 
90 struct emulated_sigtable {
91     int pending; /* true if signal is pending */
92     struct sigqueue *first;
93     struct sigqueue info; /* in order to always have memory for the
94                              first signal, we put it here */
95 };
96 
97 /* NOTE: we force a big alignment so that the stack stored after is
98    aligned too */
99 typedef struct TaskState {
100     pid_t ts_tid;     /* tid (or pid) of this task */
101 #ifdef TARGET_ARM
102 # ifdef TARGET_ABI32
103     /* FPA state */
104     FPA11 fpa;
105 # endif
106     int swi_errno;
107 #endif
108 #ifdef TARGET_UNICORE32
109     int swi_errno;
110 #endif
111 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
112     abi_ulong target_v86;
113     struct vm86_saved_state vm86_saved_regs;
114     struct target_vm86plus_struct vm86plus;
115     uint32_t v86flags;
116     uint32_t v86mask;
117 #endif
118     abi_ulong child_tidptr;
119 #ifdef TARGET_M68K
120     int sim_syscalls;
121     abi_ulong tp_value;
122 #endif
123 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
124     /* Extra fields for semihosted binaries.  */
125     uint32_t heap_base;
126     uint32_t heap_limit;
127 #endif
128     uint32_t stack_base;
129     int used; /* non zero if used */
130     bool sigsegv_blocked; /* SIGSEGV blocked by guest */
131     struct image_info *info;
132     struct linux_binprm *bprm;
133 
134     struct emulated_sigtable sigtab[TARGET_NSIG];
135     struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
136     struct sigqueue *first_free; /* first free siginfo queue entry */
137     int signal_pending; /* non zero if a signal may be pending */
138 } __attribute__((aligned(16))) TaskState;
139 
140 extern char *exec_path;
141 void init_task_state(TaskState *ts);
142 void task_settid(TaskState *);
143 void stop_all_tasks(void);
144 extern const char *qemu_uname_release;
145 extern unsigned long mmap_min_addr;
146 
147 /* ??? See if we can avoid exposing so much of the loader internals.  */
148 /*
149  * MAX_ARG_PAGES defines the number of pages allocated for arguments
150  * and envelope for the new program. 32 should suffice, this gives
151  * a maximum env+arg of 128kB w/4KB pages!
152  */
153 #define MAX_ARG_PAGES 33
154 
155 /* Read a good amount of data initially, to hopefully get all the
156    program headers loaded.  */
157 #define BPRM_BUF_SIZE  1024
158 
159 /*
160  * This structure is used to hold the arguments that are
161  * used when loading binaries.
162  */
163 struct linux_binprm {
164         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
165         void *page[MAX_ARG_PAGES];
166         abi_ulong p;
167 	int fd;
168         int e_uid, e_gid;
169         int argc, envc;
170         char **argv;
171         char **envp;
172         char * filename;        /* Name of binary */
173         int (*core_dump)(int, const CPUArchState *); /* coredump routine */
174 };
175 
176 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
177 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
178                               abi_ulong stringp, int push_ptr);
179 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
180              struct target_pt_regs * regs, struct image_info *infop,
181              struct linux_binprm *);
182 
183 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
184 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
185 
186 abi_long memcpy_to_target(abi_ulong dest, const void *src,
187                           unsigned long len);
188 void target_set_brk(abi_ulong new_brk);
189 abi_long do_brk(abi_ulong new_brk);
190 void syscall_init(void);
191 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
192                     abi_long arg2, abi_long arg3, abi_long arg4,
193                     abi_long arg5, abi_long arg6, abi_long arg7,
194                     abi_long arg8);
195 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
196 extern THREAD CPUState *thread_cpu;
197 void cpu_loop(CPUArchState *env);
198 char *target_strerror(int err);
199 int get_osversion(void);
200 void init_qemu_uname_release(void);
201 void fork_start(void);
202 void fork_end(int child);
203 
204 /* Creates the initial guest address space in the host memory space using
205  * the given host start address hint and size.  The guest_start parameter
206  * specifies the start address of the guest space.  guest_base will be the
207  * difference between the host start address computed by this function and
208  * guest_start.  If fixed is specified, then the mapped address space must
209  * start at host_start.  The real start address of the mapped memory space is
210  * returned or -1 if there was an error.
