1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include <signal.h> 5 #include <string.h> 6 7 #include "cpu.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #include <stdlib.h> 12 #endif /* DEBUG_REMAP */ 13 14 #include "qemu-types.h" 15 16 #include "thunk.h" 17 #include "syscall_defs.h" 18 #include "syscall.h" 19 #include "target_signal.h" 20 #include "gdbstub.h" 21 #include "qemu-queue.h" 22 23 #if defined(CONFIG_USE_NPTL) 24 #define THREAD __thread 25 #else 26 #define THREAD 27 #endif 28 29 /* This struct is used to hold certain information about the image. 30 * Basically, it replicates in user space what would be certain 31 * task_struct fields in the kernel 32 */ 33 struct image_info { 34 abi_ulong load_bias; 35 abi_ulong load_addr; 36 abi_ulong start_code; 37 abi_ulong end_code; 38 abi_ulong start_data; 39 abi_ulong end_data; 40 abi_ulong start_brk; 41 abi_ulong brk; 42 abi_ulong start_mmap; 43 abi_ulong mmap; 44 abi_ulong rss; 45 abi_ulong start_stack; 46 abi_ulong stack_limit; 47 abi_ulong entry; 48 abi_ulong code_offset; 49 abi_ulong data_offset; 50 abi_ulong saved_auxv; 51 abi_ulong arg_start; 52 abi_ulong arg_end; 53 int personality; 54 }; 55 56 #ifdef TARGET_I386 57 /* Information about the current linux thread */ 58 struct vm86_saved_state { 59 uint32_t eax; /* return code */ 60 uint32_t ebx; 61 uint32_t ecx; 62 uint32_t edx; 63 uint32_t esi; 64 uint32_t edi; 65 uint32_t ebp; 66 uint32_t esp; 67 uint32_t eflags; 68 uint32_t eip; 69 uint16_t cs, ss, ds, es, fs, gs; 70 }; 71 #endif 72 73 #ifdef TARGET_ARM 74 /* FPU emulator */ 75 #include "nwfpe/fpa11.h" 76 #endif 77 78 #define MAX_SIGQUEUE_SIZE 1024 79 80 struct sigqueue { 81 struct sigqueue *next; 82 target_siginfo_t info; 83 }; 84 85 struct emulated_sigtable { 86 int pending; /* true if signal is pending */ 87 struct sigqueue *first; 88 struct sigqueue info; /* in order to always have memory for the 89 first signal, we put it here */ 90 }; 91 92 /* NOTE: we force a big alignment so that the stack stored after is 93 aligned too */ 94 typedef struct TaskState { 95 pid_t ts_tid; /* tid (or pid) of this task */ 96 #ifdef TARGET_ARM 97 /* FPA state */ 98 FPA11 fpa; 99 int swi_errno; 100 #endif 101 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 102 abi_ulong target_v86; 103 struct vm86_saved_state vm86_saved_regs; 104 struct target_vm86plus_struct vm86plus; 105 uint32_t v86flags; 106 uint32_t v86mask; 107 #endif 108 #ifdef CONFIG_USE_NPTL 109 abi_ulong child_tidptr; 110 #endif 111 #ifdef TARGET_M68K 112 int sim_syscalls; 113 #endif 114 #if defined(TARGET_ARM) || defined(TARGET_M68K) 115 /* Extra fields for semihosted binaries. */ 116 uint32_t stack_base; 117 uint32_t heap_base; 118 uint32_t heap_limit; 119 #endif 120 int used; /* non zero if used */ 121 struct image_info *info; 122 struct linux_binprm *bprm; 123 124 struct emulated_sigtable sigtab[TARGET_NSIG]; 125 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 126 struct sigqueue *first_free; /* first free siginfo queue entry */ 127 int signal_pending; /* non zero if a signal may be pending */ 128 } __attribute__((aligned(16))) TaskState; 129 130 extern char *exec_path; 131 void init_task_state(TaskState *ts); 132 void task_settid(TaskState *); 133 void stop_all_tasks(void); 134 extern const char *qemu_uname_release; 135 extern unsigned long mmap_min_addr; 136 137 /* ??? See if we can avoid exposing so much of the loader internals. */ 138 /* 139 * MAX_ARG_PAGES defines the number of pages allocated for arguments 140 * and envelope for the new program. 32 should suffice, this gives 141 * a maximum env+arg of 128kB w/4KB pages! 142 */ 143 #define MAX_ARG_PAGES 33 144 145 /* Read a good amount of data initially, to hopefully get all the 146 program headers loaded. */ 147 #define BPRM_BUF_SIZE 1024 148 149 /* 150 * This structure is used to hold the arguments that are 151 * used when loading binaries. 