1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "hostdep.h" 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #endif /* DEBUG_REMAP */ 12 13 #include "exec/user/abitypes.h" 14 15 #include "exec/user/thunk.h" 16 #include "syscall_defs.h" 17 #include "target_syscall.h" 18 #include "exec/gdbstub.h" 19 #include "qemu/queue.h" 20 21 #define THREAD __thread 22 23 /* This is the size of the host kernel's sigset_t, needed where we make 24 * direct system calls that take a sigset_t pointer and a size. 25 */ 26 #define SIGSET_T_SIZE (_NSIG / 8) 27 28 /* This struct is used to hold certain information about the image. 29 * Basically, it replicates in user space what would be certain 30 * task_struct fields in the kernel 31 */ 32 struct image_info { 33 abi_ulong load_bias; 34 abi_ulong load_addr; 35 abi_ulong start_code; 36 abi_ulong end_code; 37 abi_ulong start_data; 38 abi_ulong end_data; 39 abi_ulong start_brk; 40 abi_ulong brk; 41 abi_ulong start_mmap; 42 abi_ulong start_stack; 43 abi_ulong stack_limit; 44 abi_ulong entry; 45 abi_ulong code_offset; 46 abi_ulong data_offset; 47 abi_ulong saved_auxv; 48 abi_ulong auxv_len; 49 abi_ulong arg_start; 50 abi_ulong arg_end; 51 uint32_t elf_flags; 52 int personality; 53 #ifdef CONFIG_USE_FDPIC 54 abi_ulong loadmap_addr; 55 uint16_t nsegs; 56 void *loadsegs; 57 abi_ulong pt_dynamic_addr; 58 struct image_info *other_info; 59 #endif 60 }; 61 62 #ifdef TARGET_I386 63 /* Information about the current linux thread */ 64 struct vm86_saved_state { 65 uint32_t eax; /* return code */ 66 uint32_t ebx; 67 uint32_t ecx; 68 uint32_t edx; 69 uint32_t esi; 70 uint32_t edi; 71 uint32_t ebp; 72 uint32_t esp; 73 uint32_t eflags; 74 uint32_t eip; 75 uint16_t cs, ss, ds, es, fs, gs; 76 }; 77 #endif 78 79 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 80 /* FPU emulator */ 81 #include "nwfpe/fpa11.h" 82 #endif 83 84 #define MAX_SIGQUEUE_SIZE 1024 85 86 struct emulated_sigtable { 87 int pending; /* true if signal is pending */ 88 target_siginfo_t info; 89 }; 90 91 /* NOTE: we force a big alignment so that the stack stored after is 92 aligned too */ 93 typedef struct TaskState { 94 pid_t ts_tid; /* tid (or pid) of this task */ 95 #ifdef TARGET_ARM 96 # ifdef TARGET_ABI32 97 /* FPA state */ 98 FPA11 fpa; 99 # endif 100 int swi_errno; 101 #endif 102 #ifdef TARGET_UNICORE32 103 int swi_errno; 104 #endif 105 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 106 abi_ulong target_v86; 107 struct vm86_saved_state vm86_saved_regs; 108 struct target_vm86plus_struct vm86plus; 109 uint32_t v86flags; 110 uint32_t v86mask; 111 #endif 112 abi_ulong child_tidptr; 113 #ifdef TARGET_M68K 114 int sim_syscalls; 115 abi_ulong tp_value; 116 #endif 117 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 118 /* Extra fields for semihosted binaries. */ 119 uint32_t heap_base; 120 uint32_t heap_limit; 121 #endif 122 uint32_t stack_base; 123 int used; /* non zero if used */ 124 struct image_info *info; 125 struct linux_binprm *bprm; 126 127 struct emulated_sigtable sync_signal; 128 struct emulated_sigtable sigtab[TARGET_NSIG]; 129 /* This thread's signal mask, as requested by the guest program. 130 * The actual signal mask of this thread may differ: 131 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 132 * + sometimes we block all signals to avoid races 133 */ 134 sigset_t signal_mask; 135 /* The signal mask imposed by a guest sigsuspend syscall, if we are 136 * currently in the middle of such a syscall 137 */ 138 sigset_t sigsuspend_mask; 139 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 140 int in_sigsuspend; 141 142 /* Nonzero if process_pending_signals() needs to do something (either 143 * handle a pending signal or unblock signals). 144 * This flag is written from a signal handler so should be accessed via 145 * the atomic_read() and atomic_write() functions. (It is not accessed 146 * from multiple threads.) 147 */ 148 int signal_pending; 149 150 } __attribute__((aligned(16))) TaskState; 151 152 extern char *exec_path; 153 void init_task_state(TaskState *ts); 154 void task_settid(TaskState *); 155 void stop_all_tasks(void); 156 extern const char *qemu_uname_release; 157 extern unsigned long mmap_min_addr; 158 159 /* ??? See if we can avoid exposing so much of the loader internals. */ 160 161 /* Read a good amount of data initially, to hopefully get all the 162 program headers loaded. */ 163 #define BPRM_BUF_SIZE 1024 164 165 /* 166 * This structure is used to hold the arguments that are 167 * used when loading binaries. 