1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include <signal.h> 5 #include <string.h> 6 7 #include "cpu.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #include <stdlib.h> 12 #endif /* DEBUG_REMAP */ 13 14 #include "qemu-types.h" 15 16 #include "thunk.h" 17 #include "syscall_defs.h" 18 #include "syscall.h" 19 #include "target_signal.h" 20 #include "gdbstub.h" 21 #include "qemu-queue.h" 22 23 #if defined(CONFIG_USE_NPTL) 24 #define THREAD __thread 25 #else 26 #define THREAD 27 #endif 28 29 /* This struct is used to hold certain information about the image. 30 * Basically, it replicates in user space what would be certain 31 * task_struct fields in the kernel 32 */ 33 struct image_info { 34 abi_ulong load_bias; 35 abi_ulong load_addr; 36 abi_ulong start_code; 37 abi_ulong end_code; 38 abi_ulong start_data; 39 abi_ulong end_data; 40 abi_ulong start_brk; 41 abi_ulong brk; 42 abi_ulong start_mmap; 43 abi_ulong mmap; 44 abi_ulong rss; 45 abi_ulong start_stack; 46 abi_ulong stack_limit; 47 abi_ulong entry; 48 abi_ulong code_offset; 49 abi_ulong data_offset; 50 abi_ulong saved_auxv; 51 abi_ulong arg_start; 52 abi_ulong arg_end; 53 char **host_argv; 54 int personality; 55 }; 56 57 #ifdef TARGET_I386 58 /* Information about the current linux thread */ 59 struct vm86_saved_state { 60 uint32_t eax; /* return code */ 61 uint32_t ebx; 62 uint32_t ecx; 63 uint32_t edx; 64 uint32_t esi; 65 uint32_t edi; 66 uint32_t ebp; 67 uint32_t esp; 68 uint32_t eflags; 69 uint32_t eip; 70 uint16_t cs, ss, ds, es, fs, gs; 71 }; 72 #endif 73 74 #ifdef TARGET_ARM 75 /* FPU emulator */ 76 #include "nwfpe/fpa11.h" 77 #endif 78 79 #define MAX_SIGQUEUE_SIZE 1024 80 81 struct sigqueue { 82 struct sigqueue *next; 83 target_siginfo_t info; 84 }; 85 86 struct emulated_sigtable { 87 int pending; /* true if signal is pending */ 88 struct sigqueue *first; 89 struct sigqueue info; /* in order to always have memory for the 90 first signal, we put it here */ 91 }; 92 93 /* NOTE: we force a big alignment so that the stack stored after is 94 aligned too */ 95 typedef struct TaskState { 96 pid_t ts_tid; /* tid (or pid) of this task */ 97 #ifdef TARGET_ARM 98 /* FPA state */ 99 FPA11 fpa; 100 int swi_errno; 101 #endif 102 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 103 abi_ulong target_v86; 104 struct vm86_saved_state vm86_saved_regs; 105 struct target_vm86plus_struct vm86plus; 106 uint32_t v86flags; 107 uint32_t v86mask; 108 #endif 109 #ifdef CONFIG_USE_NPTL 110 abi_ulong child_tidptr; 111 #endif 112 #ifdef TARGET_M68K 113 int sim_syscalls; 114 #endif 115 #if defined(TARGET_ARM) || defined(TARGET_M68K) 116 /* Extra fields for semihosted binaries. */ 117 uint32_t stack_base; 118 uint32_t heap_base; 119 uint32_t heap_limit; 120 #endif 121 int used; /* non zero if used */ 122 struct image_info *info; 123 struct linux_binprm *bprm; 124 125 struct emulated_sigtable sigtab[TARGET_NSIG]; 126 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 127 struct sigqueue *first_free; /* first free siginfo queue entry */ 128 int signal_pending; /* non zero if a signal may be pending */ 129 } __attribute__((aligned(16))) TaskState; 130 131 extern char *exec_path; 132 void init_task_state(TaskState *ts); 133 void task_settid(TaskState *); 134 void stop_all_tasks(void); 135 extern const char *qemu_uname_release; 136 extern unsigned long mmap_min_addr; 137 138 /* ??? See if we can avoid exposing so much of the loader internals. */ 139 /* 140 * MAX_ARG_PAGES defines the number of pages allocated for arguments 141 * and envelope for the new program. 32 should suffice, this gives 142 * a maximum env+arg of 128kB w/4KB pages! 143 */ 144 #define MAX_ARG_PAGES 33 145 146 /* Read a good amount of data initially, to hopefully get all the 147 program headers loaded. */ 148 #define BPRM_BUF_SIZE 1024 149 150 /* 151 * This structure is used to hold the arguments that are 152 * used when loading binaries. 