1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include <signal.h> 5 #include <string.h> 6 7 #include "cpu.h" 8 #include "exec/cpu_ldst.h" 9 10 #undef DEBUG_REMAP 11 #ifdef DEBUG_REMAP 12 #include <stdlib.h> 13 #endif /* DEBUG_REMAP */ 14 15 #include "exec/user/abitypes.h" 16 17 #include "exec/user/thunk.h" 18 #include "syscall_defs.h" 19 #include "syscall.h" 20 #include "exec/gdbstub.h" 21 #include "qemu/queue.h" 22 23 #define THREAD __thread 24 25 /* This struct is used to hold certain information about the image. 26 * Basically, it replicates in user space what would be certain 27 * task_struct fields in the kernel 28 */ 29 struct image_info { 30 abi_ulong load_bias; 31 abi_ulong load_addr; 32 abi_ulong start_code; 33 abi_ulong end_code; 34 abi_ulong start_data; 35 abi_ulong end_data; 36 abi_ulong start_brk; 37 abi_ulong brk; 38 abi_ulong start_mmap; 39 abi_ulong start_stack; 40 abi_ulong stack_limit; 41 abi_ulong entry; 42 abi_ulong code_offset; 43 abi_ulong data_offset; 44 abi_ulong saved_auxv; 45 abi_ulong auxv_len; 46 abi_ulong arg_start; 47 abi_ulong arg_end; 48 uint32_t elf_flags; 49 int personality; 50 #ifdef CONFIG_USE_FDPIC 51 abi_ulong loadmap_addr; 52 uint16_t nsegs; 53 void *loadsegs; 54 abi_ulong pt_dynamic_addr; 55 struct image_info *other_info; 56 #endif 57 }; 58 59 #ifdef TARGET_I386 60 /* Information about the current linux thread */ 61 struct vm86_saved_state { 62 uint32_t eax; /* return code */ 63 uint32_t ebx; 64 uint32_t ecx; 65 uint32_t edx; 66 uint32_t esi; 67 uint32_t edi; 68 uint32_t ebp; 69 uint32_t esp; 70 uint32_t eflags; 71 uint32_t eip; 72 uint16_t cs, ss, ds, es, fs, gs; 73 }; 74 #endif 75 76 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 77 /* FPU emulator */ 78 #include "nwfpe/fpa11.h" 79 #endif 80 81 #define MAX_SIGQUEUE_SIZE 1024 82 83 struct sigqueue { 84 struct sigqueue *next; 85 target_siginfo_t info; 86 }; 87 88 struct emulated_sigtable { 89 int pending; /* true if signal is pending */ 90 struct sigqueue *first; 91 struct sigqueue info; /* in order to always have memory for the 92 first signal, we put it here */ 93 }; 94 95 /* NOTE: we force a big alignment so that the stack stored after is 96 aligned too */ 97 typedef struct TaskState { 98 pid_t ts_tid; /* tid (or pid) of this task */ 99 #ifdef TARGET_ARM 100 # ifdef TARGET_ABI32 101 /* FPA state */ 102 FPA11 fpa; 103 # endif 104 int swi_errno; 105 #endif 106 #ifdef TARGET_UNICORE32 107 int swi_errno; 108 #endif 109 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 110 abi_ulong target_v86; 111 struct vm86_saved_state vm86_saved_regs; 112 struct target_vm86plus_struct vm86plus; 113 uint32_t v86flags; 114 uint32_t v86mask; 115 #endif 116 abi_ulong child_tidptr; 117 #ifdef TARGET_M68K 118 int sim_syscalls; 119 abi_ulong tp_value; 120 #endif 121 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 122 /* Extra fields for semihosted binaries. */ 123 uint32_t heap_base; 124 uint32_t heap_limit; 125 #endif 126 uint32_t stack_base; 127 int used; /* non zero if used */ 128 bool sigsegv_blocked; /* SIGSEGV blocked by guest */ 129 struct image_info *info; 130 struct linux_binprm *bprm; 131 132 struct emulated_sigtable sigtab[TARGET_NSIG]; 133 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 134 struct sigqueue *first_free; /* first free siginfo queue entry */ 135 int signal_pending; /* non zero if a signal may be pending */ 136 } __attribute__((aligned(16))) TaskState; 137 138 extern char *exec_path; 139 void init_task_state(TaskState *ts); 140 void task_settid(TaskState *); 141 void stop_all_tasks(void); 142 extern const char *qemu_uname_release; 143 extern unsigned long mmap_min_addr; 144 145 /* ??? See if we can avoid exposing so much of the loader internals. */ 146 147 /* Read a good amount of data initially, to hopefully get all the 148 program headers loaded. */ 149 #define BPRM_BUF_SIZE 1024 150 151 /* 152 * This structure is used to hold the arguments that are 153 * used when loading binaries. 154 */ 155 struct linux_binprm { 156 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 157 abi_ulong p; 158 int fd; 159 int e_uid, e_gid; 160 int argc, envc; 161 char **argv; 162 char **envp; 163 char * filename; /* Name of binary */ 164 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 165 }; 166 167 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 168 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 169 abi_ulong stringp, int push_ptr); 170 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 171 struct target_pt_regs * regs, struct image_info *infop, 172 struct linux_binprm *); 173 174 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 175 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 176 177 abi_long memcpy_to_target(abi_ulong dest, const void *src, 178 unsigned long len); 179 void target_set_brk(abi_ulong new_brk); 180 abi_long do_brk(abi_ulong new_brk); 181 void