1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include <signal.h> 5 #include <string.h> 6 7 #include "cpu.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #include <stdlib.h> 12 #endif /* DEBUG_REMAP */ 13 14 #include "exec/user/abitypes.h" 15 16 #include "exec/user/thunk.h" 17 #include "syscall_defs.h" 18 #include "syscall.h" 19 #include "exec/gdbstub.h" 20 #include "qemu/queue.h" 21 22 #define THREAD __thread 23 24 /* This struct is used to hold certain information about the image. 25 * Basically, it replicates in user space what would be certain 26 * task_struct fields in the kernel 27 */ 28 struct image_info { 29 abi_ulong load_bias; 30 abi_ulong load_addr; 31 abi_ulong start_code; 32 abi_ulong end_code; 33 abi_ulong start_data; 34 abi_ulong end_data; 35 abi_ulong start_brk; 36 abi_ulong brk; 37 abi_ulong start_mmap; 38 abi_ulong mmap; 39 abi_ulong rss; 40 abi_ulong start_stack; 41 abi_ulong stack_limit; 42 abi_ulong entry; 43 abi_ulong code_offset; 44 abi_ulong data_offset; 45 abi_ulong saved_auxv; 46 abi_ulong auxv_len; 47 abi_ulong arg_start; 48 abi_ulong arg_end; 49 uint32_t elf_flags; 50 int personality; 51 #ifdef CONFIG_USE_FDPIC 52 abi_ulong loadmap_addr; 53 uint16_t nsegs; 54 void *loadsegs; 55 abi_ulong pt_dynamic_addr; 56 struct image_info *other_info; 57 #endif 58 }; 59 60 #ifdef TARGET_I386 61 /* Information about the current linux thread */ 62 struct vm86_saved_state { 63 uint32_t eax; /* return code */ 64 uint32_t ebx; 65 uint32_t ecx; 66 uint32_t edx; 67 uint32_t esi; 68 uint32_t edi; 69 uint32_t ebp; 70 uint32_t esp; 71 uint32_t eflags; 72 uint32_t eip; 73 uint16_t cs, ss, ds, es, fs, gs; 74 }; 75 #endif 76 77 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 78 /* FPU emulator */ 79 #include "nwfpe/fpa11.h" 80 #endif 81 82 #define MAX_SIGQUEUE_SIZE 1024 83 84 struct sigqueue { 85 struct sigqueue *next; 86 target_siginfo_t info; 87 }; 88 89 struct emulated_sigtable { 90 int pending; /* true if signal is pending */ 91 struct sigqueue *first; 92 struct sigqueue info; /* in order to always have memory for the 93 first signal, we put it here */ 94 }; 95 96 /* NOTE: we force a big alignment so that the stack stored after is 97 aligned too */ 98 typedef struct TaskState { 99 pid_t ts_tid; /* tid (or pid) of this task */ 100 #ifdef TARGET_ARM 101 # ifdef TARGET_ABI32 102 /* FPA state */ 103 FPA11 fpa; 104 # endif 105 int swi_errno; 106 #endif 107 #ifdef TARGET_UNICORE32 108 int swi_errno; 109 #endif 110 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 111 abi_ulong target_v86; 112 struct vm86_saved_state vm86_saved_regs; 113 struct target_vm86plus_struct vm86plus; 114 uint32_t v86flags; 115 uint32_t v86mask; 116 #endif 117 abi_ulong child_tidptr; 118 #ifdef TARGET_M68K 119 int sim_syscalls; 120 abi_ulong tp_value; 121 #endif 122 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 123 /* Extra fields for semihosted binaries. */ 124 uint32_t heap_base; 125 uint32_t heap_limit; 126 #endif 127 uint32_t stack_base; 128 int used; /* non zero if used */ 129 struct image_info *info; 130 struct linux_binprm *bprm; 131 132 struct emulated_sigtable sigtab[TARGET_NSIG]; 133 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 134 struct sigqueue *first_free; /* first free siginfo queue entry */ 135 int signal_pending; /* non zero if a signal may be pending */ 136 } __attribute__((aligned(16))) TaskState; 137 138 extern char *exec_path; 139 void init_task_state(TaskState *ts); 140 void task_settid(TaskState *); 141 void stop_all_tasks(void); 142 extern const char *qemu_uname_release; 143 extern unsigned long mmap_min_addr; 144 145 /* ??? See if we can avoid exposing so much of the loader internals. */ 146 /* 147 * MAX_ARG_PAGES defines the number of pages allocated for arguments 148 * and envelope for the new program. 32 should suffice, this gives 149 * a maximum env+arg of 128kB w/4KB pages! 150 */ 151 #define MAX_ARG_PAGES 33 152 153 /* Read a good amount of data initially, to hopefully get all the 154 program headers loaded. */ 155 #define BPRM_BUF_SIZE 1024 156 157 /* 158 * This structure is used to hold the arguments that are 159 * used when loading binaries. 160 */ 161 struct linux_binprm { 162 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 163 void *page[MAX_ARG_PAGES]; 164 abi_ulong p; 165 int fd; 166 int e_uid, e_gid; 167 int argc, envc; 168 char **argv; 169 char **envp; 170 char * filename; /* Name of binary */ 171 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 172 }; 173 174 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 175 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 176 abi_ulong stringp, int push_ptr); 177 int loader_exec(const char * filename, char ** argv, char ** envp, 178 struct target_pt_regs * regs, struct image_info *infop, 179 struct linux_binprm *); 180 181 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 182 struct image_info * info); 183 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 184 struct