1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "hostdep.h" 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #endif /* DEBUG_REMAP */ 12 13 #include "exec/user/abitypes.h" 14 15 #include "exec/user/thunk.h" 16 #include "syscall_defs.h" 17 #include "target_syscall.h" 18 #include "exec/gdbstub.h" 19 #include "qemu/queue.h" 20 21 /* This is the size of the host kernel's sigset_t, needed where we make 22 * direct system calls that take a sigset_t pointer and a size. 23 */ 24 #define SIGSET_T_SIZE (_NSIG / 8) 25 26 /* This struct is used to hold certain information about the image. 27 * Basically, it replicates in user space what would be certain 28 * task_struct fields in the kernel 29 */ 30 struct image_info { 31 abi_ulong load_bias; 32 abi_ulong load_addr; 33 abi_ulong start_code; 34 abi_ulong end_code; 35 abi_ulong start_data; 36 abi_ulong end_data; 37 abi_ulong start_brk; 38 abi_ulong brk; 39 abi_ulong start_mmap; 40 abi_ulong start_stack; 41 abi_ulong stack_limit; 42 abi_ulong entry; 43 abi_ulong code_offset; 44 abi_ulong data_offset; 45 abi_ulong saved_auxv; 46 abi_ulong auxv_len; 47 abi_ulong arg_start; 48 abi_ulong arg_end; 49 abi_ulong arg_strings; 50 abi_ulong env_strings; 51 abi_ulong file_string; 52 uint32_t elf_flags; 53 int personality; 54 #ifdef CONFIG_USE_FDPIC 55 abi_ulong loadmap_addr; 56 uint16_t nsegs; 57 void *loadsegs; 58 abi_ulong pt_dynamic_addr; 59 struct image_info *other_info; 60 #endif 61 }; 62 63 #ifdef TARGET_I386 64 /* Information about the current linux thread */ 65 struct vm86_saved_state { 66 uint32_t eax; /* return code */ 67 uint32_t ebx; 68 uint32_t ecx; 69 uint32_t edx; 70 uint32_t esi; 71 uint32_t edi; 72 uint32_t ebp; 73 uint32_t esp; 74 uint32_t eflags; 75 uint32_t eip; 76 uint16_t cs, ss, ds, es, fs, gs; 77 }; 78 #endif 79 80 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 81 /* FPU emulator */ 82 #include "nwfpe/fpa11.h" 83 #endif 84 85 #define MAX_SIGQUEUE_SIZE 1024 86 87 struct emulated_sigtable { 88 int pending; /* true if signal is pending */ 89 target_siginfo_t info; 90 }; 91 92 /* NOTE: we force a big alignment so that the stack stored after is 93 aligned too */ 94 typedef struct TaskState { 95 pid_t ts_tid; /* tid (or pid) of this task */ 96 #ifdef TARGET_ARM 97 # ifdef TARGET_ABI32 98 /* FPA state */ 99 FPA11 fpa; 100 # endif 101 int swi_errno; 102 #endif 103 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 104 abi_ulong target_v86; 105 struct vm86_saved_state vm86_saved_regs; 106 struct target_vm86plus_struct vm86plus; 107 uint32_t v86flags; 108 uint32_t v86mask; 109 #endif 110 abi_ulong child_tidptr; 111 #ifdef TARGET_M68K 112 int sim_syscalls; 113 abi_ulong tp_value; 114 #endif 115 #if defined(TARGET_ARM) || defined(TARGET_M68K) 116 /* Extra fields for semihosted binaries. */ 117 abi_ulong heap_base; 118 abi_ulong heap_limit; 119 #endif 120 abi_ulong stack_base; 121 int used; /* non zero if used */ 122 struct image_info *info; 123 struct linux_binprm *bprm; 124 125 struct emulated_sigtable sync_signal; 126 struct emulated_sigtable sigtab[TARGET_NSIG]; 127 /* This thread's signal mask, as requested by the guest program. 128 * The actual signal mask of this thread may differ: 129 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 130 * + sometimes we block all signals to avoid races 131 */ 132 sigset_t signal_mask; 133 /* The signal mask imposed by a guest sigsuspend syscall, if we are 134 * currently in the middle of such a syscall 135 */ 136 sigset_t sigsuspend_mask; 137 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 138 int in_sigsuspend; 139 140 /* Nonzero if process_pending_signals() needs to do something (either 141 * handle a pending signal or unblock signals). 142 * This flag is written from a signal handler so should be accessed via 143 * the atomic_read() and atomic_write() functions. (It is not accessed 144 * from multiple threads.) 145 */ 146 int signal_pending; 147 148 } __attribute__((aligned(16))) TaskState; 149 150 extern char *exec_path; 151 void init_task_state(TaskState *ts); 152 void task_settid(TaskState *); 153 void stop_all_tasks(void); 154 extern const char *qemu_uname_release; 155 extern unsigned long mmap_min_addr; 156 157 /* ??? See if we can avoid exposing so much of the loader internals. */ 158 159 /* Read a good amount of data initially, to hopefully get all the 160 program headers loaded. */ 161 #define BPRM_BUF_SIZE 1024 162 163 /* 164 * This structure is used to hold the arguments that are 165 * used when loading binaries. 