211  */
212 unsigned long init_guest_space(unsigned long host_start,
213                                unsigned long host_size,
214                                unsigned long guest_start,
215                                bool fixed);
216 
217 #include "qemu/log.h"
218 
219 /* syscall.c */
220 int host_to_target_waitstatus(int status);
221 
222 /* strace.c */
223 void print_syscall(int num,
224                    abi_long arg1, abi_long arg2, abi_long arg3,
225                    abi_long arg4, abi_long arg5, abi_long arg6);
226 void print_syscall_ret(int num, abi_long arg1);
227 extern int do_strace;
228 
229 /* signal.c */
230 void process_pending_signals(CPUArchState *cpu_env);
231 void signal_init(void);
232 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
233 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
234 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
235 int target_to_host_signal(int sig);
236 int host_to_target_signal(int sig);
237 long do_sigreturn(CPUArchState *env);
238 long do_rt_sigreturn(CPUArchState *env);
239 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
240 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
241 
242 #ifdef TARGET_I386
243 /* vm86.c */
244 void save_v86_state(CPUX86State *env);
245 void handle_vm86_trap(CPUX86State *env, int trapno);
246 void handle_vm86_fault(CPUX86State *env);
247 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
248 #elif defined(TARGET_SPARC64)
249 void sparc64_set_context(CPUSPARCState *env);
250 void sparc64_get_context(CPUSPARCState *env);
251 #endif
252 
253 /* mmap.c */
254 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
255 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
256                      int flags, int fd, abi_ulong offset);
257 int target_munmap(abi_ulong start, abi_ulong len);
258 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
259                        abi_ulong new_size, unsigned long flags,
260                        abi_ulong new_addr);
261 int target_msync(abi_ulong start, abi_ulong len, int flags);
262 extern unsigned long last_brk;
263 extern abi_ulong mmap_next_start;
264 void mmap_lock(void);
265 void mmap_unlock(void);
266 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
267 void cpu_list_lock(void);
268 void cpu_list_unlock(void);
269 void mmap_fork_start(void);
270 void mmap_fork_end(int child);
271 
272 /* main.c */
273 extern unsigned long guest_stack_size;
274 
275 /* user access */
276 
277 #define VERIFY_READ 0
278 #define VERIFY_WRITE 1 /* implies read access */
279 
280 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
281 {
282     return page_check_range((target_ulong)addr, size,
283                             (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
284 }
285 
286 /* NOTE __get_user and __put_user use host pointers and don't check access.
287    These are usually used to access struct data members once the struct has
288    been locked - usually with lock_user_struct.  */
289 
290 /* Tricky points:
291    - Use __builtin_choose_expr to avoid type promotion from ?:,
292    - Invalid sizes result in a compile time error stemming from
293      the fact that abort has no parameters.
294    - It's easier to use the endian-specific unaligned load/store
295      functions than host-endian unaligned load/store plus tswapN.  */
296 
297 #define __put_user_e(x, hptr, e)                                        \
298   (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
299    __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
300    __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
301    __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
302      ((hptr), (x)), (void)0)
303 
304 #define __get_user_e(x, hptr, e)                                        \
305   ((x) = (typeof(*hptr))(                                               \
306    __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
307    __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
308    __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
309    __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
310      (hptr)), (void)0)
311 
312 #ifdef TARGET_WORDS_BIGENDIAN
313 # define __put_user(x, hptr)  __put_user_e(x, hptr, be)
314 # define __get_user(x, hptr)  __get_user_e(x, hptr, be)
315 #else
316 # define __put_user(x, hptr)  __put_user_e(x, hptr, le)
317 # define __get_user(x, hptr)  __get_user_e(x, hptr, le)
318 #endif
319 
320 /* put_user()/get_user() take a guest address and check access */
321 /* These are usually used to access an atomic data type, such as an int,
322  * that has been passed by address.  These internally perform locking
323  * and unlocking on the data type.