153 */ 154 struct linux_binprm { 155 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 156 void *page[MAX_ARG_PAGES]; 157 abi_ulong p; 158 int fd; 159 int e_uid, e_gid; 160 int argc, envc; 161 char **argv; 162 char **envp; 163 char * filename; /* Name of binary */ 164 int (*core_dump)(int, const CPUState *); /* coredump routine */ 165 }; 166 167 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 168 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 169 abi_ulong stringp, int push_ptr); 170 int loader_exec(const char * filename, char ** argv, char ** envp, 171 struct target_pt_regs * regs, struct image_info *infop, 172 struct linux_binprm *); 173 174 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 175 struct image_info * info); 176 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 177 struct image_info * info); 178 179 abi_long memcpy_to_target(abi_ulong dest, const void *src, 180 unsigned long len); 181 void target_set_brk(abi_ulong new_brk); 182 abi_long do_brk(abi_ulong new_brk); 183 void syscall_init(void); 184 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 185 abi_long arg2, abi_long arg3, abi_long arg4, 186 abi_long arg5, abi_long arg6); 187 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 188 extern THREAD CPUState *thread_env; 189 void cpu_loop(CPUState *env); 190 char *target_strerror(int err); 191 int get_osversion(void); 192 void fork_start(void); 193 void fork_end(int child); 194 195 #include "qemu-log.h" 196 197 /* strace.c */ 198 void print_syscall(int num, 199 abi_long arg1, abi_long arg2, abi_long arg3, 200 abi_long arg4, abi_long arg5, abi_long arg6); 201 void print_syscall_ret(int num, abi_long arg1); 202 extern int do_strace; 203 204 /* signal.c */ 205 void process_pending_signals(CPUState *cpu_env); 206 void signal_init(void); 207 int queue_signal(CPUState *env, int sig, target_siginfo_t *info); 208 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 209 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 210 int target_to_host_signal(int sig); 211 int host_to_target_signal(int sig); 212 long do_sigreturn(CPUState *env); 213 long do_rt_sigreturn(CPUState *env); 214 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 215 216 #ifdef TARGET_I386 217 /* vm86.c */ 218 void save_v86_state(CPUX86State *env); 219 void handle_vm86_trap(CPUX86State *env, int trapno); 220 void handle_vm86_fault(CPUX86State *env); 221 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 222 #elif defined(TARGET_SPARC64) 223 void sparc64_set_context(CPUSPARCState *env); 224 void sparc64_get_context(CPUSPARCState *env); 225 #endif 226 227 /* mmap.c */ 228 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 229 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 230 int flags, int fd, abi_ulong offset); 231 int target_munmap(abi_ulong start, abi_ulong len); 232 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 233 abi_ulong new_size, unsigned long flags, 234 abi_ulong new_addr); 235 int target_msync(abi_ulong start, abi_ulong len, int flags); 236 extern unsigned long last_brk; 237 void mmap_lock(void); 238 void mmap_unlock(void); 239 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 240 void cpu_list_lock(void); 241 void cpu_list_unlock(void); 242 #if defined(CONFIG_USE_NPTL) 243 void mmap_fork_start(void); 244 void mmap_fork_end(int child); 245 #endif 246 247 /* main.c */ 248 extern unsigned long guest_stack_size; 249 250 /* user access */ 251 252 #define VERIFY_READ 0 253 #define VERIFY_WRITE 1 /* implies read access */ 254 255 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 256 { 257 return page_check_range((target_ulong)addr, size, 258 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 259 } 260 261 /* NOTE __get_user and __put_user use host pointers and don't check access. */ 262 /* These are usually used to access struct data members once the 263 * struct has been locked - usually with lock_user_struct(). 264 */ 265 #define __put_user(x, hptr)\ 266 ({\ 267 switch(sizeof(*hptr)) {\ 268 case 1:\ 269 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 270 break;\ 271 case 2:\ 272 *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\ 273 break;\ 274 case 4:\ 275 *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\ 276 break;\ 277 case 8:\ 278 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 279 break;\ 280 default:\ 281 abort();\ 282 }\ 283 0;\ 284 }) 285 286 #define __get_user(x, hptr) \ 287 ({\ 288 switch(sizeof(*hptr)) {\ 289 case 1:\ 290 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 291 break;\ 292 case 2:\ 293 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 294 break;\ 295 case 4:\ 296 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 297 break;\ 298 case 8:\ 299 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 300 break;\ 301 default:\ 302 /* avoid warning */\ 303 x = 0;\ 304 abort();\ 305 }\ 306 0;\ 307 }) 308 309 /* put_user()/get_user() take a guest address and check access */ 310 /* These are usually used to access an atomic data type, such