168 */ 169 struct linux_binprm { 170 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 171 abi_ulong p; 172 int fd; 173 int e_uid, e_gid; 174 int argc, envc; 175 char **argv; 176 char **envp; 177 char * filename; /* Name of binary */ 178 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 179 }; 180 181 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 182 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 183 abi_ulong stringp, int push_ptr); 184 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 185 struct target_pt_regs * regs, struct image_info *infop, 186 struct linux_binprm *); 187 188 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 189 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 190 191 abi_long memcpy_to_target(abi_ulong dest, const void *src, 192 unsigned long len); 193 void target_set_brk(abi_ulong new_brk); 194 abi_long do_brk(abi_ulong new_brk); 195 void syscall_init(void); 196 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 197 abi_long arg2, abi_long arg3, abi_long arg4, 198 abi_long arg5, abi_long arg6, abi_long arg7, 199 abi_long arg8); 200 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 201 extern THREAD CPUState *thread_cpu; 202 void cpu_loop(CPUArchState *env); 203 const char *target_strerror(int err); 204 int get_osversion(void); 205 void init_qemu_uname_release(void); 206 void fork_start(void); 207 void fork_end(int child); 208 209 /* Creates the initial guest address space in the host memory space using 210 * the given host start address hint and size. The guest_start parameter 211 * specifies the start address of the guest space. guest_base will be the 212 * difference between the host start address computed by this function and 213 * guest_start. If fixed is specified, then the mapped address space must 214 * start at host_start. The real start address of the mapped memory space is 215 * returned or -1 if there was an error. 216 */ 217 unsigned long init_guest_space(unsigned long host_start, 218 unsigned long host_size, 219 unsigned long guest_start, 220 bool fixed); 221 222 #include "qemu/log.h" 223 224 /* safe_syscall.S */ 225 226 /** 227 * safe_syscall: 228 * @int number: number of system call to make 229 * ...: arguments to the system call 230 * 231 * Call a system call if guest signal not pending. 232 * This has the same API as the libc syscall() function, except that it 233 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. 234 * 235 * Returns: the system call result, or -1 with an error code in errno 236 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing 237 * with any of the host errno values.) 238 */ 239 240 /* A guide to using safe_syscall() to handle interactions between guest 241 * syscalls and guest signals: 242 * 243 * Guest syscalls come in two flavours: 244 * 245 * (1) Non-interruptible syscalls 246 * 247 * These are guest syscalls that never get interrupted by signals and 248 * so never return EINTR. They can be implemented straightforwardly in 249 * QEMU: just make sure that if the implementation code has to make any 250 * blocking calls that those calls are retried if they return EINTR. 251 * It's also OK to implement these with safe_syscall, though it will be 252 * a little less efficient if a signal is delivered at the 'wrong' moment. 253 * 254 * Some non-interruptible syscalls need to be handled using block_signals() 255 * to block signals for the duration of the syscall. This mainly applies 256 * to code which needs to modify the data structures used by the 257 * host_signal_handler() function and the functions it calls, including 258 * all syscalls which change the thread's signal mask. 259 * 260 * (2) Interruptible syscalls 261 * 262 * These are guest syscalls that can be interrupted by signals and 263 * for which we need to either return EINTR or arrange for the guest 264 * syscall to be restarted. This category includes both syscalls which 265 * always restart (and in the kernel return -ERESTARTNOINTR), ones 266 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND 267 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart 268 * if the handler was registered with SA_RESTART (kernel returns 269 * -ERESTARTSYS). System calls which are only interruptible in some 270 * situations (like 'open') also need to be handled this way. 271 * 272 * Here it is important that the host syscall is made 273 * via this safe_syscall() function, and *not* via the host libc. 274 * If the host libc is used then the implementation will appear to work 275 * most of the time, but there will be a race condition where a 276 * signal could arrive just before we make the host syscall inside libc, 277 * and then then guest syscall will not correctly be interrupted. 