166 */ 167 struct linux_binprm { 168 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 169 abi_ulong p; 170 int fd; 171 int e_uid, e_gid; 172 int argc, envc; 173 char **argv; 174 char **envp; 175 char * filename; /* Name of binary */ 176 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 177 }; 178 179 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 180 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 181 abi_ulong stringp, int push_ptr); 182 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 183 struct target_pt_regs * regs, struct image_info *infop, 184 struct linux_binprm *); 185 186 uint32_t get_elf_eflags(int fd); 187 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 188 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 189 190 abi_long memcpy_to_target(abi_ulong dest, const void *src, 191 unsigned long len); 192 void target_set_brk(abi_ulong new_brk); 193 abi_long do_brk(abi_ulong new_brk); 194 void syscall_init(void); 195 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 196 abi_long arg2, abi_long arg3, abi_long arg4, 197 abi_long arg5, abi_long arg6, abi_long arg7, 198 abi_long arg8); 199 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 200 extern __thread CPUState *thread_cpu; 201 void cpu_loop(CPUArchState *env); 202 const char *target_strerror(int err); 203 int get_osversion(void); 204 void init_qemu_uname_release(void); 205 void fork_start(void); 206 void fork_end(int child); 207 208 /* Creates the initial guest address space in the host memory space using 209 * the given host start address hint and size. The guest_start parameter 210 * specifies the start address of the guest space. guest_base will be the 211 * difference between the host start address computed by this function and 212 * guest_start. If fixed is specified, then the mapped address space must 213 * start at host_start. The real start address of the mapped memory space is 214 * returned or -1 if there was an error. 215 */ 216 unsigned long init_guest_space(unsigned long host_start, 217 unsigned long host_size, 218 unsigned long guest_start, 219 bool fixed); 220 221 #include "qemu/log.h" 222 223 /* safe_syscall.S */ 224 225 /** 226 * safe_syscall: 227 * @int number: number of system call to make 228 * ...: arguments to the system call 229 * 230 * Call a system call if guest signal not pending. 231 * This has the same API as the libc syscall() function, except that it 232 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. 233 * 234 * Returns: the system call result, or -1 with an error code in errno 235 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing 236 * with any of the host errno values.) 237 */ 238 239 /* A guide to using safe_syscall() to handle interactions between guest 240 * syscalls and guest signals: 241 * 242 * Guest syscalls come in two flavours: 243 * 244 * (1) Non-interruptible syscalls 245 * 246 * These are guest syscalls that never get interrupted by signals and 247 * so never return EINTR. They can be implemented straightforwardly in 248 * QEMU: just make sure that if the implementation code has to make any 249 * blocking calls that those calls are retried if they return EINTR. 250 * It's also OK to implement these with safe_syscall, though it will be 251 * a little less efficient if a signal is delivered at the 'wrong' moment. 252 * 253 * Some non-interruptible syscalls need to be handled using block_signals() 254 * to block signals for the duration of the syscall. This mainly applies 255 * to code which needs to modify the data structures used by the 256 * host_signal_handler() function and the functions it calls, including 257 * all syscalls which change the thread's signal mask. 258 * 259 * (2) Interruptible syscalls 260 * 261 * These are guest syscalls that can be interrupted by signals and 262 * for which we need to either return EINTR or arrange for the guest 263 * syscall to be restarted. This category includes both syscalls which 264 * always restart (and in the kernel return -ERESTARTNOINTR), ones 265 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND 266 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart 267 * if the handler was registered with SA_RESTART (kernel returns 268 * -ERESTARTSYS). System calls which are only interruptible in some 269 * situations (like 'open') also need to be handled this way. 270 * 271 * Here it is important that the host syscall is made 272 * via this safe_syscall() function, and *not* via the host libc. 273 * If the host libc is used then the implementation will appear to work 274 * most of the time, but there will be a race condition where a 275 * signal could arrive just before we make the host syscall inside libc, 276 * and then then guest syscall will not correctly be interrupted. 