xref: /openbmc/qemu/linux-user/qemu.h (revision 744c72a8)
1 #ifndef QEMU_H
2 #define QEMU_H
3 
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
8 
9 #undef DEBUG_REMAP
10 
11 #include "exec/user/abitypes.h"
12 
13 #include "exec/user/thunk.h"
14 #include "syscall_defs.h"
15 #include "target_syscall.h"
16 #include "exec/gdbstub.h"
17 
18 /* This is the size of the host kernel's sigset_t, needed where we make
19  * direct system calls that take a sigset_t pointer and a size.
20  */
21 #define SIGSET_T_SIZE (_NSIG / 8)
22 
23 /* This struct is used to hold certain information about the image.
24  * Basically, it replicates in user space what would be certain
25  * task_struct fields in the kernel
26  */
27 struct image_info {
28         abi_ulong       load_bias;
29         abi_ulong       load_addr;
30         abi_ulong       start_code;
31         abi_ulong       end_code;
32         abi_ulong       start_data;
33         abi_ulong       end_data;
34         abi_ulong       start_brk;
35         abi_ulong       brk;
36         abi_ulong       reserve_brk;
37         abi_ulong       start_mmap;
38         abi_ulong       start_stack;
39         abi_ulong       stack_limit;
40         abi_ulong       entry;
41         abi_ulong       code_offset;
42         abi_ulong       data_offset;
43         abi_ulong       saved_auxv;
44         abi_ulong       auxv_len;
45         abi_ulong       arg_start;
46         abi_ulong       arg_end;
47         abi_ulong       arg_strings;
48         abi_ulong       env_strings;
49         abi_ulong       file_string;
50         uint32_t        elf_flags;
51         int		personality;
52         abi_ulong       alignment;
53 
54         /* The fields below are used in FDPIC mode.  */
55         abi_ulong       loadmap_addr;
56         uint16_t        nsegs;
57         void           *loadsegs;
58         abi_ulong       pt_dynamic_addr;
59         abi_ulong       interpreter_loadmap_addr;
60         abi_ulong       interpreter_pt_dynamic_addr;
61         struct image_info *other_info;
62 
63         /* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */
64         uint32_t        note_flags;
65 
66 #ifdef TARGET_MIPS
67         int             fp_abi;
68         int             interp_fp_abi;
69 #endif
70 };
71 
72 #ifdef TARGET_I386
73 /* Information about the current linux thread */
74 struct vm86_saved_state {
75     uint32_t eax; /* return code */
76     uint32_t ebx;
77     uint32_t ecx;
78     uint32_t edx;
79     uint32_t esi;
80     uint32_t edi;
81     uint32_t ebp;
82     uint32_t esp;
83     uint32_t eflags;
84     uint32_t eip;
85     uint16_t cs, ss, ds, es, fs, gs;
86 };
87 #endif
88 
89 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
90 /* FPU emulator */
91 #include "nwfpe/fpa11.h"
92 #endif
93 
94 #define MAX_SIGQUEUE_SIZE 1024
95 
96 struct emulated_sigtable {
97     int pending; /* true if signal is pending */
98     target_siginfo_t info;
99 };
100 
101 /* NOTE: we force a big alignment so that the stack stored after is
102    aligned too */
103 typedef struct TaskState {
104     pid_t ts_tid;     /* tid (or pid) of this task */
105 #ifdef TARGET_ARM
106 # ifdef TARGET_ABI32
107     /* FPA state */
108     FPA11 fpa;
109 # endif
110 #endif
111 #if defined(TARGET_ARM) || defined(TARGET_RISCV)
112     int swi_errno;
113 #endif
114 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
115     abi_ulong target_v86;
116     struct vm86_saved_state vm86_saved_regs;
117     struct target_vm86plus_struct vm86plus;
118     uint32_t v86flags;
119     uint32_t v86mask;
120 #endif
121     abi_ulong child_tidptr;
122 #ifdef TARGET_M68K
123     abi_ulong tp_value;
124 #endif
125 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_RISCV)
126     /* Extra fields for semihosted binaries.  */
127     abi_ulong heap_base;
128     abi_ulong heap_limit;
129 #endif
130     abi_ulong stack_base;
131     int used; /* non zero if used */
132     struct image_info *info;
133     struct linux_binprm *bprm;
134 
135     struct emulated_sigtable sync_signal;
136     struct emulated_sigtable sigtab[TARGET_NSIG];
137     /* This thread's signal mask, as requested by the guest program.
