1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "hostdep.h" 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #endif /* DEBUG_REMAP */ 12 13 #include "exec/user/abitypes.h" 14 15 #include "exec/user/thunk.h" 16 #include "syscall_defs.h" 17 #include "target_syscall.h" 18 #include "exec/gdbstub.h" 19 #include "qemu/queue.h" 20 21 /* This is the size of the host kernel's sigset_t, needed where we make 22 * direct system calls that take a sigset_t pointer and a size. 23 */ 24 #define SIGSET_T_SIZE (_NSIG / 8) 25 26 /* This struct is used to hold certain information about the image. 27 * Basically, it replicates in user space what would be certain 28 * task_struct fields in the kernel 29 */ 30 struct image_info { 31 abi_ulong load_bias; 32 abi_ulong load_addr; 33 abi_ulong start_code; 34 abi_ulong end_code; 35 abi_ulong start_data; 36 abi_ulong end_data; 37 abi_ulong start_brk; 38 abi_ulong brk; 39 abi_ulong start_mmap; 40 abi_ulong start_stack; 41 abi_ulong stack_limit; 42 abi_ulong entry; 43 abi_ulong code_offset; 44 abi_ulong data_offset; 45 abi_ulong saved_auxv; 46 abi_ulong auxv_len; 47 abi_ulong arg_start; 48 abi_ulong arg_end; 49 abi_ulong arg_strings; 50 abi_ulong env_strings; 51 abi_ulong file_string; 52 uint32_t elf_flags; 53 int personality; 54 55 /* The fields below are used in FDPIC mode. */ 56 abi_ulong loadmap_addr; 57 uint16_t nsegs; 58 void *loadsegs; 59 abi_ulong pt_dynamic_addr; 60 abi_ulong interpreter_loadmap_addr; 61 abi_ulong interpreter_pt_dynamic_addr; 62 struct image_info *other_info; 63 }; 64 65 #ifdef TARGET_I386 66 /* Information about the current linux thread */ 67 struct vm86_saved_state { 68 uint32_t eax; /* return code */ 69 uint32_t ebx; 70 uint32_t ecx; 71 uint32_t edx; 72 uint32_t esi; 73 uint32_t edi; 74 uint32_t ebp; 75 uint32_t esp; 76 uint32_t eflags; 77 uint32_t eip; 78 uint16_t cs, ss, ds, es, fs, gs; 79 }; 80 #endif 81 82 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 83 /* FPU emulator */ 84 #include "nwfpe/fpa11.h" 85 #endif 86 87 #define MAX_SIGQUEUE_SIZE 1024 88 89 struct emulated_sigtable { 90 int pending; /* true if signal is pending */ 91 target_siginfo_t info; 92 }; 93 94 /* NOTE: we force a big alignment so that the stack stored after is 95 aligned too */ 96 typedef struct TaskState { 97 pid_t ts_tid; /* tid (or pid) of this task */ 98 #ifdef TARGET_ARM 99 # ifdef TARGET_ABI32 100 /* FPA state */ 101 FPA11 fpa; 102 # endif 103 int swi_errno; 104 #endif 105 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 106 abi_ulong target_v86; 107 struct vm86_saved_state vm86_saved_regs; 108 struct target_vm86plus_struct vm86plus; 109 uint32_t v86flags; 110 uint32_t v86mask; 111 #endif 112 abi_ulong child_tidptr; 113 #ifdef TARGET_M68K 114 int sim_syscalls; 115 abi_ulong tp_value; 116 #endif 117 #if defined(TARGET_ARM) || defined(TARGET_M68K) 118 /* Extra fields for semihosted binaries. */ 119 abi_ulong heap_base; 120 abi_ulong heap_limit; 121 #endif 122 abi_ulong stack_base; 123 int used; /* non zero if used */ 124 struct image_info *info; 125 struct linux_binprm *bprm; 126 127 struct emulated_sigtable sync_signal; 128 struct emulated_sigtable sigtab[TARGET_NSIG]; 129 /* This thread's signal mask, as requested by the guest program. 130 * The actual signal mask of this thread may differ: 131 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 132 * + sometimes we block all signals to avoid races 133 */ 134 sigset_t signal_mask; 135 /* The signal mask imposed by a guest sigsuspend syscall, if we are 136 * currently in the middle of such a syscall 137 */ 138 sigset_t sigsuspend_mask; 139 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 140 int in_sigsuspend; 141 142 /* Nonzero if process_pending_signals() needs to do something (either 143 * handle a pending signal or unblock signals). 144 * This flag is written from a signal handler so should be accessed via 145 * the atomic_read() and atomic_write() functions. (It is not accessed 146 * from multiple threads.) 147 */ 148 int signal_pending; 149 150 } __attribute__((aligned(16))) TaskState; 151 152 extern char *exec_path; 153 void init_task_state(TaskState *ts); 154 void task_settid(TaskState *); 155 void stop_all_tasks(void); 156 extern const char *qemu_uname_release; 157 extern unsigned long mmap_min_addr; 158 159 /* ??? See if we can avoid exposing so much of the loader internals. */ 160 161 /* Read a good amount of data initially, to hopefully get all the 162 program headers loaded. */ 163 #define BPRM_BUF_SIZE 1024 164 165 /* 166 * This structure is used to hold the arguments that are 167 * used when loading binaries. 