1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "hostdep.h" 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #endif /* DEBUG_REMAP */ 12 13 #include "exec/user/abitypes.h" 14 15 #include "exec/user/thunk.h" 16 #include "syscall_defs.h" 17 #include "target_syscall.h" 18 #include "exec/gdbstub.h" 19 20 /* This is the size of the host kernel's sigset_t, needed where we make 21 * direct system calls that take a sigset_t pointer and a size. 22 */ 23 #define SIGSET_T_SIZE (_NSIG / 8) 24 25 /* This struct is used to hold certain information about the image. 26 * Basically, it replicates in user space what would be certain 27 * task_struct fields in the kernel 28 */ 29 struct image_info { 30 abi_ulong load_bias; 31 abi_ulong load_addr; 32 abi_ulong start_code; 33 abi_ulong end_code; 34 abi_ulong start_data; 35 abi_ulong end_data; 36 abi_ulong start_brk; 37 abi_ulong brk; 38 abi_ulong reserve_brk; 39 abi_ulong start_mmap; 40 abi_ulong start_stack; 41 abi_ulong stack_limit; 42 abi_ulong entry; 43 abi_ulong code_offset; 44 abi_ulong data_offset; 45 abi_ulong saved_auxv; 46 abi_ulong auxv_len; 47 abi_ulong arg_start; 48 abi_ulong arg_end; 49 abi_ulong arg_strings; 50 abi_ulong env_strings; 51 abi_ulong file_string; 52 uint32_t elf_flags; 53 int personality; 54 abi_ulong alignment; 55 56 /* The fields below are used in FDPIC mode. */ 57 abi_ulong loadmap_addr; 58 uint16_t nsegs; 59 void *loadsegs; 60 abi_ulong pt_dynamic_addr; 61 abi_ulong interpreter_loadmap_addr; 62 abi_ulong interpreter_pt_dynamic_addr; 63 struct image_info *other_info; 64 65 /* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */ 66 uint32_t note_flags; 67 68 #ifdef TARGET_MIPS 69 int fp_abi; 70 int interp_fp_abi; 71 #endif 72 }; 73 74 #ifdef TARGET_I386 75 /* Information about the current linux thread */ 76 struct vm86_saved_state { 77 uint32_t eax; /* return code */ 78 uint32_t ebx; 79 uint32_t ecx; 80 uint32_t edx; 81 uint32_t esi; 82 uint32_t edi; 83 uint32_t ebp; 84 uint32_t esp; 85 uint32_t eflags; 86 uint32_t eip; 87 uint16_t cs, ss, ds, es, fs, gs; 88 }; 89 #endif 90 91 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 92 /* FPU emulator */ 93 #include "nwfpe/fpa11.h" 94 #endif 95 96 #define MAX_SIGQUEUE_SIZE 1024 97 98 struct emulated_sigtable { 99 int pending; /* true if signal is pending */ 100 target_siginfo_t info; 101 }; 102 103 /* NOTE: we force a big alignment so that the stack stored after is 104 aligned too */ 105 typedef struct TaskState { 106 pid_t ts_tid; /* tid (or pid) of this task */ 107 #ifdef TARGET_ARM 108 # ifdef TARGET_ABI32 109 /* FPA state */ 110 FPA11 fpa; 111 # endif 112 #endif 113 #if defined(TARGET_ARM) || defined(TARGET_RISCV) 114 int swi_errno; 115 #endif 116 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 117 abi_ulong target_v86; 118 struct vm86_saved_state vm86_saved_regs; 119 struct target_vm86plus_struct vm86plus; 120 uint32_t v86flags; 121 uint32_t v86mask; 122 #endif 123 abi_ulong child_tidptr; 124 #ifdef TARGET_M68K 125 abi_ulong tp_value; 126 #endif 127 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_RISCV) 128 /* Extra fields for semihosted binaries. */ 129 abi_ulong heap_base; 130 abi_ulong heap_limit; 131 #endif 132 abi_ulong stack_base; 133 int used; /* non zero if used */ 134 struct image_info *info; 135 struct linux_binprm *bprm; 136 137 struct emulated_sigtable sync_signal; 138 struct emulated_sigtable sigtab[TARGET_NSIG]; 139 /* This thread's signal mask, as requested by the guest program. 140 * The actual signal mask of this thread may differ: 141 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 142 * + sometimes we block all signals to avoid races 143 */ 144 sigset_t signal_mask; 145 /* The signal mask imposed by a guest sigsuspend syscall, if we are 146 * currently in the middle of such a syscall 147 */ 148 sigset_t sigsuspend_mask; 149 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 150 int in_sigsuspend; 151 152 /* Nonzero if process_pending_signals() needs to do something (either 153 * handle a pending signal or unblock signals). 154 * This flag is written from a signal handler so should be accessed via 155 * the qatomic_read() and qatomic_set() functions. (It is not accessed 156 * from multiple threads.) 