138      * The actual signal mask of this thread may differ:
139      *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
140      *  + sometimes we block all signals to avoid races
141      */
142     sigset_t signal_mask;
143     /* The signal mask imposed by a guest sigsuspend syscall, if we are
144      * currently in the middle of such a syscall
145      */
146     sigset_t sigsuspend_mask;
147     /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
148     int in_sigsuspend;
149 
150     /* Nonzero if process_pending_signals() needs to do something (either
151      * handle a pending signal or unblock signals).
152      * This flag is written from a signal handler so should be accessed via
153      * the qatomic_read() and qatomic_set() functions. (It is not accessed
154      * from multiple threads.)
155      */
156     int signal_pending;
157 
158     /* This thread's sigaltstack, if it has one */
159     struct target_sigaltstack sigaltstack_used;
160 } __attribute__((aligned(16))) TaskState;
161 
162 extern char *exec_path;
163 void init_task_state(TaskState *ts);
164 void task_settid(TaskState *);
165 void stop_all_tasks(void);
166 extern const char *qemu_uname_release;
167 extern unsigned long mmap_min_addr;
168 
169 /* ??? See if we can avoid exposing so much of the loader internals.  */
170 
171 /* Read a good amount of data initially, to hopefully get all the
172    program headers loaded.  */
173 #define BPRM_BUF_SIZE  1024
174 
175 /*
176  * This structure is used to hold the arguments that are
177  * used when loading binaries.
178  */
179 struct linux_binprm {
180         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
181         abi_ulong p;
182         int fd;
183         int e_uid, e_gid;
184         int argc, envc;
185         char **argv;
186         char **envp;
187         char * filename;        /* Name of binary */
188         int (*core_dump)(int, const CPUArchState *); /* coredump routine */
189 };
190 
191 typedef struct IOCTLEntry IOCTLEntry;
192 
193 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
194                              int fd, int cmd, abi_long arg);
195 
196 struct IOCTLEntry {
197     int target_cmd;
198     unsigned int host_cmd;
199     const char *name;
200     int access;
201     do_ioctl_fn *do_ioctl;
202     const argtype arg_type[5];
203 };
204 
205 extern IOCTLEntry ioctl_entries[];
206 
207 #define IOC_R 0x0001
208 #define IOC_W 0x0002
209 #define IOC_RW (IOC_R | IOC_W)
210 
211 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
212 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
213                               abi_ulong stringp, int push_ptr);
214 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
215              struct target_pt_regs * regs, struct image_info *infop,
216              struct linux_binprm *);
217 
218 /* Returns true if the image uses the FDPIC ABI. If this is the case,
219  * we have to provide some information (loadmap, pt_dynamic_info) such
220  * that the program can be relocated adequately. This is also useful
221  * when handling signals.
222  */
223 int info_is_fdpic(struct image_info *info);
224 
225 uint32_t get_elf_eflags(int fd);
226 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
227 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
228 
229 abi_long memcpy_to_target(abi_ulong dest, const void *src,
230                           unsigned long len);
231 void target_set_brk(abi_ulong new_brk);
232 abi_long do_brk(abi_ulong new_brk);
233 void syscall_init(void);
234 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
235                     abi_long arg2, abi_long arg3, abi_long arg4,
236                     abi_long arg5, abi_long arg6, abi_long arg7,
237                     abi_long arg8);
238 extern __thread CPUState *thread_cpu;
239 void cpu_loop(CPUArchState *env);
240 const char *target_strerror(int err);
241 int get_osversion(void);
242 void init_qemu_uname_release(void);
243 void fork_start(void);
244 void fork_end(int child);
245 
246 /**
247  * probe_guest_base:
248  * @image_name: the executable being loaded
249  * @loaddr: the lowest fixed address in the executable
250  * @hiaddr: the highest fixed address in the executable
251  *
252  * Creates the initial guest address space in the host memory space.
253  *
254  * If @loaddr == 0, then no address in the executable is fixed,
255  * i.e. it is fully relocatable.  In that case @hiaddr is the size
256  * of the executable.
257  *
258  * This function will not return if a valid value for guest_base
259  * cannot be chosen.  On return, the executable loader can expect
260  *
261  *    target_mmap(loaddr, hiaddr - loaddr, ...)