277 * Instead the implementation of the guest syscall can use the safe_syscall 278 * function but otherwise just return the result or errno in the usual 279 * way; the main loop code will take care of restarting the syscall 280 * if appropriate. 281 * 282 * (If the implementation needs to make multiple host syscalls this is 283 * OK; any which might really block must be via safe_syscall(); for those 284 * which are only technically blocking (ie which we know in practice won't 285 * stay in the host kernel indefinitely) it's OK to use libc if necessary. 286 * You must be able to cope with backing out correctly if some safe_syscall 287 * you make in the implementation returns either -TARGET_ERESTARTSYS or 288 * EINTR though.) 289 * 290 * block_signals() cannot be used for interruptible syscalls. 291 * 292 * 293 * How and why the safe_syscall implementation works: 294 * 295 * The basic setup is that we make the host syscall via a known 296 * section of host native assembly. If a signal occurs, our signal 297 * handler checks the interrupted host PC against the addresse of that 298 * known section. If the PC is before or at the address of the syscall 299 * instruction then we change the PC to point at a "return 300 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler 301 * (causing the safe_syscall() call to immediately return that value). 302 * Then in the main.c loop if we see this magic return value we adjust 303 * the guest PC to wind it back to before the system call, and invoke 304 * the guest signal handler as usual. 305 * 306 * This winding-back will happen in two cases: 307 * (1) signal came in just before we took the host syscall (a race); 308 * in this case we'll take the guest signal and have another go 309 * at the syscall afterwards, and this is indistinguishable for the 310 * guest from the timing having been different such that the guest 311 * signal really did win the race 312 * (2) signal came in while the host syscall was blocking, and the 313 * host kernel decided the syscall should be restarted; 314 * in this case we want to restart the guest syscall also, and so 315 * rewinding is the right thing. (Note that "restart" semantics mean 316 * "first call the signal handler, then reattempt the syscall".) 317 * The other situation to consider is when a signal came in while the 318 * host syscall was blocking, and the host kernel decided that the syscall 319 * should not be restarted; in this case QEMU's host signal handler will 320 * be invoked with the PC pointing just after the syscall instruction, 321 * with registers indicating an EINTR return; the special code in the 322 * handler will not kick in, and we will return EINTR to the guest as 323 * we should. 324 * 325 * Notice that we can leave the host kernel to make the decision for 326 * us about whether to do a restart of the syscall or not; we do not 327 * need to check SA_RESTART flags in QEMU or distinguish the various 328 * kinds of restartability. 329 */ 330 #ifdef HAVE_SAFE_SYSCALL 331 /* The core part of this function is implemented in assembly */ 332 extern long safe_syscall_base(int *pending, long number, ...); 333 334 #define safe_syscall(...) \ 335 ({ \ 336 long ret_; \ 337 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ 338 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ 339 if (is_error(ret_)) { \ 340 errno = -ret_; \ 341 ret_ = -1; \ 342 } \ 343 ret_; \ 344 }) 345 346 #else 347 348 /* Fallback for architectures which don't yet provide a safe-syscall assembly 349 * fragment; note that this is racy! 350 * This should go away when all host architectures have been updated. 351 */ 352 #define safe_syscall syscall 353 354 #endif 355 356 /* syscall.c */ 357 int host_to_target_waitstatus(int status); 358 359 /* strace.c */ 360 void print_syscall(int num, 361 abi_long arg1, abi_long arg2, abi_long arg3, 362 abi_long arg4, abi_long arg5, abi_long arg6); 363 void print_syscall_ret(int num, abi_long arg1); 364 /** 365 * print_taken_signal: 366 * @target_signum: target signal being taken 367 * @tinfo: target_siginfo_t which will be passed to the guest for the signal 368 * 369 * Print strace output indicating that this signal is being taken by the guest, 370 * in a format similar to: 371 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- 372 */ 373 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); 374 extern int do_strace; 375 376 /* signal.c */ 377 void process_pending_signals(CPUArchState *cpu_env); 