152 */ 153 struct linux_binprm { 154 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 155 void *page[MAX_ARG_PAGES]; 156 abi_ulong p; 157 int fd; 158 int e_uid, e_gid; 159 int argc, envc; 160 char **argv; 161 char **envp; 162 char * filename; /* Name of binary */ 163 int (*core_dump)(int, const CPUState *); /* coredump routine */ 164 }; 165 166 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 167 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 168 abi_ulong stringp, int push_ptr); 169 int loader_exec(const char * filename, char ** argv, char ** envp, 170 struct target_pt_regs * regs, struct image_info *infop, 171 struct linux_binprm *); 172 173 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 174 struct image_info * info); 175 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 176 struct image_info * info); 177 178 abi_long memcpy_to_target(abi_ulong dest, const void *src, 179 unsigned long len); 180 void target_set_brk(abi_ulong new_brk); 181 abi_long do_brk(abi_ulong new_brk); 182 void syscall_init(void); 183 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 184 abi_long arg2, abi_long arg3, abi_long arg4, 185 abi_long arg5, abi_long arg6); 186 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 187 extern THREAD CPUState *thread_env; 188 void cpu_loop(CPUState *env); 189 char *target_strerror(int err); 190 int get_osversion(void); 191 void fork_start(void); 192 void fork_end(int child); 193 194 #include "qemu-log.h" 195 196 /* strace.c */ 197 void print_syscall(int num, 198 abi_long arg1, abi_long arg2, abi_long arg3, 199 abi_long arg4, abi_long arg5, abi_long arg6); 200 void print_syscall_ret(int num, abi_long arg1); 201 extern int do_strace; 202 203 /* signal.c */ 204 void process_pending_signals(CPUState *cpu_env); 205 void signal_init(void); 206 int queue_signal(CPUState *env, int sig, target_siginfo_t *info); 207 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 208 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 209 int target_to_host_signal(int sig); 210 int host_to_target_signal(int sig); 211 long do_sigreturn(CPUState *env); 212 long do_rt_sigreturn(CPUState *env); 213 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 214 215 #ifdef TARGET_I386 216 /* vm86.c */ 217 void save_v86_state(CPUX86State *env); 218 void handle_vm86_trap(CPUX86State *env, int trapno); 219 void handle_vm86_fault(CPUX86State *env); 220 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 221 #elif defined(TARGET_SPARC64) 222 void sparc64_set_context(CPUSPARCState *env); 223 void sparc64_get_context(CPUSPARCState *env); 224 #endif 225 226 /* mmap.c */ 227 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 228 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 229 int flags, int fd, abi_ulong offset); 230 int target_munmap(abi_ulong start, abi_ulong len); 231 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 232 abi_ulong new_size, unsigned long flags, 233 abi_ulong new_addr); 234 int target_msync(abi_ulong start, abi_ulong len, int flags); 235 extern unsigned long last_brk; 236 void mmap_lock(void); 237 void mmap_unlock(void); 238 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 239 void cpu_list_lock(void); 240 void cpu_list_unlock(void); 241 #if defined(CONFIG_USE_NPTL) 242 void mmap_fork_start(void); 243 void mmap_fork_end(int child); 244 #endif 245 246 /* main.c */ 247 extern unsigned long guest_stack_size; 248 249 /* user access */ 250 251 #define VERIFY_READ 0 252 #define VERIFY_WRITE 1 /* implies read access */ 253 254 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 255 { 256 return page_check_range((target_ulong)addr, size, 257 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 258 } 259 260 /* NOTE __get_user and __put_user use host pointers and don't check access. */ 261 /* These are usually used to access struct data members once the 262 * struct has been locked - usually with lock_user_struct(). 263 */ 264 #define __put_user(x, hptr)\ 265 ({\ 266 switch(sizeof(*hptr)) {\ 267 case 1:\ 268 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 269 break;\ 270 case 2:\ 271 *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\ 272 break;\ 273 case 4:\ 274 *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\ 275 break;\ 276 case 8:\ 277 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 278 break;\ 279 default:\ 280 abort();\ 281 }\ 282 0;\ 283 }) 284 285 #define __get_user(x, hptr) \ 286 ({\ 287 switch(sizeof(*hptr)) {\ 288 case 1:\ 289 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 290 break;\ 291 case 2:\ 292 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 293 break;\ 294 case 4:\ 295 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 296 break;\ 297 case 8:\ 298 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 299 break;\ 300 default:\ 301 /* avoid warning */\ 302 x = 0;\ 303 abort();\ 304 }\ 305 0;\ 306 }) 307 308 /* put_user()/get_user() take a guest address and check access */ 309 /* These are usually used to access an atomic data type, such as an