1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "hostdep.h" 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #endif /* DEBUG_REMAP */ 12 13 #include "exec/user/abitypes.h" 14 15 #include "exec/user/thunk.h" 16 #include "syscall_defs.h" 17 #include "target_syscall.h" 18 #include "exec/gdbstub.h" 19 #include "qemu/queue.h" 20 21 /* This is the size of the host kernel's sigset_t, needed where we make 22 * direct system calls that take a sigset_t pointer and a size. 23 */ 24 #define SIGSET_T_SIZE (_NSIG / 8) 25 26 /* This struct is used to hold certain information about the image. 27 * Basically, it replicates in user space what would be certain 28 * task_struct fields in the kernel 29 */ 30 struct image_info { 31 abi_ulong load_bias; 32 abi_ulong load_addr; 33 abi_ulong start_code; 34 abi_ulong end_code; 35 abi_ulong start_data; 36 abi_ulong end_data; 37 abi_ulong start_brk; 38 abi_ulong brk; 39 abi_ulong start_mmap; 40 abi_ulong start_stack; 41 abi_ulong stack_limit; 42 abi_ulong entry; 43 abi_ulong code_offset; 44 abi_ulong data_offset; 45 abi_ulong saved_auxv; 46 abi_ulong auxv_len; 47 abi_ulong arg_start; 48 abi_ulong arg_end; 49 abi_ulong arg_strings; 50 abi_ulong env_strings; 51 abi_ulong file_string; 52 uint32_t elf_flags; 53 int personality; 54 abi_ulong alignment; 55 56 /* The fields below are used in FDPIC mode. */ 57 abi_ulong loadmap_addr; 58 uint16_t nsegs; 59 void *loadsegs; 60 abi_ulong pt_dynamic_addr; 61 abi_ulong interpreter_loadmap_addr; 62 abi_ulong interpreter_pt_dynamic_addr; 63 struct image_info *other_info; 64 #ifdef TARGET_MIPS 65 int fp_abi; 66 int interp_fp_abi; 67 #endif 68 }; 69 70 #ifdef TARGET_I386 71 /* Information about the current linux thread */ 72 struct vm86_saved_state { 73 uint32_t eax; /* return code */ 74 uint32_t ebx; 75 uint32_t ecx; 76 uint32_t edx; 77 uint32_t esi; 78 uint32_t edi; 79 uint32_t ebp; 80 uint32_t esp; 81 uint32_t eflags; 82 uint32_t eip; 83 uint16_t cs, ss, ds, es, fs, gs; 84 }; 85 #endif 86 87 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 88 /* FPU emulator */ 89 #include "nwfpe/fpa11.h" 90 #endif 91 92 #define MAX_SIGQUEUE_SIZE 1024 93 94 struct emulated_sigtable { 95 int pending; /* true if signal is pending */ 96 target_siginfo_t info; 97 }; 98 99 /* NOTE: we force a big alignment so that the stack stored after is 100 aligned too */ 101 typedef struct TaskState { 102 pid_t ts_tid; /* tid (or pid) of this task */ 103 #ifdef TARGET_ARM 104 # ifdef TARGET_ABI32 105 /* FPA state */ 106 FPA11 fpa; 107 # endif 108 int swi_errno; 109 #endif 110 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 111 abi_ulong target_v86; 112 struct vm86_saved_state vm86_saved_regs; 113 struct target_vm86plus_struct vm86plus; 114 uint32_t v86flags; 115 uint32_t v86mask; 116 #endif 117 abi_ulong child_tidptr; 118 #ifdef TARGET_M68K 119 abi_ulong tp_value; 120 #endif 121 #if defined(TARGET_ARM) || defined(TARGET_M68K) 122 /* Extra fields for semihosted binaries. */ 123 abi_ulong heap_base; 124 abi_ulong heap_limit; 125 #endif 126 abi_ulong stack_base; 127 int used; /* non zero if used */ 128 struct image_info *info; 129 struct linux_binprm *bprm; 130 131 struct emulated_sigtable sync_signal; 132 struct emulated_sigtable sigtab[TARGET_NSIG]; 133 /* This thread's signal mask, as requested by the guest program. 134 * The actual signal mask of this thread may differ: 135 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 136 * + sometimes we block all signals to avoid races 137 */ 138 sigset_t signal_mask; 139 /* The signal mask imposed by a guest sigsuspend syscall, if we are 140 * currently in the middle of such a syscall 141 */ 142 sigset_t sigsuspend_mask; 143 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 144 int in_sigsuspend; 145 146 /* Nonzero if process_pending_signals() needs to do something (either 147 * handle a pending signal or unblock signals). 148 * This flag is written from a signal handler so should be accessed via 149 * the atomic_read() and atomic_set() functions. (It is not accessed 150 * from multiple threads.) 151 */ 152 int signal_pending; 153 154 } __attribute__((aligned(16))) TaskState; 155 156 extern char *exec_path; 157 void init_task_state(TaskState *ts); 158 void task_settid(TaskState *); 159 void stop_all_tasks(void); 160 extern const char *qemu_uname_release; 161 extern unsigned long mmap_min_addr; 162 163 /* ??? See if we can avoid exposing so much of the loader internals. */ 164 165 /* Read a good amount of data initially, to hopefully get all the 166 program headers loaded. */ 167 #define BPRM_BUF_SIZE 1024 168 169 /* 170 * This structure is used to hold the arguments that are 171 * used when loading binaries. 