168 */ 169 struct linux_binprm { 170 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 171 abi_ulong p; 172 int fd; 173 int e_uid, e_gid; 174 int argc, envc; 175 char **argv; 176 char **envp; 177 char * filename; /* Name of binary */ 178 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 179 }; 180 181 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 182 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 183 abi_ulong stringp, int push_ptr); 184 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 185 struct target_pt_regs * regs, struct image_info *infop, 186 struct linux_binprm *); 187 188 /* Returns true if the image uses the FDPIC ABI. If this is the case, 189 * we have to provide some information (loadmap, pt_dynamic_info) such 190 * that the program can be relocated adequately. This is also useful 191 * when handling signals. 192 */ 193 int info_is_fdpic(struct image_info *info); 194 195 uint32_t get_elf_eflags(int fd); 196 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 197 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 198 199 abi_long memcpy_to_target(abi_ulong dest, const void *src, 200 unsigned long len); 201 void target_set_brk(abi_ulong new_brk); 202 abi_long do_brk(abi_ulong new_brk); 203 void syscall_init(void); 204 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 205 abi_long arg2, abi_long arg3, abi_long arg4, 206 abi_long arg5, abi_long arg6, abi_long arg7, 207 abi_long arg8); 208 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 209 extern __thread CPUState *thread_cpu; 210 void cpu_loop(CPUArchState *env); 211 const char *target_strerror(int err); 212 int get_osversion(void); 213 void init_qemu_uname_release(void); 214 void fork_start(void); 215 void fork_end(int child); 216 217 /* Creates the initial guest address space in the host memory space using 218 * the given host start address hint and size. The guest_start parameter 219 * specifies the start address of the guest space. guest_base will be the 220 * difference between the host start address computed by this function and 221 * guest_start. If fixed is specified, then the mapped address space must 222 * start at host_start. The real start address of the mapped memory space is 223 * returned or -1 if there was an error. 224 */ 225 unsigned long init_guest_space(unsigned long host_start, 226 unsigned long host_size, 227 unsigned long guest_start, 228 bool fixed); 229 230 #include "qemu/log.h" 231 232 /* safe_syscall.S */ 233 234 /** 235 * safe_syscall: 236 * @int number: number of system call to make 237 * ...: arguments to the system call 238 * 239 * Call a system call if guest signal not pending. 240 * This has the same API as the libc syscall() function, except that it 241 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. 242 * 243 * Returns: the system call result, or -1 with an error code in errno 244 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing 245 * with any of the host errno values.) 246 */ 247 248 /* A guide to using safe_syscall() to handle interactions between guest 249 * syscalls and guest signals: 250 * 251 * Guest syscalls come in two flavours: 252 * 253 * (1) Non-interruptible syscalls 254 * 255 * These are guest syscalls that never get interrupted by signals and 256 * so never return EINTR. They can be implemented straightforwardly in 257 * QEMU: just make sure that if the implementation code has to make any 258 * blocking calls that those calls are retried if they return EINTR. 259 * It's also OK to implement these with safe_syscall, though it will be 260 * a little less efficient if a signal is delivered at the 'wrong' moment. 261 * 262 * Some non-interruptible syscalls need to be handled using block_signals() 263 * to block signals for the duration of the syscall. This mainly applies 264 * to code which needs to modify the data structures used by the 265 * host_signal_handler() function and the functions it calls, including 266 * all syscalls which change the thread's signal mask. 267 * 268 * (2) Interruptible syscalls 269 * 270 * These are guest syscalls that can be interrupted by signals and 271 * for which we need to either return EINTR or arrange for the guest 272 * syscall to be restarted. This category includes both syscalls which 273 * always restart (and in the kernel return -ERESTARTNOINTR), ones 274 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND 275 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart 276 * if the handler was registered with SA_RESTART (kernel returns 277 * -ERESTARTSYS). System calls which are only interruptible in some 278 * situations (like 'open') also need to be handled this way. 279 * 280 * Here it is important that the host syscall is made 281 * via this safe_syscall() function, and *not* via the host libc. 282 * If the host libc is used then the implementation will appear to work 283 * most of the time, but there will be a race condition where a 284 * signal could arrive just before we make the host syscall inside libc, 285 * and then then guest syscall will not correctly be interrupted. 