xref: /openbmc/qemu/linux-user/qemu.h (revision a719a27c)
1 #ifndef QEMU_H
2 #define QEMU_H
3 
4 #include <signal.h>
5 #include <string.h>
6 
7 #include "cpu.h"
8 
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
13 
14 #include "exec/user/abitypes.h"
15 
16 #include "exec/user/thunk.h"
17 #include "syscall_defs.h"
18 #include "syscall.h"
19 #include "exec/gdbstub.h"
20 #include "qemu/queue.h"
21 
22 #define THREAD __thread
23 
24 /* This struct is used to hold certain information about the image.
25  * Basically, it replicates in user space what would be certain
26  * task_struct fields in the kernel
27  */
28 struct image_info {
29         abi_ulong       load_bias;
30         abi_ulong       load_addr;
31         abi_ulong       start_code;
32         abi_ulong       end_code;
33         abi_ulong       start_data;
34         abi_ulong       end_data;
35         abi_ulong       start_brk;
36         abi_ulong       brk;
37         abi_ulong       start_mmap;
38         abi_ulong       mmap;
39         abi_ulong       rss;
40         abi_ulong       start_stack;
41         abi_ulong       stack_limit;
42         abi_ulong       entry;
43         abi_ulong       code_offset;
44         abi_ulong       data_offset;
45         abi_ulong       saved_auxv;
46         abi_ulong       auxv_len;
47         abi_ulong       arg_start;
48         abi_ulong       arg_end;
49         uint32_t        elf_flags;
50 	int		personality;
51 #ifdef CONFIG_USE_FDPIC
52         abi_ulong       loadmap_addr;
53         uint16_t        nsegs;
54         void           *loadsegs;
55         abi_ulong       pt_dynamic_addr;
56         struct image_info *other_info;
57 #endif
58 };
59 
60 #ifdef TARGET_I386
61 /* Information about the current linux thread */
62 struct vm86_saved_state {
63     uint32_t eax; /* return code */
64     uint32_t ebx;
65     uint32_t ecx;
66     uint32_t edx;
67     uint32_t esi;
68     uint32_t edi;
69     uint32_t ebp;
70     uint32_t esp;
71     uint32_t eflags;
72     uint32_t eip;
73     uint16_t cs, ss, ds, es, fs, gs;
74 };
75 #endif
76 
77 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
78 /* FPU emulator */
79 #include "nwfpe/fpa11.h"
80 #endif
81 
82 #define MAX_SIGQUEUE_SIZE 1024
83 
84 struct sigqueue {
85     struct sigqueue *next;
86     target_siginfo_t info;
87 };
88 
89 struct emulated_sigtable {
90     int pending; /* true if signal is pending */
91     struct sigqueue *first;
92     struct sigqueue info; /* in order to always have memory for the
93                              first signal, we put it here */
94 };
95 
96 /* NOTE: we force a big alignment so that the stack stored after is
97    aligned too */
98 typedef struct TaskState {
99     pid_t ts_tid;     /* tid (or pid) of this task */
100 #ifdef TARGET_ARM
101 # ifdef TARGET_ABI32
102     /* FPA state */
103     FPA11 fpa;
104 # endif
105     int swi_errno;
106 #endif
107 #ifdef TARGET_UNICORE32
108     int swi_errno;
109 #endif
110 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
111     abi_ulong target_v86;
112     struct vm86_saved_state vm86_saved_regs;
113     struct target_vm86plus_struct vm86plus;
114     uint32_t v86flags;
115     uint32_t v86mask;
116 #endif
117     abi_ulong child_tidptr;
118 #ifdef TARGET_M68K
119     int sim_syscalls;
120     abi_ulong tp_value;
121 #endif
122 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
123     /* Extra fields for semihosted binaries.  */
124     uint32_t heap_base;
125     uint32_t heap_limit;
126 #endif
127     uint32_t stack_base;
128     int used; /* non zero if used */
129     bool sigsegv_blocked; /* SIGSEGV blocked by guest */
130     struct image_info *info;
131     struct linux_binprm *bprm;
132 
133     struct emulated_sigtable sigtab[TARGET_NSIG];
134     struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
135     struct sigqueue *first_free; /* first free siginfo queue entry */
136     int signal_pending; /* non zero if a signal may be pending */
137 } __attribute__((aligned(16))) TaskState;
138 
139 extern char *exec_path;
140 void init_task_state(TaskState *ts);
141 void task_settid(TaskState *);
142 void stop_all_tasks(void);
143 extern const char *qemu_uname_release;
144 extern unsigned long mmap_min_addr;
145 
146 /* ??? See if we can avoid exposing so much of the loader internals.  */
147 /*
148  * MAX_ARG_PAGES defines the number of pages allocated for arguments
149  * and envelope for the new program. 32 should suffice, this gives
150  * a maximum env+arg of 128kB w/4KB pages!
