xref: /openbmc/qemu/linux-user/qemu.h (revision 9d0306dfdfb7e7fd8d5fbe45973566d1a8ea592d)
1 #ifndef QEMU_H
2 #define QEMU_H
3 
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
8 
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
12 
13 #include "exec/user/abitypes.h"
14 
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19 #include "qemu/queue.h"
20 
21 /* This is the size of the host kernel's sigset_t, needed where we make
22  * direct system calls that take a sigset_t pointer and a size.
23  */
24 #define SIGSET_T_SIZE (_NSIG / 8)
25 
26 /* This struct is used to hold certain information about the image.
27  * Basically, it replicates in user space what would be certain
28  * task_struct fields in the kernel
29  */
30 struct image_info {
31         abi_ulong       load_bias;
32         abi_ulong       load_addr;
33         abi_ulong       start_code;
34         abi_ulong       end_code;
35         abi_ulong       start_data;
36         abi_ulong       end_data;
37         abi_ulong       start_brk;
38         abi_ulong       brk;
39         abi_ulong       start_mmap;
40         abi_ulong       start_stack;
41         abi_ulong       stack_limit;
42         abi_ulong       entry;
43         abi_ulong       code_offset;
44         abi_ulong       data_offset;
45         abi_ulong       saved_auxv;
46         abi_ulong       auxv_len;
47         abi_ulong       arg_start;
48         abi_ulong       arg_end;
49         abi_ulong       arg_strings;
50         abi_ulong       env_strings;
51         abi_ulong       file_string;
52         uint32_t        elf_flags;
53 	int		personality;
54 #ifdef CONFIG_USE_FDPIC
55         abi_ulong       loadmap_addr;
56         uint16_t        nsegs;
57         void           *loadsegs;
58         abi_ulong       pt_dynamic_addr;
59         struct image_info *other_info;
60 #endif
61 };
62 
63 #ifdef TARGET_I386
64 /* Information about the current linux thread */
65 struct vm86_saved_state {
66     uint32_t eax; /* return code */
67     uint32_t ebx;
68     uint32_t ecx;
69     uint32_t edx;
70     uint32_t esi;
71     uint32_t edi;
72     uint32_t ebp;
73     uint32_t esp;
74     uint32_t eflags;
75     uint32_t eip;
76     uint16_t cs, ss, ds, es, fs, gs;
77 };
78 #endif
79 
80 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
81 /* FPU emulator */
82 #include "nwfpe/fpa11.h"
83 #endif
84 
85 #define MAX_SIGQUEUE_SIZE 1024
86 
87 struct emulated_sigtable {
88     int pending; /* true if signal is pending */
89     target_siginfo_t info;
90 };
91 
92 /* NOTE: we force a big alignment so that the stack stored after is
93    aligned too */
94 typedef struct TaskState {
95     pid_t ts_tid;     /* tid (or pid) of this task */
96 #ifdef TARGET_ARM
97 # ifdef TARGET_ABI32
98     /* FPA state */
99     FPA11 fpa;
100 # endif
101     int swi_errno;
102 #endif
103 #ifdef TARGET_UNICORE32
104     int swi_errno;
105 #endif
106 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
107     abi_ulong target_v86;
108     struct vm86_saved_state vm86_saved_regs;
109     struct target_vm86plus_struct vm86plus;
110     uint32_t v86flags;
111     uint32_t v86mask;
112 #endif
113     abi_ulong child_tidptr;
114 #ifdef TARGET_M68K
115     int sim_syscalls;
116     abi_ulong tp_value;
117 #endif
118 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
119     /* Extra fields for semihosted binaries.  */
120     abi_ulong heap_base;
121     abi_ulong heap_limit;
122 #endif
123     abi_ulong stack_base;
124     int used; /* non zero if used */
125     struct image_info *info;
126     struct linux_binprm *bprm;
127 
128     struct emulated_sigtable sync_signal;
129     struct emulated_sigtable sigtab[TARGET_NSIG];
130     /* This thread's signal mask, as requested by the guest program.
