1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include <signal.h> 5 #include <string.h> 6 7 #include "cpu.h" 8 #include "exec/cpu_ldst.h" 9 10 #undef DEBUG_REMAP 11 #ifdef DEBUG_REMAP 12 #include <stdlib.h> 13 #endif /* DEBUG_REMAP */ 14 15 #include "exec/user/abitypes.h" 16 17 #include "exec/user/thunk.h" 18 #include "syscall_defs.h" 19 #include "syscall.h" 20 #include "exec/gdbstub.h" 21 #include "qemu/queue.h" 22 23 #define THREAD __thread 24 25 /* This struct is used to hold certain information about the image. 26 * Basically, it replicates in user space what would be certain 27 * task_struct fields in the kernel 28 */ 29 struct image_info { 30 abi_ulong load_bias; 31 abi_ulong load_addr; 32 abi_ulong start_code; 33 abi_ulong end_code; 34 abi_ulong start_data; 35 abi_ulong end_data; 36 abi_ulong start_brk; 37 abi_ulong brk; 38 abi_ulong start_mmap; 39 abi_ulong mmap; 40 abi_ulong rss; 41 abi_ulong start_stack; 42 abi_ulong stack_limit; 43 abi_ulong entry; 44 abi_ulong code_offset; 45 abi_ulong data_offset; 46 abi_ulong saved_auxv; 47 abi_ulong auxv_len; 48 abi_ulong arg_start; 49 abi_ulong arg_end; 50 uint32_t elf_flags; 51 int personality; 52 #ifdef CONFIG_USE_FDPIC 53 abi_ulong loadmap_addr; 54 uint16_t nsegs; 55 void *loadsegs; 56 abi_ulong pt_dynamic_addr; 57 struct image_info *other_info; 58 #endif 59 }; 60 61 #ifdef TARGET_I386 62 /* Information about the current linux thread */ 63 struct vm86_saved_state { 64 uint32_t eax; /* return code */ 65 uint32_t ebx; 66 uint32_t ecx; 67 uint32_t edx; 68 uint32_t esi; 69 uint32_t edi; 70 uint32_t ebp; 71 uint32_t esp; 72 uint32_t eflags; 73 uint32_t eip; 74 uint16_t cs, ss, ds, es, fs, gs; 75 }; 76 #endif 77 78 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 79 /* FPU emulator */ 80 #include "nwfpe/fpa11.h" 81 #endif 82 83 #define MAX_SIGQUEUE_SIZE 1024 84 85 struct sigqueue { 86 struct sigqueue *next; 87 target_siginfo_t info; 88 }; 89 90 struct emulated_sigtable { 91 int pending; /* true if signal is pending */ 92 struct sigqueue *first; 93 struct sigqueue info; /* in order to always have memory for the 94 first signal, we put it here */ 95 }; 96 97 /* NOTE: we force a big alignment so that the stack stored after is 98 aligned too */ 99 typedef struct TaskState { 100 pid_t ts_tid; /* tid (or pid) of this task */ 101 #ifdef TARGET_ARM 102 # ifdef TARGET_ABI32 103 /* FPA state */ 104 FPA11 fpa; 105 # endif 106 int swi_errno; 107 #endif 108 #ifdef TARGET_UNICORE32 109 int swi_errno; 110 #endif 111 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 112 abi_ulong target_v86; 113 struct vm86_saved_state vm86_saved_regs; 114 struct target_vm86plus_struct vm86plus; 115 uint32_t v86flags; 116 uint32_t v86mask; 117 #endif 118 abi_ulong child_tidptr; 119 #ifdef TARGET_M68K 120 int sim_syscalls; 121 abi_ulong tp_value; 122 #endif 123 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 124 /* Extra fields for semihosted binaries. */ 125 uint32_t heap_base; 126 uint32_t heap_limit; 127 #endif 128 uint32_t stack_base; 129 int used; /* non zero if used */ 130 bool sigsegv_blocked; /* SIGSEGV blocked by guest */ 131 struct image_info *info; 132 struct linux_binprm *bprm; 133 134 struct emulated_sigtable sigtab[TARGET_NSIG]; 135 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 136 struct sigqueue *first_free; /* first free siginfo queue entry */ 137 int signal_pending; /* non zero if a signal may be pending */ 138 } __attribute__((aligned(16))) TaskState; 139 140 extern char *exec_path; 141 void init_task_state(TaskState *ts); 142 void task_settid(TaskState *); 143 void stop_all_tasks(void); 144 extern const char *qemu_uname_release; 145 extern unsigned long mmap_min_addr; 146 147 /* ??? See if we can avoid exposing so much of the loader internals. */ 148 /* 149 * MAX_ARG_PAGES defines the number of pages allocated for arguments 150 * and envelope for the new program. 32 should suffice, this gives 151 * a maximum env+arg of 128kB w/4KB pages! 152 */ 153 #define MAX_ARG_PAGES 33 154 155 /* Read a good amount of data initially, to hopefully get all the 156 program headers loaded. */ 157 #define BPRM_BUF_SIZE 1024 158 159 /* 160 * This structure is used to hold the arguments that are 161 * used when loading binaries. 162 */ 163 struct linux_binprm { 164 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 165 void *page[MAX_ARG_PAGES]; 166 abi_ulong p; 167 int fd; 168 int e_uid, e_gid; 169 int argc, envc; 170 char **argv; 171 char **envp; 172 char * filename; /* Name of binary */ 173 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 174 }; 175 176 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 177 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 178 abi_ulong stringp, int push_ptr); 179 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 180 struct target_pt_regs * regs, struct image_info *infop, 181 struct linux_binprm *); 182 183 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 184 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 185 