262  *
263  * to succeed.
264  */
265 void probe_guest_base(const char *image_name,
266                       abi_ulong loaddr, abi_ulong hiaddr);
267 
268 #include "qemu/log.h"
269 
270 /* safe_syscall.S */
271 
272 /**
273  * safe_syscall:
274  * @int number: number of system call to make
275  * ...: arguments to the system call
276  *
277  * Call a system call if guest signal not pending.
278  * This has the same API as the libc syscall() function, except that it
279  * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
280  *
281  * Returns: the system call result, or -1 with an error code in errno
282  * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
283  * with any of the host errno values.)
284  */
285 
286 /* A guide to using safe_syscall() to handle interactions between guest
287  * syscalls and guest signals:
288  *
289  * Guest syscalls come in two flavours:
290  *
291  * (1) Non-interruptible syscalls
292  *
293  * These are guest syscalls that never get interrupted by signals and
294  * so never return EINTR. They can be implemented straightforwardly in
295  * QEMU: just make sure that if the implementation code has to make any
296  * blocking calls that those calls are retried if they return EINTR.
297  * It's also OK to implement these with safe_syscall, though it will be
298  * a little less efficient if a signal is delivered at the 'wrong' moment.
299  *
300  * Some non-interruptible syscalls need to be handled using block_signals()
301  * to block signals for the duration of the syscall. This mainly applies
302  * to code which needs to modify the data structures used by the
303  * host_signal_handler() function and the functions it calls, including
304  * all syscalls which change the thread's signal mask.
305  *
306  * (2) Interruptible syscalls
307  *
308  * These are guest syscalls that can be interrupted by signals and
309  * for which we need to either return EINTR or arrange for the guest
310  * syscall to be restarted. This category includes both syscalls which
311  * always restart (and in the kernel return -ERESTARTNOINTR), ones
312  * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
313  * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
314  * if the handler was registered with SA_RESTART (kernel returns
315  * -ERESTARTSYS). System calls which are only interruptible in some
316  * situations (like 'open') also need to be handled this way.
317  *
318  * Here it is important that the host syscall is made
319  * via this safe_syscall() function, and *not* via the host libc.
320  * If the host libc is used then the implementation will appear to work
321  * most of the time, but there will be a race condition where a
322  * signal could arrive just before we make the host syscall inside libc,
323  * and then then guest syscall will not correctly be interrupted.
324  * Instead the implementation of the guest syscall can use the safe_syscall
325  * function but otherwise just return the result or errno in the usual
326  * way; the main loop code will take care of restarting the syscall
327  * if appropriate.
328  *
329  * (If the implementation needs to make multiple host syscalls this is
330  * OK; any which might really block must be via safe_syscall(); for those
331  * which are only technically blocking (ie which we know in practice won't
332  * stay in the host kernel indefinitely) it's OK to use libc if necessary.
333  * You must be able to cope with backing out correctly if some safe_syscall
334  * you make in the implementation returns either -TARGET_ERESTARTSYS or
335  * EINTR though.)
336  *
337  * block_signals() cannot be used for interruptible syscalls.
338  *
339  *
340  * How and why the safe_syscall implementation works:
341  *
342  * The basic setup is that we make the host syscall via a known
343  * section of host native assembly. If a signal occurs, our signal
344  * handler checks the interrupted host PC against the addresse of that
345  * known section. If the PC is before or at the address of the syscall
346  * instruction then we change the PC to point at a "return
347  * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
348  * (causing the safe_syscall() call to immediately return that value).
349  * Then in the main.c loop if we see this magic return value we adjust
350  * the guest PC to wind it back to before the system call, and invoke
351  * the guest signal handler as usual.
352  *
353  * This winding-back will happen in two cases:
354  * (1) signal came in just before we took the host syscall (a race);
355  *   in this case we'll take the guest signal and have another go
356  *   at the syscall afterwards, and this is indistinguishable for the
357  *   guest from the timing having been different such that the guest
358  *   signal really did win the race
359  * (2) signal came in while the host syscall was blocking, and the
360  *   host kernel decided the syscall should be restarted;
361  *   in this case we want to restart the guest syscall also, and so
362  *   rewinding is the right thing. (Note that "restart" semantics mean
363  *   "first call the signal handler, then reattempt the syscall".)