286 * Instead the implementation of the guest syscall can use the safe_syscall 287 * function but otherwise just return the result or errno in the usual 288 * way; the main loop code will take care of restarting the syscall 289 * if appropriate. 290 * 291 * (If the implementation needs to make multiple host syscalls this is 292 * OK; any which might really block must be via safe_syscall(); for those 293 * which are only technically blocking (ie which we know in practice won't 294 * stay in the host kernel indefinitely) it's OK to use libc if necessary. 295 * You must be able to cope with backing out correctly if some safe_syscall 296 * you make in the implementation returns either -TARGET_ERESTARTSYS or 297 * EINTR though.) 298 * 299 * block_signals() cannot be used for interruptible syscalls. 300 * 301 * 302 * How and why the safe_syscall implementation works: 303 * 304 * The basic setup is that we make the host syscall via a known 305 * section of host native assembly. If a signal occurs, our signal 306 * handler checks the interrupted host PC against the addresse of that 307 * known section. If the PC is before or at the address of the syscall 308 * instruction then we change the PC to point at a "return 309 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler 310 * (causing the safe_syscall() call to immediately return that value). 311 * Then in the main.c loop if we see this magic return value we adjust 312 * the guest PC to wind it back to before the system call, and invoke 313 * the guest signal handler as usual. 314 * 315 * This winding-back will happen in two cases: 316 * (1) signal came in just before we took the host syscall (a race); 317 * in this case we'll take the guest signal and have another go 318 * at the syscall afterwards, and this is indistinguishable for the 319 * guest from the timing having been different such that the guest 320 * signal really did win the race 321 * (2) signal came in while the host syscall was blocking, and the 322 * host kernel decided the syscall should be restarted; 323 * in this case we want to restart the guest syscall also, and so 324 * rewinding is the right thing. (Note that "restart" semantics mean 325 * "first call the signal handler, then reattempt the syscall".) 326 * The other situation to consider is when a signal came in while the 327 * host syscall was blocking, and the host kernel decided that the syscall 328 * should not be restarted; in this case QEMU's host signal handler will 329 * be invoked with the PC pointing just after the syscall instruction, 330 * with registers indicating an EINTR return; the special code in the 331 * handler will not kick in, and we will return EINTR to the guest as 332 * we should. 333 * 334 * Notice that we can leave the host kernel to make the decision for 335 * us about whether to do a restart of the syscall or not; we do not 336 * need to check SA_RESTART flags in QEMU or distinguish the various 337 * kinds of restartability. 338 */ 339 #ifdef HAVE_SAFE_SYSCALL 340 /* The core part of this function is implemented in assembly */ 341 extern long safe_syscall_base(int *pending, long number, ...); 342 343 #define safe_syscall(...) \ 344 ({ \ 345 long ret_; \ 346 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ 347 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ 348 if (is_error(ret_)) { \ 349 errno = -ret_; \ 350 ret_ = -1; \ 351 } \ 352 ret_; \ 353 }) 354 355 #else 356 357 /* Fallback for architectures which don't yet provide a safe-syscall assembly 358 * fragment; note that this is racy! 359 * This should go away when all host architectures have been updated. 360 */ 361 #define safe_syscall syscall 362 363 #endif 364 365 /* syscall.c */ 366 int host_to_target_waitstatus(int status); 367 368 /* strace.c */ 369 void print_syscall(int num, 370 abi_long arg1, abi_long arg2, abi_long arg3, 371 abi_long arg4, abi_long arg5, abi_long arg6); 372 void print_syscall_ret(int num, abi_long arg1); 373 /** 374 * print_taken_signal: 375 * @target_signum: target signal being taken 376 * @tinfo: target_siginfo_t which will be passed to the guest for the signal 377 * 378 * Print strace output indicating that this signal is being taken by the guest, 379 * in a format similar to: 380 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- 381 */ 382 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); 