157 */ 158 int signal_pending; 159 160 /* This thread's sigaltstack, if it has one */ 161 struct target_sigaltstack sigaltstack_used; 162 } __attribute__((aligned(16))) TaskState; 163 164 extern char *exec_path; 165 void init_task_state(TaskState *ts); 166 void task_settid(TaskState *); 167 void stop_all_tasks(void); 168 extern const char *qemu_uname_release; 169 extern unsigned long mmap_min_addr; 170 171 /* ??? See if we can avoid exposing so much of the loader internals. */ 172 173 /* Read a good amount of data initially, to hopefully get all the 174 program headers loaded. */ 175 #define BPRM_BUF_SIZE 1024 176 177 /* 178 * This structure is used to hold the arguments that are 179 * used when loading binaries. 180 */ 181 struct linux_binprm { 182 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 183 abi_ulong p; 184 int fd; 185 int e_uid, e_gid; 186 int argc, envc; 187 char **argv; 188 char **envp; 189 char * filename; /* Name of binary */ 190 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 191 }; 192 193 typedef struct IOCTLEntry IOCTLEntry; 194 195 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, 196 int fd, int cmd, abi_long arg); 197 198 struct IOCTLEntry { 199 int target_cmd; 200 unsigned int host_cmd; 201 const char *name; 202 int access; 203 do_ioctl_fn *do_ioctl; 204 const argtype arg_type[5]; 205 }; 206 207 extern IOCTLEntry ioctl_entries[]; 208 209 #define IOC_R 0x0001 210 #define IOC_W 0x0002 211 #define IOC_RW (IOC_R | IOC_W) 212 213 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 214 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 215 abi_ulong stringp, int push_ptr); 216 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 217 struct target_pt_regs * regs, struct image_info *infop, 218 struct linux_binprm *); 219 220 /* Returns true if the image uses the FDPIC ABI. If this is the case, 221 * we have to provide some information (loadmap, pt_dynamic_info) such 222 * that the program can be relocated adequately. This is also useful 223 * when handling signals. 224 */ 225 int info_is_fdpic(struct image_info *info); 226 227 uint32_t get_elf_eflags(int fd); 228 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 229 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 230 231 abi_long memcpy_to_target(abi_ulong dest, const void *src, 232 unsigned long len); 233 void target_set_brk(abi_ulong new_brk); 234 abi_long do_brk(abi_ulong new_brk); 235 void syscall_init(void); 236 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 237 abi_long arg2, abi_long arg3, abi_long arg4, 238 abi_long arg5, abi_long arg6, abi_long arg7, 239 abi_long arg8); 240 extern __thread CPUState *thread_cpu; 241 void cpu_loop(CPUArchState *env); 242 const char *target_strerror(int err); 243 int get_osversion(void); 244 void init_qemu_uname_release(void); 245 void fork_start(void); 246 void fork_end(int child); 247 248 /** 249 * probe_guest_base: 250 * @image_name: the executable being loaded 251 * @loaddr: the lowest fixed address in the executable 252 * @hiaddr: the highest fixed address in the executable 253 * 254 * Creates the initial guest address space in the host memory space. 255 * 256 * If @loaddr == 0, then no address in the executable is fixed, 257 * i.e. it is fully relocatable. In that case @hiaddr is the size 258 * of the executable. 259 * 260 * This function will not return if a valid value for guest_base 261 * cannot be chosen. On return, the executable loader can expect 262 * 263 * target_mmap(loaddr, hiaddr - loaddr, ...) 264 * 265 * to succeed. 266 */ 267 void probe_guest_base(const char *image_name, 268 abi_ulong loaddr, abi_ulong hiaddr); 269 270 #include "qemu/log.h" 271 272 /* safe_syscall.S */ 273 274 /** 275 * safe_syscall: 276 * @int number: number of system call to make 277 * ...: arguments to the system call 278 * 279 * Call a system call if guest signal not pending. 280 * This has the same API as the libc syscall() function, except that it 281 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. 282 * 283 * Returns: the system call result, or -1 with an error code in errno 284 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing 285 * with any of the host errno values.) 286 */ 287 288 /* A guide to using safe_syscall() to handle interactions between guest 289 * syscalls and guest signals: 290 * 291 * Guest syscalls come in two flavours: 292 * 293 * (1) Non-interruptible syscalls 294 * 295 * These are guest syscalls that never get interrupted by signals and 296 * so never return EINTR. They can be implemented straightforwardly in 297 * QEMU: just make sure that if the implementation code has to make any 298 * blocking calls that those calls are retried if they return EINTR. 299 * It's also OK to implement these with safe_syscall, though it will be 300 * a little less efficient if a signal is delivered at the 'wrong' moment. 