364  * The other situation to consider is when a signal came in while the
365  * host syscall was blocking, and the host kernel decided that the syscall
366  * should not be restarted; in this case QEMU's host signal handler will
367  * be invoked with the PC pointing just after the syscall instruction,
368  * with registers indicating an EINTR return; the special code in the
369  * handler will not kick in, and we will return EINTR to the guest as
370  * we should.
371  *
372  * Notice that we can leave the host kernel to make the decision for
373  * us about whether to do a restart of the syscall or not; we do not
374  * need to check SA_RESTART flags in QEMU or distinguish the various
375  * kinds of restartability.
376  */
377 #ifdef HAVE_SAFE_SYSCALL
378 /* The core part of this function is implemented in assembly */
379 extern long safe_syscall_base(int *pending, long number, ...);
380 
381 #define safe_syscall(...)                                               \
382     ({                                                                  \
383         long ret_;                                                      \
384         int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
385         ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
386         if (is_error(ret_)) {                                           \
387             errno = -ret_;                                              \
388             ret_ = -1;                                                  \
389         }                                                               \
390         ret_;                                                           \
391     })
392 
393 #else
394 
395 /* Fallback for architectures which don't yet provide a safe-syscall assembly
396  * fragment; note that this is racy!
397  * This should go away when all host architectures have been updated.
398  */
399 #define safe_syscall syscall
400 
401 #endif
402 
403 /* syscall.c */
404 int host_to_target_waitstatus(int status);
405 
406 /* strace.c */
407 void print_syscall(void *cpu_env, int num,
408                    abi_long arg1, abi_long arg2, abi_long arg3,
409                    abi_long arg4, abi_long arg5, abi_long arg6);
410 void print_syscall_ret(void *cpu_env, int num, abi_long ret,
411                        abi_long arg1, abi_long arg2, abi_long arg3,
412                        abi_long arg4, abi_long arg5, abi_long arg6);
413 /**
414  * print_taken_signal:
415  * @target_signum: target signal being taken
416  * @tinfo: target_siginfo_t which will be passed to the guest for the signal
417  *
418  * Print strace output indicating that this signal is being taken by the guest,
419  * in a format similar to:
420  * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
421  */
422 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
423 
424 /* signal.c */
425 void process_pending_signals(CPUArchState *cpu_env);
426 void signal_init(void);
427 int queue_signal(CPUArchState *env, int sig, int si_type,
428                  target_siginfo_t *info);
429 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
430 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
431 int target_to_host_signal(int sig);
432 int host_to_target_signal(int sig);
433 long do_sigreturn(CPUArchState *env);
434 long do_rt_sigreturn(CPUArchState *env);
435 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
436                         CPUArchState *env);
437 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
438 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
439                         abi_ulong unew_ctx, abi_long ctx_size);
440 /**
441  * block_signals: block all signals while handling this guest syscall
442  *
443  * Block all signals, and arrange that the signal mask is returned to
444  * its correct value for the guest before we resume execution of guest code.
445  * If this function returns non-zero, then the caller should immediately
446  * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
447  * signal and restart execution of the syscall.
448  * If block_signals() returns zero, then the caller can continue with
449  * emulation of the system call knowing that no signals can be taken
450  * (and therefore that no race conditions will result).
451  * This should only be called once, because if it is called a second time
452  * it will always return non-zero. (Think of it like a mutex that can't
453  * be recursively locked.)
454  * Signals will be unblocked again by process_pending_signals().
455  *
456  * Return value: non-zero if there was a pending signal, zero if not.