syscall_init(void); 182 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 183 abi_long arg2, abi_long arg3, abi_long arg4, 184 abi_long arg5, abi_long arg6, abi_long arg7, 185 abi_long arg8); 186 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 187 extern THREAD CPUState *thread_cpu; 188 void cpu_loop(CPUArchState *env); 189 char *target_strerror(int err); 190 int get_osversion(void); 191 void init_qemu_uname_release(void); 192 void fork_start(void); 193 void fork_end(int child); 194 195 /* Creates the initial guest address space in the host memory space using 196 * the given host start address hint and size. The guest_start parameter 197 * specifies the start address of the guest space. guest_base will be the 198 * difference between the host start address computed by this function and 199 * guest_start. If fixed is specified, then the mapped address space must 200 * start at host_start. The real start address of the mapped memory space is 201 * returned or -1 if there was an error. 202 */ 203 unsigned long init_guest_space(unsigned long host_start, 204 unsigned long host_size, 205 unsigned long guest_start, 206 bool fixed); 207 208 #include "qemu/log.h" 209 210 /* syscall.c */ 211 int host_to_target_waitstatus(int status); 212 213 /* strace.c */ 214 void print_syscall(int num, 215 abi_long arg1, abi_long arg2, abi_long arg3, 216 abi_long arg4, abi_long arg5, abi_long arg6); 217 void print_syscall_ret(int num, abi_long arg1); 218 extern int do_strace; 219 220 /* signal.c */ 221 void process_pending_signals(CPUArchState *cpu_env); 222 void signal_init(void); 223 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 224 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 225 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 226 int target_to_host_signal(int sig); 227 int host_to_target_signal(int sig); 228 long do_sigreturn(CPUArchState *env); 229 long do_rt_sigreturn(CPUArchState *env); 230 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 231 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 232 233 #ifdef TARGET_I386 234 /* vm86.c */ 235 void save_v86_state(CPUX86State *env); 236 void handle_vm86_trap(CPUX86State *env, int trapno); 237 void handle_vm86_fault(CPUX86State *env); 238 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 239 #elif defined(TARGET_SPARC64) 240 void sparc64_set_context(CPUSPARCState *env); 241 void sparc64_get_context(CPUSPARCState *env); 242 #endif 243 244 /* mmap.c */ 245 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 246 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 247 int flags, int fd, abi_ulong offset); 248 int target_munmap(abi_ulong start, abi_ulong len); 249 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 250 abi_ulong new_size, unsigned long flags, 251 abi_ulong new_addr); 252 int target_msync(abi_ulong start, abi_ulong len, int flags); 253 extern unsigned long last_brk; 254 extern abi_ulong mmap_next_start; 255 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 256 void cpu_list_lock(void); 257 void cpu_list_unlock(void); 258 void mmap_fork_start(void); 259 void mmap_fork_end(int child); 260 261 /* main.c */ 262 extern unsigned long guest_stack_size; 263 264 /* user access */ 265 266 #define VERIFY_READ 0 267 #define VERIFY_WRITE 1 /* implies read access */ 268 269 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 270 { 271 return page_check_range((target_ulong)addr, size, 272 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 273 } 274 275 /* NOTE __get_user and __put_user use host pointers and don't check access. 276 These are usually used to access struct data members once the struct has 277 been locked - usually with lock_user_struct. */ 278 279 /* Tricky points: 280 - Use __builtin_choose_expr to avoid type promotion from ?:, 281 - Invalid sizes result in a compile time error stemming from 282 the fact that abort has no parameters. 283 - It's easier to use the endian-specific unaligned load/store 284 functions than host-endian unaligned load/store plus tswapN. */ 285 286 #define __put_user_e(x, hptr, e) \ 287 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 288 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 289 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 290 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 291 ((hptr), (x)), (void)0) 292 293 #define __get_user_e(x, hptr, e) \ 294 ((x) = (typeof(*hptr))( \ 295 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 296 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 297 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 298 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 299 (hptr)), (void)0) 300 301 #ifdef TARGET_WORDS_BIGENDIAN 302 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 303 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 304 #else 305 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 306 