image_info * info); 185 186 abi_long memcpy_to_target(abi_ulong dest, const void *src, 187 unsigned long len); 188 void target_set_brk(abi_ulong new_brk); 189 abi_long do_brk(abi_ulong new_brk); 190 void syscall_init(void); 191 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 192 abi_long arg2, abi_long arg3, abi_long arg4, 193 abi_long arg5, abi_long arg6, abi_long arg7, 194 abi_long arg8); 195 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 196 extern THREAD CPUState *thread_cpu; 197 void cpu_loop(CPUArchState *env); 198 char *target_strerror(int err); 199 int get_osversion(void); 200 void init_qemu_uname_release(void); 201 void fork_start(void); 202 void fork_end(int child); 203 204 /* Creates the initial guest address space in the host memory space using 205 * the given host start address hint and size. The guest_start parameter 206 * specifies the start address of the guest space. guest_base will be the 207 * difference between the host start address computed by this function and 208 * guest_start. If fixed is specified, then the mapped address space must 209 * start at host_start. The real start address of the mapped memory space is 210 * returned or -1 if there was an error. 211 */ 212 unsigned long init_guest_space(unsigned long host_start, 213 unsigned long host_size, 214 unsigned long guest_start, 215 bool fixed); 216 217 #include "qemu/log.h" 218 219 /* syscall.c */ 220 int host_to_target_waitstatus(int status); 221 222 /* strace.c */ 223 void print_syscall(int num, 224 abi_long arg1, abi_long arg2, abi_long arg3, 225 abi_long arg4, abi_long arg5, abi_long arg6); 226 void print_syscall_ret(int num, abi_long arg1); 227 extern int do_strace; 228 229 /* signal.c */ 230 void process_pending_signals(CPUArchState *cpu_env); 231 void signal_init(void); 232 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 233 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 234 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 235 int target_to_host_signal(int sig); 236 int host_to_target_signal(int sig); 237 long do_sigreturn(CPUArchState *env); 238 long do_rt_sigreturn(CPUArchState *env); 239 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 240 241 #ifdef TARGET_I386 242 /* vm86.c */ 243 void save_v86_state(CPUX86State *env); 244 void handle_vm86_trap(CPUX86State *env, int trapno); 245 void handle_vm86_fault(CPUX86State *env); 246 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 247 #elif defined(TARGET_SPARC64) 248 void sparc64_set_context(CPUSPARCState *env); 249 void sparc64_get_context(CPUSPARCState *env); 250 #endif 251 252 /* mmap.c */ 253 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 254 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 255 int flags, int fd, abi_ulong offset); 256 int target_munmap(abi_ulong start, abi_ulong len); 257 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 258 abi_ulong new_size, unsigned long flags, 259 abi_ulong new_addr); 260 int target_msync(abi_ulong start, abi_ulong len, int flags); 261 extern unsigned long last_brk; 262 extern abi_ulong mmap_next_start; 263 void mmap_lock(void); 264 void mmap_unlock(void); 265 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 266 void cpu_list_lock(void); 267 void cpu_list_unlock(void); 268 void mmap_fork_start(void); 269 void mmap_fork_end(int child); 270 271 /* main.c */ 272 extern unsigned long guest_stack_size; 273 274 /* user access */ 275 276 #define VERIFY_READ 0 277 #define VERIFY_WRITE 1 /* implies read access */ 278 279 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 280 { 281 return page_check_range((target_ulong)addr, size, 282 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 283 } 284 285 /* NOTE __get_user and __put_user use host pointers and don't check access. 286 These are usually used to access struct data members once the struct has 287 been locked - usually with lock_user_struct. */ 288 289 /* Tricky points: 290 - Use __builtin_choose_expr to avoid type promotion from ?:, 291 - Invalid sizes result in a compile time error stemming from 292 the fact that abort has no parameters. 293 - It's easier to use the endian-specific unaligned load/store 294 functions than host-endian unaligned load/store plus tswapN. */ 295 296 #define __put_user_e(x, hptr, e) \ 297 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 298 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 299 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 300 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 301 ((hptr), (x)), 0) 302 303 #define __get_user_e(x, hptr, e) \ 304 ((x) = (typeof(*hptr))( \ 305 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 306 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 307 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 308 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 309 (hptr)), 0) 310 311 #ifdef TARGET_WORDS_BIGENDIAN 312 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 313 