301 * 302 * Some non-interruptible syscalls need to be handled using block_signals() 303 * to block signals for the duration of the syscall. This mainly applies 304 * to code which needs to modify the data structures used by the 305 * host_signal_handler() function and the functions it calls, including 306 * all syscalls which change the thread's signal mask. 307 * 308 * (2) Interruptible syscalls 309 * 310 * These are guest syscalls that can be interrupted by signals and 311 * for which we need to either return EINTR or arrange for the guest 312 * syscall to be restarted. This category includes both syscalls which 313 * always restart (and in the kernel return -ERESTARTNOINTR), ones 314 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND 315 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart 316 * if the handler was registered with SA_RESTART (kernel returns 317 * -ERESTARTSYS). System calls which are only interruptible in some 318 * situations (like 'open') also need to be handled this way. 319 * 320 * Here it is important that the host syscall is made 321 * via this safe_syscall() function, and *not* via the host libc. 322 * If the host libc is used then the implementation will appear to work 323 * most of the time, but there will be a race condition where a 324 * signal could arrive just before we make the host syscall inside libc, 325 * and then then guest syscall will not correctly be interrupted. 326 * Instead the implementation of the guest syscall can use the safe_syscall 327 * function but otherwise just return the result or errno in the usual 328 * way; the main loop code will take care of restarting the syscall 329 * if appropriate. 330 * 331 * (If the implementation needs to make multiple host syscalls this is 332 * OK; any which might really block must be via safe_syscall(); for those 333 * which are only technically blocking (ie which we know in practice won't 334 * stay in the host kernel indefinitely) it's OK to use libc if necessary. 335 * You must be able to cope with backing out correctly if some safe_syscall 336 * you make in the implementation returns either -TARGET_ERESTARTSYS or 337 * EINTR though.) 338 * 339 * block_signals() cannot be used for interruptible syscalls. 340 * 341 * 342 * How and why the safe_syscall implementation works: 343 * 344 * The basic setup is that we make the host syscall via a known 345 * section of host native assembly. If a signal occurs, our signal 346 * handler checks the interrupted host PC against the addresse of that 347 * known section. If the PC is before or at the address of the syscall 348 * instruction then we change the PC to point at a "return 349 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler 350 * (causing the safe_syscall() call to immediately return that value). 351 * Then in the main.c loop if we see this magic return value we adjust 352 * the guest PC to wind it back to before the system call, and invoke 353 * the guest signal handler as usual. 354 * 355 * This winding-back will happen in two cases: 356 * (1) signal came in just before we took the host syscall (a race); 357 * in this case we'll take the guest signal and have another go 358 * at the syscall afterwards, and this is indistinguishable for the 359 * guest from the timing having been different such that the guest 360 * signal really did win the race 361 * (2) signal came in while the host syscall was blocking, and the 362 * host kernel decided the syscall should be restarted; 363 * in this case we want to restart the guest syscall also, and so 364 * rewinding is the right thing. (Note that "restart" semantics mean 365 * "first call the signal handler, then reattempt the syscall".) 366 * The other situation to consider is when a signal came in while the 367 * host syscall was blocking, and the host kernel decided that the syscall 368 * should not be restarted; in this case QEMU's host signal handler will 369 * be invoked with the PC pointing just after the syscall instruction, 370 * with registers indicating an EINTR return; the special code in the 371 * handler will not kick in, and we will return EINTR to the guest as 372 * we should. 373 * 374 * Notice that we can leave the host kernel to make the decision for 375 * us about whether to do a restart of the syscall or not; we do not 376 * need to check SA_RESTART flags in QEMU or distinguish the various 377 * kinds of restartability. 