int, 310 * that has been passed by address. These internally perform locking 311 * and unlocking on the data type. 312 */ 313 #define put_user(x, gaddr, target_type) \ 314 ({ \ 315 abi_ulong __gaddr = (gaddr); \ 316 target_type *__hptr; \ 317 abi_long __ret; \ 318 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 319 __ret = __put_user((x), __hptr); \ 320 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 321 } else \ 322 __ret = -TARGET_EFAULT; \ 323 __ret; \ 324 }) 325 326 #define get_user(x, gaddr, target_type) \ 327 ({ \ 328 abi_ulong __gaddr = (gaddr); \ 329 target_type *__hptr; \ 330 abi_long __ret; \ 331 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 332 __ret = __get_user((x), __hptr); \ 333 unlock_user(__hptr, __gaddr, 0); \ 334 } else { \ 335 /* avoid warning */ \ 336 (x) = 0; \ 337 __ret = -TARGET_EFAULT; \ 338 } \ 339 __ret; \ 340 }) 341 342 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 343 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 344 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 345 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 346 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 347 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 348 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 349 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 350 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 351 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 352 353 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 354 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 355 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 356 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 357 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 358 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 359 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 360 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 361 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 362 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 363 364 /* copy_from_user() and copy_to_user() are usually used to copy data 365 * buffers between the target and host. These internally perform 366 * locking/unlocking of the memory. 367 */ 368 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 369 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 370 371 /* Functions for accessing guest memory. The tget and tput functions 372 read/write single values, byteswapping as neccessary. The lock_user 373 gets a pointer to a contiguous area of guest memory, but does not perform 374 and byteswapping. lock_user may return either a pointer to the guest 375 memory, or a temporary buffer. */ 376 377 /* Lock an area of guest memory into the host. If copy is true then the 378 host area will have the same contents as the guest. */ 379 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 380 { 381 if (!access_ok(type, guest_addr, len)) 382 return NULL; 383 #ifdef DEBUG_REMAP 384 { 385 void *addr; 386 addr = malloc(len); 387 if (copy) 388 memcpy(addr, g2h(guest_addr), len); 389 else 390 memset(addr, 0, len); 391 return addr; 392 } 393 #else 394 return g2h(guest_addr); 395 #endif 396 } 397 398 /* Unlock an area of guest memory. The first LEN bytes must be 399 flushed back to guest memory. host_ptr = NULL is explicitly 400 allowed and does nothing. */ 401 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 402 long len) 403 { 404 405 #ifdef DEBUG_REMAP 406 if (!host_ptr) 407 return; 408 if (host_ptr == g2h(guest_addr)) 409 return; 410 if (len > 0) 411 memcpy(g2h(guest_addr), host_ptr, len); 412 free(host_ptr); 413 #endif 414 } 415 416 /* Return the length of a string in target memory or -TARGET_EFAULT if 417 access error. */ 418 abi_long target_strlen(abi_ulong gaddr); 419 420 /* Like lock_user but for null terminated strings. */ 421 static inline void *lock_user_string(abi_ulong guest_addr) 422 { 423 abi_long len; 424 len = target_strlen(guest_addr); 425 if (len < 0) 426 return NULL; 427 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 428 } 429 430 /* Helper macros for locking/ulocking a target struct. */ 431 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 432 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 433 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 434 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 435 436 #if defined(CONFIG_USE_NPTL) 437 #include <pthread.h> 438 #endif 439 440 #endif /* QEMU_H */ 441