278 * Instead the implementation of the guest syscall can use the safe_syscall 279 * function but otherwise just return the result or errno in the usual 280 * way; the main loop code will take care of restarting the syscall 281 * if appropriate. 282 * 283 * (If the implementation needs to make multiple host syscalls this is 284 * OK; any which might really block must be via safe_syscall(); for those 285 * which are only technically blocking (ie which we know in practice won't 286 * stay in the host kernel indefinitely) it's OK to use libc if necessary. 287 * You must be able to cope with backing out correctly if some safe_syscall 288 * you make in the implementation returns either -TARGET_ERESTARTSYS or 289 * EINTR though.) 290 * 291 * block_signals() cannot be used for interruptible syscalls. 292 * 293 * 294 * How and why the safe_syscall implementation works: 295 * 296 * The basic setup is that we make the host syscall via a known 297 * section of host native assembly. If a signal occurs, our signal 298 * handler checks the interrupted host PC against the addresse of that 299 * known section. If the PC is before or at the address of the syscall 300 * instruction then we change the PC to point at a "return 301 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler 302 * (causing the safe_syscall() call to immediately return that value). 303 * Then in the main.c loop if we see this magic return value we adjust 304 * the guest PC to wind it back to before the system call, and invoke 305 * the guest signal handler as usual. 306 * 307 * This winding-back will happen in two cases: 308 * (1) signal came in just before we took the host syscall (a race); 309 * in this case we'll take the guest signal and have another go 310 * at the syscall afterwards, and this is indistinguishable for the 311 * guest from the timing having been different such that the guest 312 * signal really did win the race 313 * (2) signal came in while the host syscall was blocking, and the 314 * host kernel decided the syscall should be restarted; 315 * in this case we want to restart the guest syscall also, and so 316 * rewinding is the right thing. (Note that "restart" semantics mean 317 * "first call the signal handler, then reattempt the syscall".) 318 * The other situation to consider is when a signal came in while the 319 * host syscall was blocking, and the host kernel decided that the syscall 320 * should not be restarted; in this case QEMU's host signal handler will 321 * be invoked with the PC pointing just after the syscall instruction, 322 * with registers indicating an EINTR return; the special code in the 323 * handler will not kick in, and we will return EINTR to the guest as 324 * we should. 325 * 326 * Notice that we can leave the host kernel to make the decision for 327 * us about whether to do a restart of the syscall or not; we do not 328 * need to check SA_RESTART flags in QEMU or distinguish the various 329 * kinds of restartability. 330 */ 331 #ifdef HAVE_SAFE_SYSCALL 332 /* The core part of this function is implemented in assembly */ 333 extern long safe_syscall_base(int *pending, long number, ...); 334 335 #define safe_syscall(...) \ 336 ({ \ 337 long ret_; \ 338 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ 339 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ 340 if (is_error(ret_)) { \ 341 errno = -ret_; \ 342 ret_ = -1; \ 343 } \ 344 ret_; \ 345 }) 346 347 #else 348 349 /* Fallback for architectures which don't yet provide a safe-syscall assembly 350 * fragment; note that this is racy! 351 * This should go away when all host architectures have been updated. 