324  */
325 #define put_user(x, gaddr, target_type)					\
326 ({									\
327     abi_ulong __gaddr = (gaddr);					\
328     target_type *__hptr;						\
329     abi_long __ret = 0;							\
330     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
331         __put_user((x), __hptr);				\
332         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
333     } else								\
334         __ret = -TARGET_EFAULT;						\
335     __ret;								\
336 })
337 
338 #define get_user(x, gaddr, target_type)					\
339 ({									\
340     abi_ulong __gaddr = (gaddr);					\
341     target_type *__hptr;						\
342     abi_long __ret = 0;							\
343     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
344         __get_user((x), __hptr);				\
345         unlock_user(__hptr, __gaddr, 0);				\
346     } else {								\
347         /* avoid warning */						\
348         (x) = 0;							\
349         __ret = -TARGET_EFAULT;						\
350     }									\
351     __ret;								\
352 })
353 
354 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
355 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
356 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
357 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
358 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
359 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
360 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
361 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
362 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
363 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
364 
365 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
366 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
367 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
368 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
369 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
370 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
371 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
372 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
373 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
374 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
375 
376 /* copy_from_user() and copy_to_user() are usually used to copy data
377  * buffers between the target and host.  These internally perform
378  * locking/unlocking of the memory.
379  */
380 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
381 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
382 
383 /* Functions for accessing guest memory.  The tget and tput functions
384    read/write single values, byteswapping as necessary.  The lock_user function
385    gets a pointer to a contiguous area of guest memory, but does not perform
386    any byteswapping.  lock_user may return either a pointer to the guest
387    memory, or a temporary buffer.  */
388 
389 /* Lock an area of guest memory into the host.  If copy is true then the
390    host area will have the same contents as the guest.  */
391 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
392 {
393     if (!access_ok(type, guest_addr, len))
394         return NULL;
395 #ifdef DEBUG_REMAP
396     {
397         void *addr;
398         addr = malloc(len);
399         if (copy)
400             memcpy(addr, g2h(guest_addr), len);
401         else
402             memset(addr, 0, len);
403         return addr;
404     }
405 #else
406     return g2h(guest_addr);
407 #endif
408 }
409 
410 /* Unlock an area of guest memory.  The first LEN bytes must be
411    flushed back to guest memory. host_ptr = NULL is explicitly
412    allowed and does nothing. */
413 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
414                                long len)
415 {
416 
417 #ifdef DEBUG_REMAP
418     if (!host_ptr)
419         return;
420     if (host_ptr == g2h(guest_addr))
421         return;
422     if (len > 0)
423         memcpy(g2h(guest_addr), host_ptr, len);
424     free(host_ptr);
425 #endif
426 }
427 
428 /* Return the length of a string in target memory or -TARGET_EFAULT if
429    access error. */
430 abi_long target_strlen(abi_ulong gaddr);
431 
432 /* Like lock_user but for null terminated strings.  */
433 static inline void *lock_user_string(abi_ulong guest_addr)
434 {
435     abi_long len;
436     len = target_strlen(guest_addr);
437     if (len < 0)
438         return NULL;
439     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
440 }
441 
442 /* Helper macros for locking/unlocking a target struct.  */
443 #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
444     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
445 #define unlock_user_struct(host_ptr, guest_addr, copy)		\
446     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
447 
448 #include <pthread.h>
449 
450 /* Include target-specific struct and function definitions;
451  * they may need access to the target-independent structures
452  * above, so include them last.
453  */
454 #include "target_cpu.h"
455 #include "target_signal.h"
456 #include "target_structs.h"
457 
458 #endif /* QEMU_H */
459