151  */
152 #define MAX_ARG_PAGES 33
153 
154 /* Read a good amount of data initially, to hopefully get all the
155    program headers loaded.  */
156 #define BPRM_BUF_SIZE  1024
157 
158 /*
159  * This structure is used to hold the arguments that are
160  * used when loading binaries.
161  */
162 struct linux_binprm {
163         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
164         void *page[MAX_ARG_PAGES];
165         abi_ulong p;
166 	int fd;
167         int e_uid, e_gid;
168         int argc, envc;
169         char **argv;
170         char **envp;
171         char * filename;        /* Name of binary */
172         int (*core_dump)(int, const CPUArchState *); /* coredump routine */
173 };
174 
175 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
176 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
177                               abi_ulong stringp, int push_ptr);
178 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
179              struct target_pt_regs * regs, struct image_info *infop,
180              struct linux_binprm *);
181 
182 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
183 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
184 
185 abi_long memcpy_to_target(abi_ulong dest, const void *src,
186                           unsigned long len);
187 void target_set_brk(abi_ulong new_brk);
188 abi_long do_brk(abi_ulong new_brk);
189 void syscall_init(void);
190 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
191                     abi_long arg2, abi_long arg3, abi_long arg4,
192                     abi_long arg5, abi_long arg6, abi_long arg7,
193                     abi_long arg8);
194 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
195 extern THREAD CPUState *thread_cpu;
196 void cpu_loop(CPUArchState *env);
197 char *target_strerror(int err);
198 int get_osversion(void);
199 void init_qemu_uname_release(void);
200 void fork_start(void);
201 void fork_end(int child);
202 
203 /* Creates the initial guest address space in the host memory space using
204  * the given host start address hint and size.  The guest_start parameter
205  * specifies the start address of the guest space.  guest_base will be the
206  * difference between the host start address computed by this function and
207  * guest_start.  If fixed is specified, then the mapped address space must
208  * start at host_start.  The real start address of the mapped memory space is
209  * returned or -1 if there was an error.
210  */
211 unsigned long init_guest_space(unsigned long host_start,
212                                unsigned long host_size,
213                                unsigned long guest_start,
214                                bool fixed);
215 
216 #include "qemu/log.h"
217 
218 /* syscall.c */
219 int host_to_target_waitstatus(int status);
220 
221 /* strace.c */
222 void print_syscall(int num,
223                    abi_long arg1, abi_long arg2, abi_long arg3,
224                    abi_long arg4, abi_long arg5, abi_long arg6);
225 void print_syscall_ret(int num, abi_long arg1);
226 extern int do_strace;
227 
228 /* signal.c */
229 void process_pending_signals(CPUArchState *cpu_env);
230 void signal_init(void);
231 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
232 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
233 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
234 int target_to_host_signal(int sig);
235 int host_to_target_signal(int sig);
236 long do_sigreturn(CPUArchState *env);
237 long do_rt_sigreturn(CPUArchState *env);
238 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
239 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
240 
241 #ifdef TARGET_I386
242 /* vm86.c */
243 void save_v86_state(CPUX86State *env);
244 void handle_vm86_trap(CPUX86State *env, int trapno);
245 void handle_vm86_fault(CPUX86State *env);
246 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
247 #elif defined(TARGET_SPARC64)
248 void sparc64_set_context(CPUSPARCState *env);
249 void sparc64_get_context(CPUSPARCState *env);
250 #endif
251 
252 /* mmap.c */
253 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
254 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
255                      int flags, int fd, abi_ulong offset);
256 int target_munmap(abi_ulong start, abi_ulong len);
257 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
258                        abi_ulong new_size, unsigned long flags,
259                        abi_ulong new_addr);
260 int target_msync(abi_ulong start, abi_ulong len, int flags);
261 extern unsigned long last_brk;
262 extern abi_ulong mmap_next_start;
263 void mmap_lock(void);
264 void mmap_unlock(void);
265 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
266 void cpu_list_lock(void);
267 void cpu_list_unlock(void);
268 void mmap_fork_start(void);
269 void mmap_fork_end(int child);
270 
271 /* main.c */
272 extern unsigned long guest_stack_size;
273 
274 /* user access */
275 
276 #define VERIFY_READ 0
277 #define VERIFY_WRITE 1 /* implies read access */
278 
279 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
280 {
281     return page_check_range((target_ulong)addr, size,
282                             (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
283 }
284 
285 /* NOTE __get_user and __put_user use host pointers and don't check access.
286    These are usually used to access struct data members once the struct has
287    been locked - usually with lock_user_struct.  */
288 
289 /* Tricky points:
290    - Use __builtin_choose_expr to avoid type promotion from ?:,
291    - Invalid sizes result in a compile time error stemming from
292      the fact that abort has no parameters.