186 abi_long memcpy_to_target(abi_ulong dest, const void *src, 187 unsigned long len); 188 void target_set_brk(abi_ulong new_brk); 189 abi_long do_brk(abi_ulong new_brk); 190 void syscall_init(void); 191 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 192 abi_long arg2, abi_long arg3, abi_long arg4, 193 abi_long arg5, abi_long arg6, abi_long arg7, 194 abi_long arg8); 195 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 196 extern THREAD CPUState *thread_cpu; 197 void cpu_loop(CPUArchState *env); 198 char *target_strerror(int err); 199 int get_osversion(void); 200 void init_qemu_uname_release(void); 201 void fork_start(void); 202 void fork_end(int child); 203 204 /* Creates the initial guest address space in the host memory space using 205 * the given host start address hint and size. The guest_start parameter 206 * specifies the start address of the guest space. guest_base will be the 207 * difference between the host start address computed by this function and 208 * guest_start. If fixed is specified, then the mapped address space must 209 * start at host_start. The real start address of the mapped memory space is 210 * returned or -1 if there was an error. 211 */ 212 unsigned long init_guest_space(unsigned long host_start, 213 unsigned long host_size, 214 unsigned long guest_start, 215 bool fixed); 216 217 #include "qemu/log.h" 218 219 /* syscall.c */ 220 int host_to_target_waitstatus(int status); 221 222 /* strace.c */ 223 void print_syscall(int num, 224 abi_long arg1, abi_long arg2, abi_long arg3, 225 abi_long arg4, abi_long arg5, abi_long arg6); 226 void print_syscall_ret(int num, abi_long arg1); 227 extern int do_strace; 228 229 /* signal.c */ 230 void process_pending_signals(CPUArchState *cpu_env); 231 void signal_init(void); 232 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 233 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 234 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 235 int target_to_host_signal(int sig); 236 int host_to_target_signal(int sig); 237 long do_sigreturn(CPUArchState *env); 238 long do_rt_sigreturn(CPUArchState *env); 239 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 240 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 241 242 #ifdef TARGET_I386 243 /* vm86.c */ 244 void save_v86_state(CPUX86State *env); 245 void handle_vm86_trap(CPUX86State *env, int trapno); 246 void handle_vm86_fault(CPUX86State *env); 247 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 248 #elif defined(TARGET_SPARC64) 249 void sparc64_set_context(CPUSPARCState *env); 250 void sparc64_get_context(CPUSPARCState *env); 251 #endif 252 253 /* mmap.c */ 254 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 255 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 256 int flags, int fd, abi_ulong offset); 257 int target_munmap(abi_ulong start, abi_ulong len); 258 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 259 abi_ulong new_size, unsigned long flags, 260 abi_ulong new_addr); 261 int target_msync(abi_ulong start, abi_ulong len, int flags); 262 extern unsigned long last_brk; 263 extern abi_ulong mmap_next_start; 264 void mmap_lock(void); 265 void mmap_unlock(void); 266 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 267 void cpu_list_lock(void); 268 void cpu_list_unlock(void); 269 void mmap_fork_start(void); 270 void mmap_fork_end(int child); 271 272 /* main.c */ 273 extern unsigned long guest_stack_size; 274 275 /* user access */ 276 277 #define VERIFY_READ 0 278 #define VERIFY_WRITE 1 /* implies read access */ 279 280 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 281 { 282 return page_check_range((target_ulong)addr, size, 283 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 284 } 285 286 /* NOTE __get_user and __put_user use host pointers and don't check access. 287 These are usually used to access struct data members once the struct has 288 been locked - usually with lock_user_struct. */ 289 290 /* Tricky points: 291 - Use __builtin_choose_expr to avoid type promotion from ?:, 292 - Invalid sizes result in a compile time error stemming from 293 the fact that abort has no parameters. 294 - It's easier to use the endian-specific unaligned load/store 295 functions than host-endian unaligned load/store plus tswapN. */ 296 297 #define __put_user_e(x, hptr, e) \ 298 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 299 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 300 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 301 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 302 ((hptr), (x)), 0) 303 304 #define __get_user_e(x, hptr, e) \ 305 ((x) = (typeof(*hptr))( \ 306 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 307 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 308 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 309 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 310 (hptr)), 0) 311 312 #ifdef TARGET_WORDS_BIGENDIAN 313 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 314 