457  */
458 int block_signals(void); /* Returns non zero if signal pending */
459 
460 #ifdef TARGET_I386
461 /* vm86.c */
462 void save_v86_state(CPUX86State *env);
463 void handle_vm86_trap(CPUX86State *env, int trapno);
464 void handle_vm86_fault(CPUX86State *env);
465 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
466 #elif defined(TARGET_SPARC64)
467 void sparc64_set_context(CPUSPARCState *env);
468 void sparc64_get_context(CPUSPARCState *env);
469 #endif
470 
471 /* mmap.c */
472 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
473 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
474                      int flags, int fd, abi_ulong offset);
475 int target_munmap(abi_ulong start, abi_ulong len);
476 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
477                        abi_ulong new_size, unsigned long flags,
478                        abi_ulong new_addr);
479 extern unsigned long last_brk;
480 extern abi_ulong mmap_next_start;
481 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
482 void mmap_fork_start(void);
483 void mmap_fork_end(int child);
484 
485 /* main.c */
486 extern unsigned long guest_stack_size;
487 
488 /* user access */
489 
490 #define VERIFY_READ  PAGE_READ
491 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE)
492 
493 static inline bool access_ok_untagged(int type, abi_ulong addr, abi_ulong size)
494 {
495     if (size == 0
496         ? !guest_addr_valid_untagged(addr)
497         : !guest_range_valid_untagged(addr, size)) {
498         return false;
499     }
500     return page_check_range((target_ulong)addr, size, type) == 0;
501 }
502 
503 static inline bool access_ok(CPUState *cpu, int type,
504                              abi_ulong addr, abi_ulong size)
505 {
506     return access_ok_untagged(type, cpu_untagged_addr(cpu, addr), size);
507 }
508 
509 /* NOTE __get_user and __put_user use host pointers and don't check access.
510    These are usually used to access struct data members once the struct has
511    been locked - usually with lock_user_struct.  */
512 
513 /*
514  * Tricky points:
515  * - Use __builtin_choose_expr to avoid type promotion from ?:,
516  * - Invalid sizes result in a compile time error stemming from
517  *   the fact that abort has no parameters.
518  * - It's easier to use the endian-specific unaligned load/store
519  *   functions than host-endian unaligned load/store plus tswapN.
520  * - The pragmas are necessary only to silence a clang false-positive
521  *   warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
522  * - gcc has bugs in its _Pragma() support in some versions, eg
523  *   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
524  *   include the warning-suppression pragmas for clang
525  */
526 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
527 #define PRAGMA_DISABLE_PACKED_WARNING                                   \
528     _Pragma("GCC diagnostic push");                                     \
529     _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
530 
531 #define PRAGMA_REENABLE_PACKED_WARNING          \
532     _Pragma("GCC diagnostic pop")
533 
534 #else
535 #define PRAGMA_DISABLE_PACKED_WARNING
536 #define PRAGMA_REENABLE_PACKED_WARNING
537 #endif
538 
539 #define __put_user_e(x, hptr, e)                                            \
540     do {                                                                    \
541         PRAGMA_DISABLE_PACKED_WARNING;                                      \
542         (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                 \
543         __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,            \
544         __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,            \
545         __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))  \
546             ((hptr), (x)), (void)0);                                        \
547         PRAGMA_REENABLE_PACKED_WARNING;                                     \
548     } while (0)
549 
550 #define __get_user_e(x, hptr, e)                                            \
551     do {                                                                    \
552         PRAGMA_DISABLE_PACKED_WARNING;                                      \
553         ((x) = (typeof(*hptr))(                                             \
554         __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                 \
555         __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,           \
556         __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,            \
557         __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))  \
558             (hptr)), (void)0);                                              \
559         PRAGMA_REENABLE_PACKED_WARNING;                                     \
560     } while (0)
561 
562 
563 #ifdef TARGET_WORDS_BIGENDIAN
564 # define __put_user(x, hptr)  __put_user_e(x, hptr, be)
565 # define __get_user(x, hptr)  __get_user_e(x, hptr, be)
566 #else
567 # define __put_user(x, hptr)  __put_user_e(x, hptr, le)
568 # define __get_user(x, hptr)  __get_user_e(x, hptr, le)
569 #endif
570 
571 /* put_user()/get_user() take a guest address and check access */
572 /* These are usually used to access an atomic data type, such as an int,
573  * that has been passed by address.  These internally perform locking
574  * and unlocking on the data type.