383 extern int do_strace; 384 385 /* signal.c */ 386 void process_pending_signals(CPUArchState *cpu_env); 387 void signal_init(void); 388 int queue_signal(CPUArchState *env, int sig, int si_type, 389 target_siginfo_t *info); 390 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 391 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 392 int target_to_host_signal(int sig); 393 int host_to_target_signal(int sig); 394 long do_sigreturn(CPUArchState *env); 395 long do_rt_sigreturn(CPUArchState *env); 396 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 397 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 398 /** 399 * block_signals: block all signals while handling this guest syscall 400 * 401 * Block all signals, and arrange that the signal mask is returned to 402 * its correct value for the guest before we resume execution of guest code. 403 * If this function returns non-zero, then the caller should immediately 404 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending 405 * signal and restart execution of the syscall. 406 * If block_signals() returns zero, then the caller can continue with 407 * emulation of the system call knowing that no signals can be taken 408 * (and therefore that no race conditions will result). 409 * This should only be called once, because if it is called a second time 410 * it will always return non-zero. (Think of it like a mutex that can't 411 * be recursively locked.) 412 * Signals will be unblocked again by process_pending_signals(). 413 * 414 * Return value: non-zero if there was a pending signal, zero if not. 415 */ 416 int block_signals(void); /* Returns non zero if signal pending */ 417 418 #ifdef TARGET_I386 419 /* vm86.c */ 420 void save_v86_state(CPUX86State *env); 421 void handle_vm86_trap(CPUX86State *env, int trapno); 422 void handle_vm86_fault(CPUX86State *env); 423 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 424 #elif defined(TARGET_SPARC64) 425 void sparc64_set_context(CPUSPARCState *env); 426 void sparc64_get_context(CPUSPARCState *env); 427 #endif 428 429 /* mmap.c */ 430 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 431 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 432 int flags, int fd, abi_ulong offset); 433 int target_munmap(abi_ulong start, abi_ulong len); 434 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 435 abi_ulong new_size, unsigned long flags, 436 abi_ulong new_addr); 437 extern unsigned long last_brk; 438 extern abi_ulong mmap_next_start; 439 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 440 void mmap_fork_start(void); 441 void mmap_fork_end(int child); 442 443 /* main.c */ 444 extern unsigned long guest_stack_size; 445 446 /* user access */ 447 448 #define VERIFY_READ 0 449 #define VERIFY_WRITE 1 /* implies read access */ 450 451 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 452 { 453 return page_check_range((target_ulong)addr, size, 454 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 455 } 456 457 /* NOTE __get_user and __put_user use host pointers and don't check access. 458 These are usually used to access struct data members once the struct has 459 been locked - usually with lock_user_struct. */ 460 461 /* Tricky points: 462 - Use __builtin_choose_expr to avoid type promotion from ?:, 463 - Invalid sizes result in a compile time error stemming from 464 the fact that abort has no parameters. 465 - It's easier to use the endian-specific unaligned load/store 466 functions than host-endian unaligned load/store plus tswapN. */ 467 468 #define __put_user_e(x, hptr, e) \ 469 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 470 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 471 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 472 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 473 ((hptr), (x)), (void)0) 474 475 #define __get_user_e(x, hptr, e) \ 476 ((x) = (typeof(*hptr))( \ 477 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 478 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 479 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 480 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 481 (hptr)), (void)0) 482 483 #ifdef TARGET_WORDS_BIGENDIAN 484 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 485 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 486 #else 487 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 488 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 489 #endif 490 491 /* put_user()/get_user() take a guest address and check access */ 492 /* These are usually used to access an atomic data type, such as an int, 493 * that has been passed by address. These internally perform locking 494 * and