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 315 #else 316 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 317 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 318 #endif 319 320 /* put_user()/get_user() take a guest address and check access */ 321 /* These are usually used to access an atomic data type, such as an int, 322 * that has been passed by address. These internally perform locking 323 * and unlocking on the data type. 324 */ 325 #define put_user(x, gaddr, target_type) \ 326 ({ \ 327 abi_ulong __gaddr = (gaddr); \ 328 target_type *__hptr; \ 329 abi_long __ret; \ 330 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 331 __ret = __put_user((x), __hptr); \ 332 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 333 } else \ 334 __ret = -TARGET_EFAULT; \ 335 __ret; \ 336 }) 337 338 #define get_user(x, gaddr, target_type) \ 339 ({ \ 340 abi_ulong __gaddr = (gaddr); \ 341 target_type *__hptr; \ 342 abi_long __ret; \ 343 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 344 __ret = __get_user((x), __hptr); \ 345 unlock_user(__hptr, __gaddr, 0); \ 346 } else { \ 347 /* avoid warning */ \ 348 (x) = 0; \ 349 __ret = -TARGET_EFAULT; \ 350 } \ 351 __ret; \ 352 }) 353 354 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 355 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 356 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 357 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 358 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 359 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 360 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 361 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 362 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 363 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 364 365 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 366 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 367 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 368 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 369 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 370 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 371 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 372 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 373 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 374 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 375 376 /* copy_from_user() and copy_to_user() are usually used to copy data 377 * buffers between the target and host. These internally perform 378 * locking/unlocking of the memory. 379 */ 380 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 381 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 382 383 /* Functions for accessing guest memory. The tget and tput functions 384 read/write single values, byteswapping as necessary. The lock_user function 385 gets a pointer to a contiguous area of guest memory, but does not perform 386 any byteswapping. lock_user may return either a pointer to the guest 387 memory, or a temporary buffer. */ 388 389 /* Lock an area of guest memory into the host. If copy is true then the 390 host area will have the same contents as the guest. */ 391 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 392 { 393 if (!access_ok(type, guest_addr, len)) 394 return NULL; 395 #ifdef DEBUG_REMAP 396 { 397 void *addr; 398 addr = malloc(len); 399 if (copy) 400 memcpy(addr, g2h(guest_addr), len); 401 else 402 memset(addr, 0, len); 403 return addr; 404 } 405 #else 406 return g2h(guest_addr); 407 #endif 408 } 409 410 /* Unlock an area of guest memory. The first LEN bytes must be 411 flushed back to guest memory. host_ptr = NULL is explicitly 412 allowed and does nothing. */ 413 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 414 long len) 415 { 416 417 #ifdef DEBUG_REMAP 418 if (!host_ptr) 419 return; 420 if (host_ptr == g2h(guest_addr)) 421 return; 422 if (len > 0) 423 memcpy(g2h(guest_addr), host_ptr, len); 424 free(host_ptr); 425 #endif 426 } 427 428 /* Return the length of a string in target memory or -TARGET_EFAULT if 429 access error. */ 430 abi_long target_strlen(abi_ulong gaddr); 431 432 /* Like lock_user but for null terminated strings. */ 433 static inline void *lock_user_string(abi_ulong guest_addr) 434 { 435 abi_long len; 436 len = target_strlen(guest_addr); 437 if (len < 0) 438 return NULL; 439 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 440 } 441 442 /* Helper macros for locking/unlocking a target struct. */ 443 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 444 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 445 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 446 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 447 448 #include <pthread.h> 449 450 /* Include target-specific struct and function definitions; 451 * they may need access to the target-independent structures 452 * above, so include them last. 453 */ 454 #include "target_cpu.h" 455 #include "target_signal.h" 456 #include "target_structs.h" 457 458 #endif /* QEMU_H */ 459