172 */ 173 struct linux_binprm { 174 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 175 abi_ulong p; 176 int fd; 177 int e_uid, e_gid; 178 int argc, envc; 179 char **argv; 180 char **envp; 181 char * filename; /* Name of binary */ 182 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 183 }; 184 185 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 186 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 187 abi_ulong stringp, int push_ptr); 188 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 189 struct target_pt_regs * regs, struct image_info *infop, 190 struct linux_binprm *); 191 192 /* Returns true if the image uses the FDPIC ABI. If this is the case, 193 * we have to provide some information (loadmap, pt_dynamic_info) such 194 * that the program can be relocated adequately. This is also useful 195 * when handling signals. 196 */ 197 int info_is_fdpic(struct image_info *info); 198 199 uint32_t get_elf_eflags(int fd); 200 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 201 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 202 203 abi_long memcpy_to_target(abi_ulong dest, const void *src, 204 unsigned long len); 205 void target_set_brk(abi_ulong new_brk); 206 abi_long do_brk(abi_ulong new_brk); 207 void syscall_init(void); 208 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 209 abi_long arg2, abi_long arg3, abi_long arg4, 210 abi_long arg5, abi_long arg6, abi_long arg7, 211 abi_long arg8); 212 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 213 extern __thread CPUState *thread_cpu; 214 void cpu_loop(CPUArchState *env); 215 const char *target_strerror(int err); 216 int get_osversion(void); 217 void init_qemu_uname_release(void); 218 void fork_start(void); 219 void fork_end(int child); 220 221 /* Creates the initial guest address space in the host memory space using 222 * the given host start address hint and size. The guest_start parameter 223 * specifies the start address of the guest space. guest_base will be the 224 * difference between the host start address computed by this function and 225 * guest_start. If fixed is specified, then the mapped address space must 226 * start at host_start. The real start address of the mapped memory space is 227 * returned or -1 if there was an error. 228 */ 229 unsigned long init_guest_space(unsigned long host_start, 230 unsigned long host_size, 231 unsigned long guest_start, 232 bool fixed); 233 234 #include "qemu/log.h" 235 236 /* safe_syscall.S */ 237 238 /** 239 * safe_syscall: 240 * @int number: number of system call to make 241 * ...: arguments to the system call 242 * 243 * Call a system call if guest signal not pending. 244 * This has the same API as the libc syscall() function, except that it 245 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. 246 * 247 * Returns: the system call result, or -1 with an error code in errno 248 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing 249 * with any of the host errno values.) 250 */ 251 252 /* A guide to using safe_syscall() to handle interactions between guest 253 * syscalls and guest signals: 254 * 255 * Guest syscalls come in two flavours: 256 * 257 * (1) Non-interruptible syscalls 258 * 259 * These are guest syscalls that never get interrupted by signals and 260 * so never return EINTR. They can be implemented straightforwardly in 261 * QEMU: just make sure that if the implementation code has to make any 262 * blocking calls that those calls are retried if they return EINTR. 263 * It's also OK to implement these with safe_syscall, though it will be 264 * a little less efficient if a signal is delivered at the 'wrong' moment. 265 * 266 * Some non-interruptible syscalls need to be handled using block_signals() 267 * to block signals for the duration of the syscall. This mainly applies 268 * to code which needs to modify the data structures used by the 269 * host_signal_handler() function and the functions it calls, including 270 * all syscalls which change the thread's signal mask. 271 * 272 * (2) Interruptible syscalls 273 * 274 * These are guest syscalls that can be interrupted by signals and 275 * for which we need to either return EINTR or arrange for the guest 276 * syscall to be restarted. This category includes both syscalls which 277 * always restart (and in the kernel return -ERESTARTNOINTR), ones 278 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND 279 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart 280 * if the handler was registered with SA_RESTART (kernel returns 281 * -ERESTARTSYS). System calls which are only interruptible in some 282 * situations (like 'open') also need to be handled this way. 283 * 284 * Here it is important that the host syscall is made 285 * via this safe_syscall() function, and *not* via the host libc. 286 * If the host libc is used then the implementation will appear to work 287 * most of the time, but there will be a race condition where a 288 * signal could arrive just before we make the host syscall inside libc, 289 * and then then guest syscall will not correctly be interrupted. 290 * Instead the implementation of the guest syscall can use the safe_syscall 291 * function but otherwise just return the result or errno in the usual 292 * way; the main loop code will take care of restarting the syscall 293 * if appropriate. 