unlocking on the data type. 495 */ 496 #define put_user(x, gaddr, target_type) \ 497 ({ \ 498 abi_ulong __gaddr = (gaddr); \ 499 target_type *__hptr; \ 500 abi_long __ret = 0; \ 501 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 502 __put_user((x), __hptr); \ 503 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 504 } else \ 505 __ret = -TARGET_EFAULT; \ 506 __ret; \ 507 }) 508 509 #define get_user(x, gaddr, target_type) \ 510 ({ \ 511 abi_ulong __gaddr = (gaddr); \ 512 target_type *__hptr; \ 513 abi_long __ret = 0; \ 514 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 515 __get_user((x), __hptr); \ 516 unlock_user(__hptr, __gaddr, 0); \ 517 } else { \ 518 /* avoid warning */ \ 519 (x) = 0; \ 520 __ret = -TARGET_EFAULT; \ 521 } \ 522 __ret; \ 523 }) 524 525 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 526 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 527 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 528 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 529 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 530 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 531 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 532 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 533 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 534 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 535 536 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 537 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 538 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 539 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 540 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 541 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 542 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 543 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 544 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 545 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 546 547 /* copy_from_user() and copy_to_user() are usually used to copy data 548 * buffers between the target and host. These internally perform 549 * locking/unlocking of the memory. 550 */ 551 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 552 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 553 554 /* Functions for accessing guest memory. The tget and tput functions 555 read/write single values, byteswapping as necessary. The lock_user function 556 gets a pointer to a contiguous area of guest memory, but does not perform 557 any byteswapping. lock_user may return either a pointer to the guest 558 memory, or a temporary buffer. */ 559 560 /* Lock an area of guest memory into the host. If copy is true then the 561 host area will have the same contents as the guest. */ 562 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 563 { 564 if (!access_ok(type, guest_addr, len)) 565 return NULL; 566 #ifdef DEBUG_REMAP 567 { 568 void *addr; 569 addr = g_malloc(len); 570 if (copy) 571 memcpy(addr, g2h(guest_addr), len); 572 else 573 memset(addr, 0, len); 574 return addr; 575 } 576 #else 577 return g2h(guest_addr); 578 #endif 579 } 580 581 /* Unlock an area of guest memory. The first LEN bytes must be 582 flushed back to guest memory. host_ptr = NULL is explicitly 583 allowed and does nothing. */ 584 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 585 long len) 586 { 587 588 #ifdef DEBUG_REMAP 589 if (!host_ptr) 590 return; 591 if (host_ptr == g2h(guest_addr)) 592 return; 593 if (len > 0) 594 memcpy(g2h(guest_addr), host_ptr, len); 595 g_free(host_ptr); 596 #endif 597 } 598 599 /* Return the length of a string in target memory or -TARGET_EFAULT if 600 access error. */ 601 abi_long target_strlen(abi_ulong gaddr); 602 603 /* Like lock_user but for null terminated strings. */ 604 static inline void *lock_user_string(abi_ulong guest_addr) 605 { 606 abi_long len; 607 len = target_strlen(guest_addr); 608 if (len < 0) 609 return NULL; 610 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 611 } 612 613 /* Helper macros for locking/unlocking a target struct. */ 614 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 615 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 616 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 617 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 618 619 #include <pthread.h> 620 621 static inline int is_error(abi_long ret) 622 { 623 return (abi_ulong)ret >= (abi_ulong)(-4096); 624 } 625 626 /* Include target-specific struct and function definitions; 627 * they may need access to the target-independent structures 628 * above, so include them last. 629 */ 630 #include "target_cpu.h" 631 #include "target_structs.h" 632 633 #endif /* QEMU_H */ 634