131      * The actual signal mask of this thread may differ:
132      *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
133      *  + sometimes we block all signals to avoid races
134      */
135     sigset_t signal_mask;
136     /* The signal mask imposed by a guest sigsuspend syscall, if we are
137      * currently in the middle of such a syscall
138      */
139     sigset_t sigsuspend_mask;
140     /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
141     int in_sigsuspend;
142 
143     /* Nonzero if process_pending_signals() needs to do something (either
144      * handle a pending signal or unblock signals).
145      * This flag is written from a signal handler so should be accessed via
146      * the atomic_read() and atomic_write() functions. (It is not accessed
147      * from multiple threads.)
148      */
149     int signal_pending;
150 
151 } __attribute__((aligned(16))) TaskState;
152 
153 extern char *exec_path;
154 void init_task_state(TaskState *ts);
155 void task_settid(TaskState *);
156 void stop_all_tasks(void);
157 extern const char *qemu_uname_release;
158 extern unsigned long mmap_min_addr;
159 
160 /* ??? See if we can avoid exposing so much of the loader internals.  */
161 
162 /* Read a good amount of data initially, to hopefully get all the
163    program headers loaded.  */
164 #define BPRM_BUF_SIZE  1024
165 
166 /*
167  * This structure is used to hold the arguments that are
168  * used when loading binaries.
169  */
170 struct linux_binprm {
171         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
172         abi_ulong p;
173 	int fd;
174         int e_uid, e_gid;
175         int argc, envc;
176         char **argv;
177         char **envp;
178         char * filename;        /* Name of binary */
179         int (*core_dump)(int, const CPUArchState *); /* coredump routine */
180 };
181 
182 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
183 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
184                               abi_ulong stringp, int push_ptr);
185 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
186              struct target_pt_regs * regs, struct image_info *infop,
187              struct linux_binprm *);
188 
189 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
190 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
191 
192 abi_long memcpy_to_target(abi_ulong dest, const void *src,
193                           unsigned long len);
194 void target_set_brk(abi_ulong new_brk);
195 abi_long do_brk(abi_ulong new_brk);
196 void syscall_init(void);
197 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
198                     abi_long arg2, abi_long arg3, abi_long arg4,
199                     abi_long arg5, abi_long arg6, abi_long arg7,
200                     abi_long arg8);
201 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
202 extern __thread CPUState *thread_cpu;
203 void cpu_loop(CPUArchState *env);
204 const char *target_strerror(int err);
205 int get_osversion(void);
206 void init_qemu_uname_release(void);
207 void fork_start(void);
208 void fork_end(int child);
209 
210 /* Creates the initial guest address space in the host memory space using
211  * the given host start address hint and size.  The guest_start parameter
212  * specifies the start address of the guest space.  guest_base will be the
213  * difference between the host start address computed by this function and
214  * guest_start.  If fixed is specified, then the mapped address space must
215  * start at host_start.  The real start address of the mapped memory space is
216  * returned or -1 if there was an error.
217  */
218 unsigned long init_guest_space(unsigned long host_start,
219                                unsigned long host_size,
220                                unsigned long guest_start,
221                                bool fixed);
222 
223 #include "qemu/log.h"
224 
225 /* safe_syscall.S */
226 
227 /**
228  * safe_syscall:
229  * @int number: number of system call to make
230  * ...: arguments to the system call
231  *
232  * Call a system call if guest signal not pending.
233  * This has the same API as the libc syscall() function, except that it
234  * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
235  *
236  * Returns: the system call result, or -1 with an error code in errno
237  * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
238  * with any of the host errno values.)
239  */
240 
241 /* A guide to using safe_syscall() to handle interactions between guest
242  * syscalls and guest signals:
243  *
244  * Guest syscalls come in two flavours:
245  *
246  * (1) Non-interruptible syscalls
247  *
248  * These are guest syscalls that never get interrupted by signals and
249  * so never return EINTR. They can be implemented straightforwardly in
250  * QEMU: just make sure that if the implementation code has to make any
251  * blocking calls that those calls are retried if they return EINTR.
252  * It's also OK to implement these with safe_syscall, though it will be
253  * a little less efficient if a signal is delivered at the 'wrong' moment.
254  *
255  * Some non-interruptible syscalls need to be handled using block_signals()
256  * to block signals for the duration of the syscall. This mainly applies
257  * to code which needs to modify the data structures used by the
258  * host_signal_handler() function and the functions it calls, including
259  * all syscalls which change the thread's signal mask.