294 * 295 * (If the implementation needs to make multiple host syscalls this is 296 * OK; any which might really block must be via safe_syscall(); for those 297 * which are only technically blocking (ie which we know in practice won't 298 * stay in the host kernel indefinitely) it's OK to use libc if necessary. 299 * You must be able to cope with backing out correctly if some safe_syscall 300 * you make in the implementation returns either -TARGET_ERESTARTSYS or 301 * EINTR though.) 302 * 303 * block_signals() cannot be used for interruptible syscalls. 304 * 305 * 306 * How and why the safe_syscall implementation works: 307 * 308 * The basic setup is that we make the host syscall via a known 309 * section of host native assembly. If a signal occurs, our signal 310 * handler checks the interrupted host PC against the addresse of that 311 * known section. If the PC is before or at the address of the syscall 312 * instruction then we change the PC to point at a "return 313 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler 314 * (causing the safe_syscall() call to immediately return that value). 315 * Then in the main.c loop if we see this magic return value we adjust 316 * the guest PC to wind it back to before the system call, and invoke 317 * the guest signal handler as usual. 318 * 319 * This winding-back will happen in two cases: 320 * (1) signal came in just before we took the host syscall (a race); 321 * in this case we'll take the guest signal and have another go 322 * at the syscall afterwards, and this is indistinguishable for the 323 * guest from the timing having been different such that the guest 324 * signal really did win the race 325 * (2) signal came in while the host syscall was blocking, and the 326 * host kernel decided the syscall should be restarted; 327 * in this case we want to restart the guest syscall also, and so 328 * rewinding is the right thing. (Note that "restart" semantics mean 329 * "first call the signal handler, then reattempt the syscall".) 330 * The other situation to consider is when a signal came in while the 331 * host syscall was blocking, and the host kernel decided that the syscall 332 * should not be restarted; in this case QEMU's host signal handler will 333 * be invoked with the PC pointing just after the syscall instruction, 334 * with registers indicating an EINTR return; the special code in the 335 * handler will not kick in, and we will return EINTR to the guest as 336 * we should. 337 * 338 * Notice that we can leave the host kernel to make the decision for 339 * us about whether to do a restart of the syscall or not; we do not 340 * need to check SA_RESTART flags in QEMU or distinguish the various 341 * kinds of restartability. 342 */ 343 #ifdef HAVE_SAFE_SYSCALL 344 /* The core part of this function is implemented in assembly */ 345 extern long safe_syscall_base(int *pending, long number, ...); 346 347 #define safe_syscall(...) \ 348 ({ \ 349 long ret_; \ 350 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ 351 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ 352 if (is_error(ret_)) { \ 353 errno = -ret_; \ 354 ret_ = -1; \ 355 } \ 356 ret_; \ 357 }) 358 359 #else 360 361 /* Fallback for architectures which don't yet provide a safe-syscall assembly 362 * fragment; note that this is racy! 363 * This should go away when all host architectures have been updated. 364 */ 365 #define safe_syscall syscall 366 367 #endif 368 369 /* syscall.c */ 370 int host_to_target_waitstatus(int status); 371 372 /* strace.c */ 373 void print_syscall(int num, 374 abi_long arg1, abi_long arg2, abi_long arg3, 375 abi_long arg4, abi_long arg5, abi_long arg6); 376 void print_syscall_ret(int num, abi_long arg1); 377 /** 378 * print_taken_signal: 379 * @target_signum: target signal being taken 380 * @tinfo: target_siginfo_t which will be passed to the guest for the signal 381 * 382 * Print strace output indicating that this signal is being taken by the guest, 383 * in a format similar to: 384 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- 385 */ 386 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); 387 extern int do_strace; 388 389 /* signal.c */ 390 void process_pending_signals(CPUArchState *cpu_env); 391 void signal_init(void); 392 int queue_signal(CPUArchState *env, int sig, int si_type, 393 target_siginfo_t *info); 394 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 395 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 396 int target_to_host_signal(int sig); 397 int host_to_target_signal(int sig); 398 long do_sigreturn(CPUArchState *env); 399 long do_rt_sigreturn(CPUArchState *env); 400 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 401 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 402 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx, 403 abi_ulong unew_ctx, abi_long ctx_size); 404 /** 405 * block_signals: block all signals while handling this guest syscall 406 * 407 * Block all signals, and arrange that the signal mask is returned to 408 * its correct value for the guest before we resume execution of guest code. 409 * If this function returns non-zero, then the caller should immediately 410 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending 411 * signal and restart execution of the syscall. 