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 307 #endif 308 309 /* put_user()/get_user() take a guest address and check access */ 310 /* These are usually used to access an atomic data type, such as an int, 311 * that has been passed by address. These internally perform locking 312 * and unlocking on the data type. 313 */ 314 #define put_user(x, gaddr, target_type) \ 315 ({ \ 316 abi_ulong __gaddr = (gaddr); \ 317 target_type *__hptr; \ 318 abi_long __ret = 0; \ 319 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 320 __put_user((x), __hptr); \ 321 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 322 } else \ 323 __ret = -TARGET_EFAULT; \ 324 __ret; \ 325 }) 326 327 #define get_user(x, gaddr, target_type) \ 328 ({ \ 329 abi_ulong __gaddr = (gaddr); \ 330 target_type *__hptr; \ 331 abi_long __ret = 0; \ 332 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 333 __get_user((x), __hptr); \ 334 unlock_user(__hptr, __gaddr, 0); \ 335 } else { \ 336 /* avoid warning */ \ 337 (x) = 0; \ 338 __ret = -TARGET_EFAULT; \ 339 } \ 340 __ret; \ 341 }) 342 343 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 344 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 345 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 346 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 347 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 348 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 349 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 350 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 351 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 352 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 353 354 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 355 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 356 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 357 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 358 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 359 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 360 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 361 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 362 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 363 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 364 365 /* copy_from_user() and copy_to_user() are usually used to copy data 366 * buffers between the target and host. These internally perform 367 * locking/unlocking of the memory. 368 */ 369 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 370 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 371 372 /* Functions for accessing guest memory. The tget and tput functions 373 read/write single values, byteswapping as necessary. The lock_user function 374 gets a pointer to a contiguous area of guest memory, but does not perform 375 any byteswapping. lock_user may return either a pointer to the guest 376 memory, or a temporary buffer. */ 377 378 /* Lock an area of guest memory into the host. If copy is true then the 379 host area will have the same contents as the guest. */ 380 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 381 { 382 if (!access_ok(type, guest_addr, len)) 383 return NULL; 384 #ifdef DEBUG_REMAP 385 { 386 void *addr; 387 addr = malloc(len); 388 if (copy) 389 memcpy(addr, g2h(guest_addr), len); 390 else 391 memset(addr, 0, len); 392 return addr; 393 } 394 #else 395 return g2h(guest_addr); 396 #endif 397 } 398 399 /* Unlock an area of guest memory. The first LEN bytes must be 400 flushed back to guest memory. host_ptr = NULL is explicitly 401 allowed and does nothing. */ 402 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 403 long len) 404 { 405 406 #ifdef DEBUG_REMAP 407 if (!host_ptr) 408 return; 409 if (host_ptr == g2h(guest_addr)) 410 return; 411 if (len > 0) 412 memcpy(g2h(guest_addr), host_ptr, len); 413 free(host_ptr); 414 #endif 415 } 416 417 /* Return the length of a string in target memory or -TARGET_EFAULT if 418 access error. */ 419 abi_long target_strlen(abi_ulong gaddr); 420 421 /* Like lock_user but for null terminated strings. */ 422 static inline void *lock_user_string(abi_ulong guest_addr) 423 { 424 abi_long len; 425 len = target_strlen(guest_addr); 426 if (len < 0) 427 return NULL; 428 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 429 } 430 431 /* Helper macros for locking/unlocking a target struct. */ 432 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 433 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 434 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 435 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 436 437 #include <pthread.h> 438 439 /* Include target-specific struct and function definitions; 440 * they may need access to the target-independent structures 441 * above, so include them last. 442 */ 443 #include "target_cpu.h" 444 #include "target_signal.h" 445 #include "target_structs.h" 446 447 #endif /* QEMU_H */ 448