260  *
261  * (2) Interruptible syscalls
262  *
263  * These are guest syscalls that can be interrupted by signals and
264  * for which we need to either return EINTR or arrange for the guest
265  * syscall to be restarted. This category includes both syscalls which
266  * always restart (and in the kernel return -ERESTARTNOINTR), ones
267  * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
268  * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
269  * if the handler was registered with SA_RESTART (kernel returns
270  * -ERESTARTSYS). System calls which are only interruptible in some
271  * situations (like 'open') also need to be handled this way.
272  *
273  * Here it is important that the host syscall is made
274  * via this safe_syscall() function, and *not* via the host libc.
275  * If the host libc is used then the implementation will appear to work
276  * most of the time, but there will be a race condition where a
277  * signal could arrive just before we make the host syscall inside libc,
278  * and then then guest syscall will not correctly be interrupted.
279  * Instead the implementation of the guest syscall can use the safe_syscall
280  * function but otherwise just return the result or errno in the usual
281  * way; the main loop code will take care of restarting the syscall
282  * if appropriate.
283  *
284  * (If the implementation needs to make multiple host syscalls this is
285  * OK; any which might really block must be via safe_syscall(); for those
286  * which are only technically blocking (ie which we know in practice won't
287  * stay in the host kernel indefinitely) it's OK to use libc if necessary.
288  * You must be able to cope with backing out correctly if some safe_syscall
289  * you make in the implementation returns either -TARGET_ERESTARTSYS or
290  * EINTR though.)
291  *
292  * block_signals() cannot be used for interruptible syscalls.
293  *
294  *
295  * How and why the safe_syscall implementation works:
296  *
297  * The basic setup is that we make the host syscall via a known
298  * section of host native assembly. If a signal occurs, our signal
299  * handler checks the interrupted host PC against the addresse of that
300  * known section. If the PC is before or at the address of the syscall
301  * instruction then we change the PC to point at a "return
302  * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
303  * (causing the safe_syscall() call to immediately return that value).
304  * Then in the main.c loop if we see this magic return value we adjust
305  * the guest PC to wind it back to before the system call, and invoke
306  * the guest signal handler as usual.
307  *
308  * This winding-back will happen in two cases:
309  * (1) signal came in just before we took the host syscall (a race);
310  *   in this case we'll take the guest signal and have another go
311  *   at the syscall afterwards, and this is indistinguishable for the
312  *   guest from the timing having been different such that the guest
313  *   signal really did win the race
314  * (2) signal came in while the host syscall was blocking, and the
315  *   host kernel decided the syscall should be restarted;
316  *   in this case we want to restart the guest syscall also, and so
317  *   rewinding is the right thing. (Note that "restart" semantics mean
318  *   "first call the signal handler, then reattempt the syscall".)
319  * The other situation to consider is when a signal came in while the
320  * host syscall was blocking, and the host kernel decided that the syscall
321  * should not be restarted; in this case QEMU's host signal handler will
322  * be invoked with the PC pointing just after the syscall instruction,
323  * with registers indicating an EINTR return; the special code in the
324  * handler will not kick in, and we will return EINTR to the guest as
325  * we should.
326  *
327  * Notice that we can leave the host kernel to make the decision for
328  * us about whether to do a restart of the syscall or not; we do not
329  * need to check SA_RESTART flags in QEMU or distinguish the various
330  * kinds of restartability.
331  */
332 #ifdef HAVE_SAFE_SYSCALL
333 /* The core part of this function is implemented in assembly */
334 extern long safe_syscall_base(int *pending, long number, ...);
335 
336 #define safe_syscall(...)                                               \
337     ({                                                                  \
338         long ret_;                                                      \
339         int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
340         ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
341         if (is_error(ret_)) {                                           \
342             errno = -ret_;                                              \
343             ret_ = -1;                                                  \
344         }                                                               \
345         ret_;                                                           \
346     })
347 
348 #else
349 
350 /* Fallback for architectures which don't yet provide a safe-syscall assembly
351  * fragment; note that this is racy!
352  * This should go away when all host architectures have been updated.