as an int, 311 * that has been passed by address. These internally perform locking 312 * and unlocking on the data type. 313 */ 314 #define put_user(x, gaddr, target_type) \ 315 ({ \ 316 abi_ulong __gaddr = (gaddr); \ 317 target_type *__hptr; \ 318 abi_long __ret; \ 319 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 320 __ret = __put_user((x), __hptr); \ 321 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 322 } else \ 323 __ret = -TARGET_EFAULT; \ 324 __ret; \ 325 }) 326 327 #define get_user(x, gaddr, target_type) \ 328 ({ \ 329 abi_ulong __gaddr = (gaddr); \ 330 target_type *__hptr; \ 331 abi_long __ret; \ 332 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 333 __ret = __get_user((x), __hptr); \ 334 unlock_user(__hptr, __gaddr, 0); \ 335 } else { \ 336 /* avoid warning */ \ 337 (x) = 0; \ 338 __ret = -TARGET_EFAULT; \ 339 } \ 340 __ret; \ 341 }) 342 343 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 344 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 345 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 346 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 347 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 348 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 349 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 350 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 351 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 352 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 353 354 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 355 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 356 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 357 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 358 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 359 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 360 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 361 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 362 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 363 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 364 365 /* copy_from_user() and copy_to_user() are usually used to copy data 366 * buffers between the target and host. These internally perform 367 * locking/unlocking of the memory. 368 */ 369 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 370 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 371 372 /* Functions for accessing guest memory. The tget and tput functions 373 read/write single values, byteswapping as neccessary. The lock_user 374 gets a pointer to a contiguous area of guest memory, but does not perform 375 and byteswapping. lock_user may return either a pointer to the guest 376 memory, or a temporary buffer. */ 377 378 /* Lock an area of guest memory into the host. If copy is true then the 379 host area will have the same contents as the guest. */ 380 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 381 { 382 if (!access_ok(type, guest_addr, len)) 383 return NULL; 384 #ifdef DEBUG_REMAP 385 { 386 void *addr; 387 addr = malloc(len); 388 if (copy) 389 memcpy(addr, g2h(guest_addr), len); 390 else 391 memset(addr, 0, len); 392 return addr; 393 } 394 #else 395 return g2h(guest_addr); 396 #endif 397 } 398 399 /* Unlock an area of guest memory. The first LEN bytes must be 400 flushed back to guest memory. host_ptr = NULL is explicitly 401 allowed and does nothing. */ 402 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 403 long len) 404 { 405 406 #ifdef DEBUG_REMAP 407 if (!host_ptr) 408 return; 409 if (host_ptr == g2h(guest_addr)) 410 return; 411 if (len > 0) 412 memcpy(g2h(guest_addr), host_ptr, len); 413 free(host_ptr); 414 #endif 415 } 416 417 /* Return the length of a string in target memory or -TARGET_EFAULT if 418 access error. */ 419 abi_long target_strlen(abi_ulong gaddr); 420 421 /* Like lock_user but for null terminated strings. */ 422 static inline void *lock_user_string(abi_ulong guest_addr) 423 { 424 abi_long len; 425 len = target_strlen(guest_addr); 426 if (len < 0) 427 return NULL; 428 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 429 } 430 431 /* Helper macros for locking/ulocking a target struct. */ 432 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 433 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 434 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 435 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 436 437 #if defined(CONFIG_USE_NPTL) 438 #include <pthread.h> 439 #endif 440 441 #endif /* QEMU_H */ 442