1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "hostdep.h" 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #endif /* DEBUG_REMAP */ 12 13 #include "exec/user/abitypes.h" 14 15 #include "exec/user/thunk.h" 16 #include "syscall_defs.h" 17 #include "target_syscall.h" 18 #include "exec/gdbstub.h" 19 #include "qemu/queue.h" 20 21 /* This is the size of the host kernel's sigset_t, needed where we make 22 * direct system calls that take a sigset_t pointer and a size. 23 */ 24 #define SIGSET_T_SIZE (_NSIG / 8) 25 26 /* This struct is used to hold certain information about the image. 27 * Basically, it replicates in user space what would be certain 28 * task_struct fields in the kernel 29 */ 30 struct image_info { 31 abi_ulong load_bias; 32 abi_ulong load_addr; 33 abi_ulong start_code; 34 abi_ulong end_code; 35 abi_ulong start_data; 36 abi_ulong end_data; 37 abi_ulong start_brk; 38 abi_ulong brk; 39 abi_ulong start_mmap; 40 abi_ulong start_stack; 41 abi_ulong stack_limit; 42 abi_ulong entry; 43 abi_ulong code_offset; 44 abi_ulong data_offset; 45 abi_ulong saved_auxv; 46 abi_ulong auxv_len; 47 abi_ulong arg_start; 48 abi_ulong arg_end; 49 abi_ulong arg_strings; 50 abi_ulong env_strings; 51 abi_ulong file_string; 52 uint32_t elf_flags; 53 int personality; 54 abi_ulong alignment; 55 56 /* The fields below are used in FDPIC mode. */ 57 abi_ulong loadmap_addr; 58 uint16_t nsegs; 59 void *loadsegs; 60 abi_ulong pt_dynamic_addr; 61 abi_ulong interpreter_loadmap_addr; 62 abi_ulong interpreter_pt_dynamic_addr; 63 struct image_info *other_info; 64 #ifdef TARGET_MIPS 65 int fp_abi; 66 int interp_fp_abi; 67 #endif 68 }; 69 70 #ifdef TARGET_I386 71 /* Information about the current linux thread */ 72 struct vm86_saved_state { 73 uint32_t eax; /* return code */ 74 uint32_t ebx; 75 uint32_t ecx; 76 uint32_t edx; 77 uint32_t esi; 78 uint32_t edi; 79 uint32_t ebp; 80 uint32_t esp; 81 uint32_t eflags; 82 uint32_t eip; 83 uint16_t cs, ss, ds, es, fs, gs; 84 }; 85 #endif 86 87 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 88 /* FPU emulator */ 89 #include "nwfpe/fpa11.h" 90 #endif 91 92 #define MAX_SIGQUEUE_SIZE 1024 93 94 struct emulated_sigtable { 95 int pending; /* true if signal is pending */ 96 target_siginfo_t info; 97 }; 98 99 /* NOTE: we force a big alignment so that the stack stored after is 100 aligned too */ 101 typedef struct TaskState { 102 pid_t ts_tid; /* tid (or pid) of this task */ 103 #ifdef TARGET_ARM 104 # ifdef TARGET_ABI32 105 /* FPA state */ 106 FPA11 fpa; 107 # endif 108 int swi_errno; 109 #endif 110 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 111 abi_ulong target_v86; 112 struct vm86_saved_state vm86_saved_regs; 113 struct target_vm86plus_struct vm86plus; 114 uint32_t v86flags; 115 uint32_t v86mask; 116 #endif 117 abi_ulong child_tidptr; 118 #ifdef TARGET_M68K 119 abi_ulong tp_value; 120 #endif 121 #if defined(TARGET_ARM) || defined(TARGET_M68K) 122 /* Extra fields for semihosted binaries. */ 123 abi_ulong heap_base; 124 abi_ulong heap_limit; 125 #endif 126 abi_ulong stack_base; 127 int used; /* non zero if used */ 128 struct image_info *info; 129 struct linux_binprm *bprm; 130 131 struct emulated_sigtable sync_signal; 132 struct emulated_sigtable sigtab[TARGET_NSIG]; 133 /* This thread's signal mask, as requested by the guest program. 134 * The actual signal mask of this thread may differ: 135 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 136 * + sometimes we block all signals to avoid races 137 */ 138 sigset_t signal_mask; 139 /* The signal mask imposed by a guest sigsuspend syscall, if we are 140 * currently in the middle of such a syscall 141 */ 142 sigset_t sigsuspend_mask; 143 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 144 int in_sigsuspend; 145 146 /* Nonzero if process_pending_signals() needs to do something (either 147 * handle a pending signal or unblock signals). 148 * This flag is written from a signal handler so should be accessed via 149 * the atomic_read() and atomic_set() functions. (It is not accessed 150 * from multiple threads.) 151 */ 152 int signal_pending; 153 154 /* This thread's sigaltstack, if it has one */ 155 struct target_sigaltstack sigaltstack_used; 156 } __attribute__((aligned(16))) TaskState; 157 158 extern char *exec_path; 159 void init_task_state(TaskState *ts); 160 void task_settid(TaskState *); 161 void stop_all_tasks(void); 162 extern const char *qemu_uname_release; 163 extern unsigned long mmap_min_addr; 164 165 /* ??? See if we can avoid exposing so much of the loader internals. */ 166 167 /* Read a good amount of data initially, to hopefully get all the 168 program headers loaded. */ 169 #define BPRM_BUF_SIZE 1024 170 171 /* 172 * This structure is used to hold the arguments that are 173 * used when loading binaries. 