293    - It's easier to use the endian-specific unaligned load/store
294      functions than host-endian unaligned load/store plus tswapN.  */
295 
296 #define __put_user_e(x, hptr, e)                                        \
297   (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
298    __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
299    __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
300    __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
301      ((hptr), (x)), 0)
302 
303 #define __get_user_e(x, hptr, e)                                        \
304   ((x) = (typeof(*hptr))(                                               \
305    __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
306    __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
307    __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
308    __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
309      (hptr)), 0)
310 
311 #ifdef TARGET_WORDS_BIGENDIAN
312 # define __put_user(x, hptr)  __put_user_e(x, hptr, be)
313 # define __get_user(x, hptr)  __get_user_e(x, hptr, be)
314 #else
315 # define __put_user(x, hptr)  __put_user_e(x, hptr, le)
316 # define __get_user(x, hptr)  __get_user_e(x, hptr, le)
317 #endif
318 
319 /* put_user()/get_user() take a guest address and check access */
320 /* These are usually used to access an atomic data type, such as an int,
321  * that has been passed by address.  These internally perform locking
322  * and unlocking on the data type.
323  */
324 #define put_user(x, gaddr, target_type)					\
325 ({									\
326     abi_ulong __gaddr = (gaddr);					\
327     target_type *__hptr;						\
328     abi_long __ret;							\
329     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
330         __ret = __put_user((x), __hptr);				\
331         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
332     } else								\
333         __ret = -TARGET_EFAULT;						\
334     __ret;								\
335 })
336 
337 #define get_user(x, gaddr, target_type)					\
338 ({									\
339     abi_ulong __gaddr = (gaddr);					\
340     target_type *__hptr;						\
341     abi_long __ret;							\
342     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
343         __ret = __get_user((x), __hptr);				\
344         unlock_user(__hptr, __gaddr, 0);				\
345     } else {								\
346         /* avoid warning */						\
347         (x) = 0;							\
348         __ret = -TARGET_EFAULT;						\
349     }									\
350     __ret;								\
351 })
352 
353 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
354 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
355 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
356 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
357 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
358 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
359 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
360 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
361 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
362 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
363 
364 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
365 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
366 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
367 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
368 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
369 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
370 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
371 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
372 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
373 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
374 
375 /* copy_from_user() and copy_to_user() are usually used to copy data
376  * buffers between the target and host.  These internally perform
377  * locking/unlocking of the memory.
378  */
379 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
380 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
381 
382 /* Functions for accessing guest memory.  The tget and tput functions
383    read/write single values, byteswapping as necessary.  The lock_user function
384    gets a pointer to a contiguous area of guest memory, but does not perform
385    any byteswapping.  lock_user may return either a pointer to the guest
386    memory, or a temporary buffer.  */
387 
388 /* Lock an area of guest memory into the host.  If copy is true then the
389    host area will have the same contents as the guest.  */
390 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
391 {
392     if (!access_ok(type, guest_addr, len))
393         return NULL;
394 #ifdef DEBUG_REMAP
395     {
396         void *addr;
397         addr = malloc(len);
398         if (copy)
399             memcpy(addr, g2h(guest_addr), len);
400         else
401             memset(addr, 0, len);
402         return addr;
403     }
404 #else
405     return g2h(guest_addr);
406 #endif
407 }
408 
409 /* Unlock an area of guest memory.  The first LEN bytes must be
410    flushed back to guest memory. host_ptr = NULL is explicitly
411    allowed and does nothing. */
412 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
413                                long len)
414 {
415 
416 #ifdef DEBUG_REMAP
417     if (!host_ptr)
418         return;
419     if (host_ptr == g2h(guest_addr))
420         return;
421     if (len > 0)
422         memcpy(g2h(guest_addr), host_ptr, len);
423     free(host_ptr);
424 #endif
425 }
426 
427 /* Return the length of a string in target memory or -TARGET_EFAULT if
428    access error. */
429 abi_long target_strlen(abi_ulong gaddr);
430 
431 /* Like lock_user but for null terminated strings.  */
432 static inline void *lock_user_string(abi_ulong guest_addr)
433 {
434     abi_long len;
435     len = target_strlen(guest_addr);
436     if (len < 0)
437         return NULL;
438     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
439 }
440 
441 /* Helper macros for locking/unlocking a target struct.  */
442 #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
443     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
444 #define unlock_user_struct(host_ptr, guest_addr, copy)		\
445     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
446 
447 #include <pthread.h>
448 
449 /* Include target-specific struct and function definitions;
450  * they may need access to the target-independent structures
451  * above, so include them last.
452  */
453 #include "target_cpu.h"
454 #include "target_signal.h"
455 #include "target_structs.h"
456 
457 #endif /* QEMU_H */
458