352 */ 353 #define safe_syscall syscall 354 355 #endif 356 357 /* syscall.c */ 358 int host_to_target_waitstatus(int status); 359 360 /* strace.c */ 361 void print_syscall(int num, 362 abi_long arg1, abi_long arg2, abi_long arg3, 363 abi_long arg4, abi_long arg5, abi_long arg6); 364 void print_syscall_ret(int num, abi_long arg1); 365 extern int do_strace; 366 367 /* signal.c */ 368 void process_pending_signals(CPUArchState *cpu_env); 369 void signal_init(void); 370 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 371 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 372 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 373 int target_to_host_signal(int sig); 374 int host_to_target_signal(int sig); 375 long do_sigreturn(CPUArchState *env); 376 long do_rt_sigreturn(CPUArchState *env); 377 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 378 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 379 /** 380 * block_signals: block all signals while handling this guest syscall 381 * 382 * Block all signals, and arrange that the signal mask is returned to 383 * its correct value for the guest before we resume execution of guest code. 384 * If this function returns non-zero, then the caller should immediately 385 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending 386 * signal and restart execution of the syscall. 387 * If block_signals() returns zero, then the caller can continue with 388 * emulation of the system call knowing that no signals can be taken 389 * (and therefore that no race conditions will result). 390 * This should only be called once, because if it is called a second time 391 * it will always return non-zero. (Think of it like a mutex that can't 392 * be recursively locked.) 393 * Signals will be unblocked again by process_pending_signals(). 394 * 395 * Return value: non-zero if there was a pending signal, zero if not. 396 */ 397 int block_signals(void); /* Returns non zero if signal pending */ 398 399 #ifdef TARGET_I386 400 /* vm86.c */ 401 void save_v86_state(CPUX86State *env); 402 void handle_vm86_trap(CPUX86State *env, int trapno); 403 void handle_vm86_fault(CPUX86State *env); 404 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 405 #elif defined(TARGET_SPARC64) 406 void sparc64_set_context(CPUSPARCState *env); 407 void sparc64_get_context(CPUSPARCState *env); 408 #endif 409 410 /* mmap.c */ 411 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 412 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 413 int flags, int fd, abi_ulong offset); 414 int target_munmap(abi_ulong start, abi_ulong len); 415 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 416 abi_ulong new_size, unsigned long flags, 417 abi_ulong new_addr); 418 int target_msync(abi_ulong start, abi_ulong len, int flags); 419 extern unsigned long last_brk; 420 extern abi_ulong mmap_next_start; 421 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 422 void cpu_list_lock(void); 423 void cpu_list_unlock(void); 424 void mmap_fork_start(void); 425 void mmap_fork_end(int child); 426 427 /* main.c */ 428 extern unsigned long guest_stack_size; 429 430 /* user access */ 431 432 #define VERIFY_READ 0 433 #define VERIFY_WRITE 1 /* implies read access */ 434 435 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 436 { 437 return page_check_range((target_ulong)addr, size, 438 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 439 } 440 441 /* NOTE __get_user and __put_user use host pointers and don't check access. 442 These are usually used to access struct data members once the struct has 443 been locked - usually with lock_user_struct. */ 444 445 /* Tricky points: 446 - Use __builtin_choose_expr to avoid type promotion from ?:, 447 - Invalid sizes result in a compile time error stemming from 448 the fact that abort has no parameters. 449 - It's easier to use the endian-specific unaligned load/store 450 functions than host-endian unaligned load/store plus tswapN. */ 451 452 #define __put_user_e(x, hptr, e) \ 453 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 454 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 455 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 456 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 457 ((hptr), (x)), (void)0) 458 459 #define __get_user_e(x, hptr, e) \ 460 ((x) = (typeof(*hptr))( \ 461 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 462 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 463 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 464 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 465 (hptr)), (void)0) 466 467 #ifdef TARGET_WORDS_BIGENDIAN 468 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 469 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 470 #else 471 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 472 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 473 #endif 474 475 /* put_user()/get_user() take a guest address and check access */ 476 /* These are usually used to access an atomic data type, such as an int, 477 * that has been passed by address. These internally perform locking 478 * and unlocking on the data type. 479 */ 480 #define put_user(x, gaddr, target_type) \ 