174 */ 175 struct linux_binprm { 176 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 177 abi_ulong p; 178 int fd; 179 int e_uid, e_gid; 180 int argc, envc; 181 char **argv; 182 char **envp; 183 char * filename; /* Name of binary */ 184 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 185 }; 186 187 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 188 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 189 abi_ulong stringp, int push_ptr); 190 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 191 struct target_pt_regs * regs, struct image_info *infop, 192 struct linux_binprm *); 193 194 /* Returns true if the image uses the FDPIC ABI. If this is the case, 195 * we have to provide some information (loadmap, pt_dynamic_info) such 196 * that the program can be relocated adequately. This is also useful 197 * when handling signals. 198 */ 199 int info_is_fdpic(struct image_info *info); 200 201 uint32_t get_elf_eflags(int fd); 202 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 203 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 204 205 abi_long memcpy_to_target(abi_ulong dest, const void *src, 206 unsigned long len); 207 void target_set_brk(abi_ulong new_brk); 208 abi_long do_brk(abi_ulong new_brk); 209 void syscall_init(void); 210 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 211 abi_long arg2, abi_long arg3, abi_long arg4, 212 abi_long arg5, abi_long arg6, abi_long arg7, 213 abi_long arg8); 214 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 215 extern __thread CPUState *thread_cpu; 216 void cpu_loop(CPUArchState *env); 217 const char *target_strerror(int err); 218 int get_osversion(void); 219 void init_qemu_uname_release(void); 220 void fork_start(void); 221 void fork_end(int child); 222 223 /* Creates the initial guest address space in the host memory space using 224 * the given host start address hint and size. The guest_start parameter 225 * specifies the start address of the guest space. guest_base will be the 226 * difference between the host start address computed by this function and 227 * guest_start. If fixed is specified, then the mapped address space must 228 * start at host_start. The real start address of the mapped memory space is 229 * returned or -1 if there was an error. 230 */ 231 unsigned long init_guest_space(unsigned long host_start, 232 unsigned long host_size, 233 unsigned long guest_start, 234 bool fixed); 235 236 #include "qemu/log.h" 237 238 /* safe_syscall.S */ 239 240 /** 241 * safe_syscall: 242 * @int number: number of system call to make 243 * ...: arguments to the system call 244 * 245 * Call a system call if guest signal not pending. 246 * This has the same API as the libc syscall() function, except that it 247 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. 248 * 249 * Returns: the system call result, or -1 with an error code in errno 250 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing 251 * with any of the host errno values.) 252 */ 253 254 /* A guide to using safe_syscall() to handle interactions between guest 255 * syscalls and guest signals: 256 * 257 * Guest syscalls come in two flavours: 258 * 259 * (1) Non-interruptible syscalls 260 * 261 * These are guest syscalls that never get interrupted by signals and 262 * so never return EINTR. They can be implemented straightforwardly in 263 * QEMU: just make sure that if the implementation code has to make any 264 * blocking calls that those calls are retried if they return EINTR. 265 * It's also OK to implement these with safe_syscall, though it will be 266 * a little less efficient if a signal is delivered at the 'wrong' moment. 267 * 268 * Some non-interruptible syscalls need to be handled using block_signals() 269 * to block signals for the duration of the syscall. This mainly applies 270 * to code which needs to modify the data structures used by the 271 * host_signal_handler() function and the functions it calls, including 272 * all syscalls which change the thread's signal mask. 273 * 274 * (2) Interruptible syscalls 275 * 276 * These are guest syscalls that can be interrupted by signals and 277 * for which we need to either return EINTR or arrange for the guest 278 * syscall to be restarted. This category includes both syscalls which 279 * always restart (and in the kernel return -ERESTARTNOINTR), ones 280 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND 281 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart 282 * if the handler was registered with SA_RESTART (kernel returns 283 * -ERESTARTSYS). System calls which are only interruptible in some 284 * situations (like 'open') also need to be handled this way. 285 * 286 * Here it is important that the host syscall is made 287 * via this safe_syscall() function, and *not* via the host libc. 288 * If the host libc is used then the implementation will appear to work 289 * most of the time, but there will be a race condition where a 290 * signal could arrive just before we make the host syscall inside libc, 291 * and then then guest syscall will not correctly be interrupted. 