353  */
354 #define safe_syscall syscall
355 
356 #endif
357 
358 /* syscall.c */
359 int host_to_target_waitstatus(int status);
360 
361 /* strace.c */
362 void print_syscall(int num,
363                    abi_long arg1, abi_long arg2, abi_long arg3,
364                    abi_long arg4, abi_long arg5, abi_long arg6);
365 void print_syscall_ret(int num, abi_long arg1);
366 /**
367  * print_taken_signal:
368  * @target_signum: target signal being taken
369  * @tinfo: target_siginfo_t which will be passed to the guest for the signal
370  *
371  * Print strace output indicating that this signal is being taken by the guest,
372  * in a format similar to:
373  * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
374  */
375 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
376 extern int do_strace;
377 
378 /* signal.c */
379 void process_pending_signals(CPUArchState *cpu_env);
380 void signal_init(void);
381 int queue_signal(CPUArchState *env, int sig, int si_type,
382                  target_siginfo_t *info);
383 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
384 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
385 int target_to_host_signal(int sig);
386 int host_to_target_signal(int sig);
387 long do_sigreturn(CPUArchState *env);
388 long do_rt_sigreturn(CPUArchState *env);
389 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
390 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
391 /**
392  * block_signals: block all signals while handling this guest syscall
393  *
394  * Block all signals, and arrange that the signal mask is returned to
395  * its correct value for the guest before we resume execution of guest code.
396  * If this function returns non-zero, then the caller should immediately
397  * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
398  * signal and restart execution of the syscall.
399  * If block_signals() returns zero, then the caller can continue with
400  * emulation of the system call knowing that no signals can be taken
401  * (and therefore that no race conditions will result).
402  * This should only be called once, because if it is called a second time
403  * it will always return non-zero. (Think of it like a mutex that can't
404  * be recursively locked.)
405  * Signals will be unblocked again by process_pending_signals().
406  *
407  * Return value: non-zero if there was a pending signal, zero if not.
408  */
409 int block_signals(void); /* Returns non zero if signal pending */
410 
411 #ifdef TARGET_I386
412 /* vm86.c */
413 void save_v86_state(CPUX86State *env);
414 void handle_vm86_trap(CPUX86State *env, int trapno);
415 void handle_vm86_fault(CPUX86State *env);
416 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
417 #elif defined(TARGET_SPARC64)
418 void sparc64_set_context(CPUSPARCState *env);
419 void sparc64_get_context(CPUSPARCState *env);
420 #endif
421 
422 /* mmap.c */
423 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
424 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
425                      int flags, int fd, abi_ulong offset);
426 int target_munmap(abi_ulong start, abi_ulong len);
427 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
428                        abi_ulong new_size, unsigned long flags,
429                        abi_ulong new_addr);
430 int target_msync(abi_ulong start, abi_ulong len, int flags);
431 extern unsigned long last_brk;
432 extern abi_ulong mmap_next_start;
433 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
434 void mmap_fork_start(void);
435 void mmap_fork_end(int child);
436 
437 /* main.c */
438 extern unsigned long guest_stack_size;
439 
440 /* user access */
441 
442 #define VERIFY_READ 0
443 #define VERIFY_WRITE 1 /* implies read access */
444 
445 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
446 {
447     return page_check_range((target_ulong)addr, size,
448                             (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
449 }
450 
451 /* NOTE __get_user and __put_user use host pointers and don't check access.
452    These are usually used to access struct data members once the struct has
453    been locked - usually with lock_user_struct.  */
454 
455 /* Tricky points:
456    - Use __builtin_choose_expr to avoid type promotion from ?:,
457    - Invalid sizes result in a compile time error stemming from
458      the fact that abort has no parameters.