575  */
576 #define put_user(x, gaddr, target_type)					\
577 ({									\
578     abi_ulong __gaddr = (gaddr);					\
579     target_type *__hptr;						\
580     abi_long __ret = 0;							\
581     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
582         __put_user((x), __hptr);				\
583         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
584     } else								\
585         __ret = -TARGET_EFAULT;						\
586     __ret;								\
587 })
588 
589 #define get_user(x, gaddr, target_type)					\
590 ({									\
591     abi_ulong __gaddr = (gaddr);					\
592     target_type *__hptr;						\
593     abi_long __ret = 0;							\
594     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
595         __get_user((x), __hptr);				\
596         unlock_user(__hptr, __gaddr, 0);				\
597     } else {								\
598         /* avoid warning */						\
599         (x) = 0;							\
600         __ret = -TARGET_EFAULT;						\
601     }									\
602     __ret;								\
603 })
604 
605 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
606 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
607 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
608 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
609 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
610 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
611 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
612 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
613 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
614 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
615 
616 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
617 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
618 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
619 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
620 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
621 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
622 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
623 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
624 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
625 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
626 
627 /* copy_from_user() and copy_to_user() are usually used to copy data
628  * buffers between the target and host.  These internally perform
629  * locking/unlocking of the memory.
630  */
631 int copy_from_user(void *hptr, abi_ulong gaddr, ssize_t len);
632 int copy_to_user(abi_ulong gaddr, void *hptr, ssize_t len);
633 
634 /* Functions for accessing guest memory.  The tget and tput functions
635    read/write single values, byteswapping as necessary.  The lock_user function
636    gets a pointer to a contiguous area of guest memory, but does not perform
637    any byteswapping.  lock_user may return either a pointer to the guest
638    memory, or a temporary buffer.  */
639 
640 /* Lock an area of guest memory into the host.  If copy is true then the
641    host area will have the same contents as the guest.  */
642 void *lock_user(int type, abi_ulong guest_addr, ssize_t len, bool copy);
643 
644 /* Unlock an area of guest memory.  The first LEN bytes must be
645    flushed back to guest memory. host_ptr = NULL is explicitly
646    allowed and does nothing. */
647 #ifndef DEBUG_REMAP
648 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
649                                ssize_t len)
650 {
651     /* no-op */
652 }
653 #else
654 void unlock_user(void *host_ptr, abi_ulong guest_addr, ssize_t len);
655 #endif
656 
657 /* Return the length of a string in target memory or -TARGET_EFAULT if
658    access error. */
659 ssize_t target_strlen(abi_ulong gaddr);
660 
661 /* Like lock_user but for null terminated strings.  */
662 void *lock_user_string(abi_ulong guest_addr);
663 
664 /* Helper macros for locking/unlocking a target struct.  */
665 #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
666     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
667 #define unlock_user_struct(host_ptr, guest_addr, copy)		\
668     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
669 
670 #include <pthread.h>
671 
672 static inline int is_error(abi_long ret)
673 {
674     return (abi_ulong)ret >= (abi_ulong)(-4096);
675 }
676 
677 #if TARGET_ABI_BITS == 32
678 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
679 {
680 #ifdef TARGET_WORDS_BIGENDIAN
681     return ((uint64_t)word0 << 32) | word1;
682 #else
683     return ((uint64_t)word1 << 32) | word0;
684 #endif
685 }
686 #else /* TARGET_ABI_BITS == 32 */
687 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
688 {
689     return word0;
690 }
691 #endif /* TARGET_ABI_BITS != 32 */
692 
693 void print_termios(void *arg);
694 
695 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
696 #ifdef TARGET_ARM
697 static inline int regpairs_aligned(void *cpu_env, int num)
698 {
699     return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
700 }
701 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
702 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
703 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
704 /*
705  * SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
706  * of registers which translates to the same as ARM/MIPS, because we start with
707  * r3 as arg1
708  */
709 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
710 #elif defined(TARGET_SH4)
711 /* SH4 doesn't align register pairs, except for p{read,write}64 */
712 static inline int regpairs_aligned(void *cpu_env, int num)
713 {
714     switch (num) {
715     case TARGET_NR_pread64:
716     case TARGET_NR_pwrite64:
717         return 1;
718 
719     default:
720         return 0;
721     }
722 }
723 #elif defined(TARGET_XTENSA)
724 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
725 #elif defined(TARGET_HEXAGON)
726 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
727 #else
728 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
729 #endif
730 
731 /**
732  * preexit_cleanup: housekeeping before the guest exits
733  *
734  * env: the CPU state
735  * code: the exit code
736  */
737 void preexit_cleanup(CPUArchState *env, int code);
738 
739 /* Include target-specific struct and function definitions;
740  * they may need access to the target-independent structures
741  * above, so include them last.
742  */
743 #include "target_cpu.h"
744 #include "target_structs.h"
745 
746 #endif /* QEMU_H */
747