292 * Instead the implementation of the guest syscall can use the safe_syscall 293 * function but otherwise just return the result or errno in the usual 294 * way; the main loop code will take care of restarting the syscall 295 * if appropriate. 296 * 297 * (If the implementation needs to make multiple host syscalls this is 298 * OK; any which might really block must be via safe_syscall(); for those 299 * which are only technically blocking (ie which we know in practice won't 300 * stay in the host kernel indefinitely) it's OK to use libc if necessary. 301 * You must be able to cope with backing out correctly if some safe_syscall 302 * you make in the implementation returns either -TARGET_ERESTARTSYS or 303 * EINTR though.) 304 * 305 * block_signals() cannot be used for interruptible syscalls. 306 * 307 * 308 * How and why the safe_syscall implementation works: 309 * 310 * The basic setup is that we make the host syscall via a known 311 * section of host native assembly. If a signal occurs, our signal 312 * handler checks the interrupted host PC against the addresse of that 313 * known section. If the PC is before or at the address of the syscall 314 * instruction then we change the PC to point at a "return 315 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler 316 * (causing the safe_syscall() call to immediately return that value). 317 * Then in the main.c loop if we see this magic return value we adjust 318 * the guest PC to wind it back to before the system call, and invoke 319 * the guest signal handler as usual. 320 * 321 * This winding-back will happen in two cases: 322 * (1) signal came in just before we took the host syscall (a race); 323 * in this case we'll take the guest signal and have another go 324 * at the syscall afterwards, and this is indistinguishable for the 325 * guest from the timing having been different such that the guest 326 * signal really did win the race 327 * (2) signal came in while the host syscall was blocking, and the 328 * host kernel decided the syscall should be restarted; 329 * in this case we want to restart the guest syscall also, and so 330 * rewinding is the right thing. (Note that "restart" semantics mean 331 * "first call the signal handler, then reattempt the syscall".) 332 * The other situation to consider is when a signal came in while the 333 * host syscall was blocking, and the host kernel decided that the syscall 334 * should not be restarted; in this case QEMU's host signal handler will 335 * be invoked with the PC pointing just after the syscall instruction, 336 * with registers indicating an EINTR return; the special code in the 337 * handler will not kick in, and we will return EINTR to the guest as 338 * we should. 339 * 340 * Notice that we can leave the host kernel to make the decision for 341 * us about whether to do a restart of the syscall or not; we do not 342 * need to check SA_RESTART flags in QEMU or distinguish the various 343 * kinds of restartability. 344 */ 345 #ifdef HAVE_SAFE_SYSCALL 346 /* The core part of this function is implemented in assembly */ 347 extern long safe_syscall_base(int *pending, long number, ...); 348 349 #define safe_syscall(...) \ 350 ({ \ 351 long ret_; \ 352 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ 353 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ 354 if (is_error(ret_)) { \ 355 errno = -ret_; \ 356 ret_ = -1; \ 357 } \ 358 ret_; \ 359 }) 360 361 #else 362 363 /* Fallback for architectures which don't yet provide a safe-syscall assembly 364 * fragment; note that this is racy! 365 * This should go away when all host architectures have been updated. 366 */ 367 #define safe_syscall syscall 368 369 #endif 370 371 /* syscall.c */ 372 int host_to_target_waitstatus(int status); 373 374 /* strace.c */ 375 void print_syscall(int num, 376 abi_long arg1, abi_long arg2, abi_long arg3, 377 abi_long arg4, abi_long arg5, abi_long arg6); 378 void print_syscall_ret(int num, abi_long arg1); 379 /** 380 * print_taken_signal: 381 * @target_signum: target signal being taken 382 * @tinfo: target_siginfo_t which will be passed to the guest for the signal 383 * 384 * Print strace output indicating that this signal is being taken by the guest, 385 * in a format similar to: 386 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- 387 */ 388 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); 389 extern int do_strace; 390 391 /* signal.c */ 392 void process_pending_signals(CPUArchState *cpu_env); 393 void signal_init(void); 394 int queue_signal(CPUArchState *env, int sig, int si_type, 395 target_siginfo_t *info); 396 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 397 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 398 int target_to_host_signal(int sig); 399 int host_to_target_signal(int sig); 400 long do_sigreturn(CPUArchState *env); 401 long do_rt_sigreturn(CPUArchState *env); 402 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 403 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 404 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx, 405 abi_ulong unew_ctx, abi_long ctx_size); 406 /** 407 * block_signals: block all signals while handling this guest syscall 408 * 409 * Block all signals, and arrange that the signal mask is returned to 410 * its correct value for the guest before we resume execution of guest code. 411 * If this function returns non-zero, then the caller should immediately 412 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending 413 * signal and restart execution of the syscall. 