481 ({ \ 482 abi_ulong __gaddr = (gaddr); \ 483 target_type *__hptr; \ 484 abi_long __ret = 0; \ 485 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 486 __put_user((x), __hptr); \ 487 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 488 } else \ 489 __ret = -TARGET_EFAULT; \ 490 __ret; \ 491 }) 492 493 #define get_user(x, gaddr, target_type) \ 494 ({ \ 495 abi_ulong __gaddr = (gaddr); \ 496 target_type *__hptr; \ 497 abi_long __ret = 0; \ 498 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 499 __get_user((x), __hptr); \ 500 unlock_user(__hptr, __gaddr, 0); \ 501 } else { \ 502 /* avoid warning */ \ 503 (x) = 0; \ 504 __ret = -TARGET_EFAULT; \ 505 } \ 506 __ret; \ 507 }) 508 509 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 510 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 511 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 512 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 513 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 514 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 515 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 516 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 517 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 518 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 519 520 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 521 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 522 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 523 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 524 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 525 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 526 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 527 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 528 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 529 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 530 531 /* copy_from_user() and copy_to_user() are usually used to copy data 532 * buffers between the target and host. These internally perform 533 * locking/unlocking of the memory. 534 */ 535 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 536 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 537 538 /* Functions for accessing guest memory. The tget and tput functions 539 read/write single values, byteswapping as necessary. The lock_user function 540 gets a pointer to a contiguous area of guest memory, but does not perform 541 any byteswapping. lock_user may return either a pointer to the guest 542 memory, or a temporary buffer. */ 543 544 /* Lock an area of guest memory into the host. If copy is true then the 545 host area will have the same contents as the guest. */ 546 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 547 { 548 if (!access_ok(type, guest_addr, len)) 549 return NULL; 550 #ifdef DEBUG_REMAP 551 { 552 void *addr; 553 addr = malloc(len); 554 if (copy) 555 memcpy(addr, g2h(guest_addr), len); 556 else 557 memset(addr, 0, len); 558 return addr; 559 } 560 #else 561 return g2h(guest_addr); 562 #endif 563 } 564 565 /* Unlock an area of guest memory. The first LEN bytes must be 566 flushed back to guest memory. host_ptr = NULL is explicitly 567 allowed and does nothing. */ 568 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 569 long len) 570 { 571 572 #ifdef DEBUG_REMAP 573 if (!host_ptr) 574 return; 575 if (host_ptr == g2h(guest_addr)) 576 return; 577 if (len > 0) 578 memcpy(g2h(guest_addr), host_ptr, len); 579 free(host_ptr); 580 #endif 581 } 582 583 /* Return the length of a string in target memory or -TARGET_EFAULT if 584 access error. */ 585 abi_long target_strlen(abi_ulong gaddr); 586 587 /* Like lock_user but for null terminated strings. */ 588 static inline void *lock_user_string(abi_ulong guest_addr) 589 { 590 abi_long len; 591 len = target_strlen(guest_addr); 592 if (len < 0) 593 return NULL; 594 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 595 } 596 597 /* Helper macros for locking/unlocking a target struct. */ 598 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 599 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 600 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 601 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 602 603 #include <pthread.h> 604 605 /* Include target-specific struct and function definitions; 606 * they may need access to the target-independent structures 607 * above, so include them last. 608 */ 609 #include "target_cpu.h" 610 #include "target_signal.h" 611 #include "target_structs.h" 612 613 #endif /* QEMU_H */ 614