378 */ 379 #ifdef HAVE_SAFE_SYSCALL 380 /* The core part of this function is implemented in assembly */ 381 extern long safe_syscall_base(int *pending, long number, ...); 382 383 #define safe_syscall(...) \ 384 ({ \ 385 long ret_; \ 386 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ 387 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ 388 if (is_error(ret_)) { \ 389 errno = -ret_; \ 390 ret_ = -1; \ 391 } \ 392 ret_; \ 393 }) 394 395 #else 396 397 /* Fallback for architectures which don't yet provide a safe-syscall assembly 398 * fragment; note that this is racy! 399 * This should go away when all host architectures have been updated. 400 */ 401 #define safe_syscall syscall 402 403 #endif 404 405 /* syscall.c */ 406 int host_to_target_waitstatus(int status); 407 408 /* strace.c */ 409 void print_syscall(void *cpu_env, int num, 410 abi_long arg1, abi_long arg2, abi_long arg3, 411 abi_long arg4, abi_long arg5, abi_long arg6); 412 void print_syscall_ret(void *cpu_env, int num, abi_long ret, 413 abi_long arg1, abi_long arg2, abi_long arg3, 414 abi_long arg4, abi_long arg5, abi_long arg6); 415 /** 416 * print_taken_signal: 417 * @target_signum: target signal being taken 418 * @tinfo: target_siginfo_t which will be passed to the guest for the signal 419 * 420 * Print strace output indicating that this signal is being taken by the guest, 421 * in a format similar to: 422 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- 423 */ 424 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); 425 426 /* signal.c */ 427 void process_pending_signals(CPUArchState *cpu_env); 428 void signal_init(void); 429 int queue_signal(CPUArchState *env, int sig, int si_type, 430 target_siginfo_t *info); 431 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 432 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 433 int target_to_host_signal(int sig); 434 int host_to_target_signal(int sig); 435 long do_sigreturn(CPUArchState *env); 436 long do_rt_sigreturn(CPUArchState *env); 437 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 438 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 439 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx, 440 abi_ulong unew_ctx, abi_long ctx_size); 441 /** 442 * block_signals: block all signals while handling this guest syscall 443 * 444 * Block all signals, and arrange that the signal mask is returned to 445 * its correct value for the guest before we resume execution of guest code. 446 * If this function returns non-zero, then the caller should immediately 447 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending 448 * signal and restart execution of the syscall. 449 * If block_signals() returns zero, then the caller can continue with 450 * emulation of the system call knowing that no signals can be taken 451 * (and therefore that no race conditions will result). 452 * This should only be called once, because if it is called a second time 453 * it will always return non-zero. (Think of it like a mutex that can't 454 * be recursively locked.) 455 * Signals will be unblocked again by process_pending_signals(). 456 * 457 * Return value: non-zero if there was a pending signal, zero if not. 458 */ 459 int block_signals(void); /* Returns non zero if signal pending */ 460 461 #ifdef TARGET_I386 462 /* vm86.c */ 463 void save_v86_state(CPUX86State *env); 464 void handle_vm86_trap(CPUX86State *env, int trapno); 465 void handle_vm86_fault(CPUX86State *env); 466 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 467 #elif defined(TARGET_SPARC64) 468 void sparc64_set_context(CPUSPARCState *env); 469 void sparc64_get_context(CPUSPARCState *env); 470 #endif 471 472 /* mmap.c */ 473 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 474 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 475 int flags, int fd, abi_ulong offset); 476 int target_munmap(abi_ulong start, abi_ulong len); 477 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 478 abi_ulong new_size, unsigned long flags, 479 abi_ulong new_addr); 480 extern unsigned long last_brk; 481 extern abi_ulong mmap_next_start; 482 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong); 483 void mmap_fork_start(void); 484 void mmap_fork_end(int child); 485 486 /* main.c */ 487 extern unsigned long guest_stack_size; 488 489 /* user access */ 490 491 #define VERIFY_READ 0 492 #define VERIFY_WRITE 1 /* implies read access */ 493 494 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 495 { 496 return guest_addr_valid(addr) && 497 (size == 0 || guest_addr_valid(addr + size - 1)) && 498 page_check_range((target_ulong)addr, size, 499 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 500 } 501 502 /* NOTE __get_user and __put_user use host pointers and don't check access. 