414 * If block_signals() returns zero, then the caller can continue with 415 * emulation of the system call knowing that no signals can be taken 416 * (and therefore that no race conditions will result). 417 * This should only be called once, because if it is called a second time 418 * it will always return non-zero. (Think of it like a mutex that can't 419 * be recursively locked.) 420 * Signals will be unblocked again by process_pending_signals(). 421 * 422 * Return value: non-zero if there was a pending signal, zero if not. 423 */ 424 int block_signals(void); /* Returns non zero if signal pending */ 425 426 #ifdef TARGET_I386 427 /* vm86.c */ 428 void save_v86_state(CPUX86State *env); 429 void handle_vm86_trap(CPUX86State *env, int trapno); 430 void handle_vm86_fault(CPUX86State *env); 431 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 432 #elif defined(TARGET_SPARC64) 433 void sparc64_set_context(CPUSPARCState *env); 434 void sparc64_get_context(CPUSPARCState *env); 435 #endif 436 437 /* mmap.c */ 438 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 439 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 440 int flags, int fd, abi_ulong offset); 441 int target_munmap(abi_ulong start, abi_ulong len); 442 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 443 abi_ulong new_size, unsigned long flags, 444 abi_ulong new_addr); 445 extern unsigned long last_brk; 446 extern abi_ulong mmap_next_start; 447 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong); 448 void mmap_fork_start(void); 449 void mmap_fork_end(int child); 450 451 /* main.c */ 452 extern unsigned long guest_stack_size; 453 454 /* user access */ 455 456 #define VERIFY_READ 0 457 #define VERIFY_WRITE 1 /* implies read access */ 458 459 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 460 { 461 return guest_addr_valid(addr) && 462 (size == 0 || guest_addr_valid(addr + size - 1)) && 463 page_check_range((target_ulong)addr, size, 464 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 465 } 466 467 /* NOTE __get_user and __put_user use host pointers and don't check access. 468 These are usually used to access struct data members once the struct has 469 been locked - usually with lock_user_struct. */ 470 471 /* 472 * Tricky points: 473 * - Use __builtin_choose_expr to avoid type promotion from ?:, 474 * - Invalid sizes result in a compile time error stemming from 475 * the fact that abort has no parameters. 476 * - It's easier to use the endian-specific unaligned load/store 477 * functions than host-endian unaligned load/store plus tswapN. 478 * - The pragmas are necessary only to silence a clang false-positive 479 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 . 480 * - gcc has bugs in its _Pragma() support in some versions, eg 481 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only 482 * include the warning-suppression pragmas for clang 483 */ 484 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member") 485 #define PRAGMA_DISABLE_PACKED_WARNING \ 486 _Pragma("GCC diagnostic push"); \ 487 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"") 488 489 #define PRAGMA_REENABLE_PACKED_WARNING \ 490 _Pragma("GCC diagnostic pop") 491 492 #else 493 #define PRAGMA_DISABLE_PACKED_WARNING 494 #define PRAGMA_REENABLE_PACKED_WARNING 495 #endif 496 497 #define __put_user_e(x, hptr, e) \ 498 do { \ 499 PRAGMA_DISABLE_PACKED_WARNING; \ 500 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 501 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 502 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 503 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 504 ((hptr), (x)), (void)0); \ 505 PRAGMA_REENABLE_PACKED_WARNING; \ 506 } while (0) 507 508 #define __get_user_e(x, hptr, e) \ 509 do { \ 510 PRAGMA_DISABLE_PACKED_WARNING; \ 511 ((x) = (typeof(*hptr))( \ 512 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 513 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 514 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 515 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 516 (hptr)), (void)0); \ 517 PRAGMA_REENABLE_PACKED_WARNING; \ 518 } while (0) 519 520 521 #ifdef TARGET_WORDS_BIGENDIAN 522 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 523 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 524 #else 525 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 526 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 527 #endif 528 529 /* put_user()/get_user() take a guest address and check access */ 530 /* These are usually used to access an