378 void signal_init(void); 379 int queue_signal(CPUArchState *env, int sig, int si_type, 380 target_siginfo_t *info); 381 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 382 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 383 int target_to_host_signal(int sig); 384 int host_to_target_signal(int sig); 385 long do_sigreturn(CPUArchState *env); 386 long do_rt_sigreturn(CPUArchState *env); 387 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 388 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 389 /** 390 * block_signals: block all signals while handling this guest syscall 391 * 392 * Block all signals, and arrange that the signal mask is returned to 393 * its correct value for the guest before we resume execution of guest code. 394 * If this function returns non-zero, then the caller should immediately 395 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending 396 * signal and restart execution of the syscall. 397 * If block_signals() returns zero, then the caller can continue with 398 * emulation of the system call knowing that no signals can be taken 399 * (and therefore that no race conditions will result). 400 * This should only be called once, because if it is called a second time 401 * it will always return non-zero. (Think of it like a mutex that can't 402 * be recursively locked.) 403 * Signals will be unblocked again by process_pending_signals(). 404 * 405 * Return value: non-zero if there was a pending signal, zero if not. 406 */ 407 int block_signals(void); /* Returns non zero if signal pending */ 408 409 #ifdef TARGET_I386 410 /* vm86.c */ 411 void save_v86_state(CPUX86State *env); 412 void handle_vm86_trap(CPUX86State *env, int trapno); 413 void handle_vm86_fault(CPUX86State *env); 414 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 415 #elif defined(TARGET_SPARC64) 416 void sparc64_set_context(CPUSPARCState *env); 417 void sparc64_get_context(CPUSPARCState *env); 418 #endif 419 420 /* mmap.c */ 421 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 422 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 423 int flags, int fd, abi_ulong offset); 424 int target_munmap(abi_ulong start, abi_ulong len); 425 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 426 abi_ulong new_size, unsigned long flags, 427 abi_ulong new_addr); 428 extern unsigned long last_brk; 429 extern abi_ulong mmap_next_start; 430 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 431 void mmap_fork_start(void); 432 void mmap_fork_end(int child); 433 434 /* main.c */ 435 extern unsigned long guest_stack_size; 436 437 /* user access */ 438 439 #define VERIFY_READ 0 440 #define VERIFY_WRITE 1 /* implies read access */ 441 442 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 443 { 444 return page_check_range((target_ulong)addr, size, 445 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 446 } 447 448 /* NOTE __get_user and __put_user use host pointers and don't check access. 449 These are usually used to access struct data members once the struct has 450 been locked - usually with lock_user_struct. */ 451 452 /* Tricky points: 453 - Use __builtin_choose_expr to avoid type promotion from ?:, 454 - Invalid sizes result in a compile time error stemming from 455 the fact that abort has no parameters. 456 - It's easier to use the endian-specific unaligned load/store 457 functions than host-endian unaligned load/store plus tswapN. */ 458 459 #define __put_user_e(x, hptr, e) \ 460 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 461 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 462 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 463 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 464 ((hptr), (x)), (void)0) 465 466 #define __get_user_e(x, hptr, e) \ 467 ((x) = (typeof(*hptr))( \ 468 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 469 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 470 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 471 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 472 (hptr)), (void)0) 473 474 #ifdef TARGET_WORDS_BIGENDIAN 475 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 476 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 477 #else 478 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 479 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 480 #endif 481 482 /* put_user()/get_user() take a guest address and check access */ 483 /* These are usually used to access an atomic data type, such as an int, 484 * that has been passed by address. These internally perform locking 485 * and unlocking on the