459    - It's easier to use the endian-specific unaligned load/store
460      functions than host-endian unaligned load/store plus tswapN.  */
461 
462 #define __put_user_e(x, hptr, e)                                        \
463   (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
464    __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
465    __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
466    __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
467      ((hptr), (x)), (void)0)
468 
469 #define __get_user_e(x, hptr, e)                                        \
470   ((x) = (typeof(*hptr))(                                               \
471    __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
472    __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
473    __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
474    __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
475      (hptr)), (void)0)
476 
477 #ifdef TARGET_WORDS_BIGENDIAN
478 # define __put_user(x, hptr)  __put_user_e(x, hptr, be)
479 # define __get_user(x, hptr)  __get_user_e(x, hptr, be)
480 #else
481 # define __put_user(x, hptr)  __put_user_e(x, hptr, le)
482 # define __get_user(x, hptr)  __get_user_e(x, hptr, le)
483 #endif
484 
485 /* put_user()/get_user() take a guest address and check access */
486 /* These are usually used to access an atomic data type, such as an int,
487  * that has been passed by address.  These internally perform locking
488  * and unlocking on the data type.
489  */
490 #define put_user(x, gaddr, target_type)					\
491 ({									\
492     abi_ulong __gaddr = (gaddr);					\
493     target_type *__hptr;						\
494     abi_long __ret = 0;							\
495     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
496         __put_user((x), __hptr);				\
497         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
498     } else								\
499         __ret = -TARGET_EFAULT;						\
500     __ret;								\
501 })
502 
503 #define get_user(x, gaddr, target_type)					\
504 ({									\
505     abi_ulong __gaddr = (gaddr);					\
506     target_type *__hptr;						\
507     abi_long __ret = 0;							\
508     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
509         __get_user((x), __hptr);				\
510         unlock_user(__hptr, __gaddr, 0);				\
511     } else {								\
512         /* avoid warning */						\
513         (x) = 0;							\
514         __ret = -TARGET_EFAULT;						\
515     }									\
516     __ret;								\
517 })
518 
519 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
520 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
521 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
522 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
523 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
524 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
525 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
526 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
527 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
528 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
529 
530 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
531 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
532 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
533 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
534 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
535 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
536 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
537 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
538 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
539 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
540 
541 /* copy_from_user() and copy_to_user() are usually used to copy data
542  * buffers between the target and host.  These internally perform
543  * locking/unlocking of the memory.
544  */
545 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
546 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
547 
548 /* Functions for accessing guest memory.  The tget and tput functions
549    read/write single values, byteswapping as necessary.  The lock_user function
550    gets a pointer to a contiguous area of guest memory, but does not perform
551    any byteswapping.  lock_user may return either a pointer to the guest
552    memory, or a temporary buffer.  */
553 
554 /* Lock an area of guest memory into the host.  If copy is true then the
555    host area will have the same contents as the guest.  */
556 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
557 {
558     if (!access_ok(type, guest_addr, len))
559         return NULL;
560 #ifdef DEBUG_REMAP
561     {
562         void *addr;
563         addr = g_malloc(len);
564         if (copy)
565             memcpy(addr, g2h(guest_addr), len);
566         else
567             memset(addr, 0, len);
568         return addr;
569     }
570 #else
571     return g2h(guest_addr);
572 #endif
573 }
574 
575 /* Unlock an area of guest memory.  The first LEN bytes must be
576    flushed back to guest memory. host_ptr = NULL is explicitly
577    allowed and does nothing. */
578 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
579                                long len)
580 {
581 
582 #ifdef DEBUG_REMAP
583     if (!host_ptr)
584         return;
585     if (host_ptr == g2h(guest_addr))
586         return;
587     if (len > 0)
588         memcpy(g2h(guest_addr), host_ptr, len);
589     g_free(host_ptr);
590 #endif
591 }
592 
593 /* Return the length of a string in target memory or -TARGET_EFAULT if
594    access error. */
595 abi_long target_strlen(abi_ulong gaddr);
596 
597 /* Like lock_user but for null terminated strings.  */
598 static inline void *lock_user_string(abi_ulong guest_addr)
599 {
600     abi_long len;
601     len = target_strlen(guest_addr);
602     if (len < 0)
603         return NULL;
604     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
605 }
606 
607 /* Helper macros for locking/unlocking a target struct.  */
608 #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
609     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
610 #define unlock_user_struct(host_ptr, guest_addr, copy)		\
611     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
612 
613 #include <pthread.h>
614 
615 /* Include target-specific struct and function definitions;
616  * they may need access to the target-independent structures
617  * above, so include them last.
618  */
619 #include "target_cpu.h"
620 #include "target_signal.h"
621 #include "target_structs.h"
622 
623 #endif /* QEMU_H */
624