503 These are usually used to access struct data members once the struct has 504 been locked - usually with lock_user_struct. */ 505 506 /* 507 * Tricky points: 508 * - Use __builtin_choose_expr to avoid type promotion from ?:, 509 * - Invalid sizes result in a compile time error stemming from 510 * the fact that abort has no parameters. 511 * - It's easier to use the endian-specific unaligned load/store 512 * functions than host-endian unaligned load/store plus tswapN. 513 * - The pragmas are necessary only to silence a clang false-positive 514 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 . 515 * - gcc has bugs in its _Pragma() support in some versions, eg 516 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only 517 * include the warning-suppression pragmas for clang 518 */ 519 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member") 520 #define PRAGMA_DISABLE_PACKED_WARNING \ 521 _Pragma("GCC diagnostic push"); \ 522 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"") 523 524 #define PRAGMA_REENABLE_PACKED_WARNING \ 525 _Pragma("GCC diagnostic pop") 526 527 #else 528 #define PRAGMA_DISABLE_PACKED_WARNING 529 #define PRAGMA_REENABLE_PACKED_WARNING 530 #endif 531 532 #define __put_user_e(x, hptr, e) \ 533 do { \ 534 PRAGMA_DISABLE_PACKED_WARNING; \ 535 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 536 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 537 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 538 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 539 ((hptr), (x)), (void)0); \ 540 PRAGMA_REENABLE_PACKED_WARNING; \ 541 } while (0) 542 543 #define __get_user_e(x, hptr, e) \ 544 do { \ 545 PRAGMA_DISABLE_PACKED_WARNING; \ 546 ((x) = (typeof(*hptr))( \ 547 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 548 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 549 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 550 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 551 (hptr)), (void)0); \ 552 PRAGMA_REENABLE_PACKED_WARNING; \ 553 } while (0) 554 555 556 #ifdef TARGET_WORDS_BIGENDIAN 557 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 558 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 559 #else 560 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 561 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 562 #endif 563 564 /* put_user()/get_user() take a guest address and check access */ 565 /* These are usually used to access an atomic data type, such as an int, 566 * that has been passed by address. These internally perform locking 567 * and unlocking on the data type. 568 */ 569 #define put_user(x, gaddr, target_type) \ 570 ({ \ 571 abi_ulong __gaddr = (gaddr); \ 572 target_type *__hptr; \ 573 abi_long __ret = 0; \ 574 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 575 __put_user((x), __hptr); \ 576 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 577 } else \ 578 __ret = -TARGET_EFAULT; \ 579 __ret; \ 580 }) 581 582 #define get_user(x, gaddr, target_type) \ 583 ({ \ 584 abi_ulong __gaddr = (gaddr); \ 585 target_type *__hptr; \ 586 abi_long __ret = 0; \ 587 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 588 __get_user((x), __hptr); \ 589 unlock_user(__hptr, __gaddr, 0); \ 590 } else { \ 591 /* avoid warning */ \ 592 (x) = 0; \ 593 __ret = -TARGET_EFAULT; \ 594 } \ 595 __ret; \ 596 }) 597 598 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 599 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 600 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 601 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 602 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 603 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 604 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 605 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 606 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 607 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 608 609 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 610 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 611 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 612 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 613 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 614 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 615 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 616 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 617 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 618 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 619 620 /* copy_from_user() and copy_to_user() are usually used to copy data 621 * buffers between the target and host. These internally perform 622 * locking/unlocking of the memory. 