412 * If block_signals() returns zero, then the caller can continue with 413 * emulation of the system call knowing that no signals can be taken 414 * (and therefore that no race conditions will result). 415 * This should only be called once, because if it is called a second time 416 * it will always return non-zero. (Think of it like a mutex that can't 417 * be recursively locked.) 418 * Signals will be unblocked again by process_pending_signals(). 419 * 420 * Return value: non-zero if there was a pending signal, zero if not. 421 */ 422 int block_signals(void); /* Returns non zero if signal pending */ 423 424 #ifdef TARGET_I386 425 /* vm86.c */ 426 void save_v86_state(CPUX86State *env); 427 void handle_vm86_trap(CPUX86State *env, int trapno); 428 void handle_vm86_fault(CPUX86State *env); 429 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 430 #elif defined(TARGET_SPARC64) 431 void sparc64_set_context(CPUSPARCState *env); 432 void sparc64_get_context(CPUSPARCState *env); 433 #endif 434 435 /* mmap.c */ 436 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 437 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 438 int flags, int fd, abi_ulong offset); 439 int target_munmap(abi_ulong start, abi_ulong len); 440 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 441 abi_ulong new_size, unsigned long flags, 442 abi_ulong new_addr); 443 extern unsigned long last_brk; 444 extern abi_ulong mmap_next_start; 445 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong); 446 void mmap_fork_start(void); 447 void mmap_fork_end(int child); 448 449 /* main.c */ 450 extern unsigned long guest_stack_size; 451 452 /* user access */ 453 454 #define VERIFY_READ 0 455 #define VERIFY_WRITE 1 /* implies read access */ 456 457 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 458 { 459 return page_check_range((target_ulong)addr, size, 460 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 461 } 462 463 /* NOTE __get_user and __put_user use host pointers and don't check access. 464 These are usually used to access struct data members once the struct has 465 been locked - usually with lock_user_struct. */ 466 467 /* 468 * Tricky points: 469 * - Use __builtin_choose_expr to avoid type promotion from ?:, 470 * - Invalid sizes result in a compile time error stemming from 471 * the fact that abort has no parameters. 472 * - It's easier to use the endian-specific unaligned load/store 473 * functions than host-endian unaligned load/store plus tswapN. 474 * - The pragmas are necessary only to silence a clang false-positive 475 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 . 476 * - gcc has bugs in its _Pragma() support in some versions, eg 477 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only 478 * include the warning-suppression pragmas for clang 479 */ 480 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member") 481 #define PRAGMA_DISABLE_PACKED_WARNING \ 482 _Pragma("GCC diagnostic push"); \ 483 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"") 484 485 #define PRAGMA_REENABLE_PACKED_WARNING \ 486 _Pragma("GCC diagnostic pop") 487 488 #else 489 #define PRAGMA_DISABLE_PACKED_WARNING 490 #define PRAGMA_REENABLE_PACKED_WARNING 491 #endif 492 493 #define __put_user_e(x, hptr, e) \ 494 do { \ 495 PRAGMA_DISABLE_PACKED_WARNING; \ 496 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 497 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 498 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 499 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 500 ((hptr), (x)), (void)0); \ 501 PRAGMA_REENABLE_PACKED_WARNING; \ 502 } while (0) 503 504 #define __get_user_e(x, hptr, e) \ 505 do { \ 506 PRAGMA_DISABLE_PACKED_WARNING; \ 507 ((x) = (typeof(*hptr))( \ 508 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 509 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 510 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 511 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 512 (hptr)), (void)0); \ 513 PRAGMA_REENABLE_PACKED_WARNING; \ 514 } while (0) 515 516 517 #ifdef TARGET_WORDS_BIGENDIAN 518 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 519 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 520 #else 521 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 522 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 523 #endif 524 525 /* put_user()/get_user() take a guest address and check access */ 526 /* These are usually used to access an atomic data type, such as an int, 527 * that has been passed by address. These internally perform locking 528 * and unlocking on the data type. 529 */ 530 #define put_user(x, gaddr, target_type) \ 531 ({ \ 532 abi_ulong __gaddr = (gaddr); \ 533 target_type *__hptr; \ 534 abi_long __ret = 0; \ 535 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 536 __put_user((x), __hptr); \ 537 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 538 } else \ 539 __ret = -TARGET_EFAULT; \ 540 __ret; \ 541 }) 542 543 #define get_user(x, gaddr, target_type) \ 544 ({ \ 545 abi_ulong __gaddr = (gaddr); \ 546 target_type *__hptr; \ 547 abi_long __ret = 0; \ 548 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 549 __get_user((x), __hptr); \ 550 unlock_user(__hptr, __gaddr, 0); \ 551 } else { \ 552 /* avoid warning */ \ 553 (x) = 0; \ 554 __ret = -TARGET_EFAULT; \ 555 } \ 556 __ret; \ 557 }) 558 559 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 560 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 561 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 562 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 563 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 564 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 565 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 566 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 567 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 568 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 569 570 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 571 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 572 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 573 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 574 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 575 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 576 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 577 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 578 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 579 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 580 581 /* copy_from_user() and copy_to_user() are usually used to copy data 582 * buffers between the target and host. These internally perform 583 * locking/unlocking of the memory. 584 */ 585 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 586 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 587 588 /* Functions for accessing guest memory. The tget and tput functions 589 read/write single values, byteswapping as necessary. The lock_user function 590 gets a pointer to a contiguous area of guest memory, but does not perform 591 any byteswapping. lock_user may return either a pointer to the guest 592 memory, or a temporary buffer. */ 593 594 /* Lock an area of guest memory into the host. If copy is true then the 595 host area will have the same contents as the guest. */ 596 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 597 { 598 if (!access_ok(type, guest_addr, len)) 599 return NULL; 600 #ifdef DEBUG_REMAP 601 { 602 void *addr; 603 addr = g_malloc(len); 604 if (copy) 605 memcpy(addr, g2h(guest_addr), len); 606 else 607 memset(addr, 0, len); 608 return addr; 609 } 610 #else 611 return g2h(guest_addr); 612 #endif 613 } 614 615 /* Unlock an area of guest memory. The first LEN bytes must be 616 flushed back to guest memory. host_ptr = NULL is explicitly 617 allowed and does nothing. */ 618 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 619 long len) 620 { 621 622 #ifdef DEBUG_REMAP 623 if (!host_ptr) 624 return; 625 if (host_ptr == g2h(guest_addr)) 626 return; 627 if (len > 0) 628 memcpy(g2h(guest_addr), host_ptr, len); 629 g_free(host_ptr); 630 #endif 631 } 632 633 /* Return the length of a string in target memory or -TARGET_EFAULT if 634 access error. */ 635 abi_long target_strlen(abi_ulong gaddr); 636 637 /* Like lock_user but for null terminated strings. */ 638 static inline void *lock_user_string(abi_ulong guest_addr) 639 { 640 abi_long len; 641 len = target_strlen(guest_addr); 642 if (len < 0) 643 return NULL; 644 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 645 } 646 647 /* Helper macros for locking/unlocking a target struct. */ 648 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 649 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 650 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 651 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 652 653 #include <pthread.h> 654 655 static inline int is_error(abi_long ret) 656 { 657 return (abi_ulong)ret >= (abi_ulong)(-4096); 658 } 659 660 /** 661 * preexit_cleanup: housekeeping before the guest exits 662 * 663 * env: the CPU state 664 * code: the exit code 665 */ 666 void preexit_cleanup(CPUArchState *env, int code); 667 668 /* Include target-specific struct and function definitions; 669 * they may need access to the target-independent structures 670 * above, so include them last. 671 */ 672 #include "target_cpu.h" 673 #include "target_structs.h" 674 675 #endif /* QEMU_H */ 676