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 314 #else 315 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 316 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 317 #endif 318 319 /* put_user()/get_user() take a guest address and check access */ 320 /* These are usually used to access an atomic data type, such as an int, 321 * that has been passed by address. These internally perform locking 322 * and unlocking on the data type. 323 */ 324 #define put_user(x, gaddr, target_type) \ 325 ({ \ 326 abi_ulong __gaddr = (gaddr); \ 327 target_type *__hptr; \ 328 abi_long __ret; \ 329 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 330 __ret = __put_user((x), __hptr); \ 331 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 332 } else \ 333 __ret = -TARGET_EFAULT; \ 334 __ret; \ 335 }) 336 337 #define get_user(x, gaddr, target_type) \ 338 ({ \ 339 abi_ulong __gaddr = (gaddr); \ 340 target_type *__hptr; \ 341 abi_long __ret; \ 342 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 343 __ret = __get_user((x), __hptr); \ 344 unlock_user(__hptr, __gaddr, 0); \ 345 } else { \ 346 /* avoid warning */ \ 347 (x) = 0; \ 348 __ret = -TARGET_EFAULT; \ 349 } \ 350 __ret; \ 351 }) 352 353 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 354 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 355 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 356 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 357 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 358 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 359 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 360 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 361 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 362 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 363 364 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 365 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 366 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 367 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 368 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 369 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 370 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 371 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 372 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 373 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 374 375 /* copy_from_user() and copy_to_user() are usually used to copy data 376 * buffers between the target and host. These internally perform 377 * locking/unlocking of the memory. 378 */ 379 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 380 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 381 382 /* Functions for accessing guest memory. The tget and tput functions 383 read/write single values, byteswapping as necessary. The lock_user 384 gets a pointer to a contiguous area of guest memory, but does not perform 385 and byteswapping. lock_user may return either a pointer to the guest 386 memory, or a temporary buffer. */ 387 388 /* Lock an area of guest memory into the host. If copy is true then the 389 host area will have the same contents as the guest. */ 390 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 391 { 392 if (!access_ok(type, guest_addr, len)) 393 return NULL; 394 #ifdef DEBUG_REMAP 395 { 396 void *addr; 397 addr = malloc(len); 398 if (copy) 399 memcpy(addr, g2h(guest_addr), len); 400 else 401 memset(addr, 0, len); 402 return addr; 403 } 404 #else 405 return g2h(guest_addr); 406 #endif 407 } 408 409 /* Unlock an area of guest memory. The first LEN bytes must be 410 flushed back to guest memory. host_ptr = NULL is explicitly 411 allowed and does nothing. */ 412 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 413 long len) 414 { 415 416 #ifdef DEBUG_REMAP 417 if (!host_ptr) 418 return; 419 if (host_ptr == g2h(guest_addr)) 420 return; 421 if (len > 0) 422 memcpy(g2h(guest_addr), host_ptr, len); 423 free(host_ptr); 424 #endif 425 } 426 427 /* Return the length of a string in target memory or -TARGET_EFAULT if 428 access error. */ 429 abi_long target_strlen(abi_ulong gaddr); 430 431 /* Like lock_user but for null terminated strings. */ 432 static inline void *lock_user_string(abi_ulong guest_addr) 433 { 434 abi_long len; 435 len = target_strlen(guest_addr); 436 if (len < 0) 437 return NULL; 438 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 439 } 440 441 /* Helper macros for locking/ulocking a target struct. */ 442 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 443 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 444 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 445 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 446 447 #include <pthread.h> 448 449 /* Include target-specific struct and function definitions; 450 * they may need access to the target-independent structures 451 * above, so include them last. 452 */ 453 #include "target_cpu.h" 454 #include "target_signal.h" 455 456 #endif /* QEMU_H */ 457