623 */ 624 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 625 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 626 627 /* Functions for accessing guest memory. The tget and tput functions 628 read/write single values, byteswapping as necessary. The lock_user function 629 gets a pointer to a contiguous area of guest memory, but does not perform 630 any byteswapping. lock_user may return either a pointer to the guest 631 memory, or a temporary buffer. */ 632 633 /* Lock an area of guest memory into the host. If copy is true then the 634 host area will have the same contents as the guest. */ 635 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 636 { 637 if (!access_ok(type, guest_addr, len)) 638 return NULL; 639 #ifdef DEBUG_REMAP 640 { 641 void *addr; 642 addr = g_malloc(len); 643 if (copy) 644 memcpy(addr, g2h(guest_addr), len); 645 else 646 memset(addr, 0, len); 647 return addr; 648 } 649 #else 650 return g2h(guest_addr); 651 #endif 652 } 653 654 /* Unlock an area of guest memory. The first LEN bytes must be 655 flushed back to guest memory. host_ptr = NULL is explicitly 656 allowed and does nothing. */ 657 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 658 long len) 659 { 660 661 #ifdef DEBUG_REMAP 662 if (!host_ptr) 663 return; 664 if (host_ptr == g2h(guest_addr)) 665 return; 666 if (len > 0) 667 memcpy(g2h(guest_addr), host_ptr, len); 668 g_free(host_ptr); 669 #endif 670 } 671 672 /* Return the length of a string in target memory or -TARGET_EFAULT if 673 access error. */ 674 abi_long target_strlen(abi_ulong gaddr); 675 676 /* Like lock_user but for null terminated strings. */ 677 static inline void *lock_user_string(abi_ulong guest_addr) 678 { 679 abi_long len; 680 len = target_strlen(guest_addr); 681 if (len < 0) 682 return NULL; 683 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 684 } 685 686 /* Helper macros for locking/unlocking a target struct. */ 687 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 688 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 689 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 690 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 691 692 #include <pthread.h> 693 694 static inline int is_error(abi_long ret) 695 { 696 return (abi_ulong)ret >= (abi_ulong)(-4096); 697 } 698 699 #if TARGET_ABI_BITS == 32 700 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) 701 { 702 #ifdef TARGET_WORDS_BIGENDIAN 703 return ((uint64_t)word0 << 32) | word1; 704 #else 705 return ((uint64_t)word1 << 32) | word0; 706 #endif 707 } 708 #else /* TARGET_ABI_BITS == 32 */ 709 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) 710 { 711 return word0; 712 } 713 #endif /* TARGET_ABI_BITS != 32 */ 714 715 void print_termios(void *arg); 716 717 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ 718 #ifdef TARGET_ARM 719 static inline int regpairs_aligned(void *cpu_env, int num) 720 { 721 return ((((CPUARMState *)cpu_env)->eabi) == 1) ; 722 } 723 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32) 724 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 725 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) 726 /* 727 * SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs 728 * of registers which translates to the same as ARM/MIPS, because we start with 729 * r3 as arg1 730 */ 731 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 732 #elif defined(TARGET_SH4) 733 /* SH4 doesn't align register pairs, except for p{read,write}64 */ 734 static inline int regpairs_aligned(void *cpu_env, int num) 735 { 736 switch (num) { 737 case TARGET_NR_pread64: 738 case TARGET_NR_pwrite64: 739 return 1; 740 741 default: 742 return 0; 743 } 744 } 745 #elif defined(TARGET_XTENSA) 746 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 747 #else 748 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; } 749 #endif 750 751 /** 752 * preexit_cleanup: housekeeping before the guest exits 753 * 754 * env: the CPU state 755 * code: the exit code 756 */ 757 void preexit_cleanup(CPUArchState *env, int code); 758 759 /* Include target-specific struct and function definitions; 760 * they may need access to the target-independent structures 761 * above, so include them last. 762 */ 763 #include "target_cpu.h" 764 #include "target_structs.h" 765 766 #endif /* QEMU_H */ 767