atomic data type, such as an int, 531 * that has been passed by address. These internally perform locking 532 * and unlocking on the data type. 533 */ 534 #define put_user(x, gaddr, target_type) \ 535 ({ \ 536 abi_ulong __gaddr = (gaddr); \ 537 target_type *__hptr; \ 538 abi_long __ret = 0; \ 539 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 540 __put_user((x), __hptr); \ 541 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 542 } else \ 543 __ret = -TARGET_EFAULT; \ 544 __ret; \ 545 }) 546 547 #define get_user(x, gaddr, target_type) \ 548 ({ \ 549 abi_ulong __gaddr = (gaddr); \ 550 target_type *__hptr; \ 551 abi_long __ret = 0; \ 552 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 553 __get_user((x), __hptr); \ 554 unlock_user(__hptr, __gaddr, 0); \ 555 } else { \ 556 /* avoid warning */ \ 557 (x) = 0; \ 558 __ret = -TARGET_EFAULT; \ 559 } \ 560 __ret; \ 561 }) 562 563 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 564 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 565 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 566 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 567 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 568 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 569 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 570 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 571 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 572 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 573 574 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 575 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 576 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 577 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 578 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 579 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 580 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 581 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 582 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 583 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 584 585 /* copy_from_user() and copy_to_user() are usually used to copy data 586 * buffers between the target and host. These internally perform 587 * locking/unlocking of the memory. 588 */ 589 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 590 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 591 592 /* Functions for accessing guest memory. The tget and tput functions 593 read/write single values, byteswapping as necessary. The lock_user function 594 gets a pointer to a contiguous area of guest memory, but does not perform 595 any byteswapping. lock_user may return either a pointer to the guest 596 memory, or a temporary buffer. */ 597 598 /* Lock an area of guest memory into the host. If copy is true then the 599 host area will have the same contents as the guest. */ 600 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 601 { 602 if (!access_ok(type, guest_addr, len)) 603 return NULL; 604 #ifdef DEBUG_REMAP 605 { 606 void *addr; 607 addr = g_malloc(len); 608 if (copy) 609 memcpy(addr, g2h(guest_addr), len); 610 else 611 memset(addr, 0, len); 612 return addr; 613 } 614 #else 615 return g2h(guest_addr); 616 #endif 617 } 618 619 /* Unlock an area of guest memory. The first LEN bytes must be 620 flushed back to guest memory. host_ptr = NULL is explicitly 621 allowed and does nothing. */ 622 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 623 long len) 624 { 625 626 #ifdef DEBUG_REMAP 627 if (!host_ptr) 628 return; 629 if (host_ptr == g2h(guest_addr)) 630 return; 631 if (len > 0) 632 memcpy(g2h(guest_addr), host_ptr, len); 633 g_free(host_ptr); 634 #endif 635 } 636 637 /* Return the length of a string in target memory or -TARGET_EFAULT if 638 access error. */ 639 abi_long target_strlen(abi_ulong gaddr); 640 641 /* Like lock_user but for null terminated strings. */ 642 static inline void *lock_user_string(abi_ulong guest_addr) 643 { 644 abi_long len; 645 len = target_strlen(guest_addr); 646 if (len < 0) 647 return NULL; 648 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 649 } 650 651 /* Helper macros for locking/unlocking a target struct. */ 652 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 653 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 654 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 655 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 656 657 #include <pthread.h> 658 659 static inline int is_error(abi_long ret) 660 { 661 return (abi_ulong)ret >= (abi_ulong)(-4096); 662 } 663 664 /** 665 * preexit_cleanup: housekeeping before the guest exits 666 * 667 * env: the CPU state 668 * code: the exit code 669 */ 670 void preexit_cleanup(CPUArchState *env, int code); 671 672 /* Include target-specific struct and function definitions; 673 * they may need access to the target-independent structures 674 * above, so include them last. 675 */ 676 #include "target_cpu.h" 677 #include "target_structs.h" 678 679 #endif /* QEMU_H */ 680