data type. 486 */ 487 #define put_user(x, gaddr, target_type) \ 488 ({ \ 489 abi_ulong __gaddr = (gaddr); \ 490 target_type *__hptr; \ 491 abi_long __ret = 0; \ 492 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 493 __put_user((x), __hptr); \ 494 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 495 } else \ 496 __ret = -TARGET_EFAULT; \ 497 __ret; \ 498 }) 499 500 #define get_user(x, gaddr, target_type) \ 501 ({ \ 502 abi_ulong __gaddr = (gaddr); \ 503 target_type *__hptr; \ 504 abi_long __ret = 0; \ 505 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 506 __get_user((x), __hptr); \ 507 unlock_user(__hptr, __gaddr, 0); \ 508 } else { \ 509 /* avoid warning */ \ 510 (x) = 0; \ 511 __ret = -TARGET_EFAULT; \ 512 } \ 513 __ret; \ 514 }) 515 516 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 517 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 518 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 519 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 520 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 521 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 522 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 523 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 524 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 525 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 526 527 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 528 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 529 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 530 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 531 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 532 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 533 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 534 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 535 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 536 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 537 538 /* copy_from_user() and copy_to_user() are usually used to copy data 539 * buffers between the target and host. These internally perform 540 * locking/unlocking of the memory. 541 */ 542 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 543 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 544 545 /* Functions for accessing guest memory. The tget and tput functions 546 read/write single values, byteswapping as necessary. The lock_user function 547 gets a pointer to a contiguous area of guest memory, but does not perform 548 any byteswapping. lock_user may return either a pointer to the guest 549 memory, or a temporary buffer. */ 550 551 /* Lock an area of guest memory into the host. If copy is true then the 552 host area will have the same contents as the guest. */ 553 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 554 { 555 if (!access_ok(type, guest_addr, len)) 556 return NULL; 557 #ifdef DEBUG_REMAP 558 { 559 void *addr; 560 addr = g_malloc(len); 561 if (copy) 562 memcpy(addr, g2h(guest_addr), len); 563 else 564 memset(addr, 0, len); 565 return addr; 566 } 567 #else 568 return g2h(guest_addr); 569 #endif 570 } 571 572 /* Unlock an area of guest memory. The first LEN bytes must be 573 flushed back to guest memory. host_ptr = NULL is explicitly 574 allowed and does nothing. */ 575 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 576 long len) 577 { 578 579 #ifdef DEBUG_REMAP 580 if (!host_ptr) 581 return; 582 if (host_ptr == g2h(guest_addr)) 583 return; 584 if (len > 0) 585 memcpy(g2h(guest_addr), host_ptr, len); 586 g_free(host_ptr); 587 #endif 588 } 589 590 /* Return the length of a string in target memory or -TARGET_EFAULT if 591 access error. */ 592 abi_long target_strlen(abi_ulong gaddr); 593 594 /* Like lock_user but for null terminated strings. */ 595 static inline void *lock_user_string(abi_ulong guest_addr) 596 { 597 abi_long len; 598 len = target_strlen(guest_addr); 599 if (len < 0) 600 return NULL; 601 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 602 } 603 604 /* Helper macros for locking/unlocking a target struct. */ 605 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 606 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 607 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 608 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 609 610 #include <pthread.h> 611 612 /* Include target-specific struct and function definitions; 613 * they may need access to the target-independent structures 614 * above, so include them last. 615 */ 616 #include "target_cpu.h" 617 #include "target_signal.h" 618 #include "target_structs.h" 619 620 #endif /* QEMU_H */ 621