xref: /openbmc/qemu/linux-user/qemu.h (revision 56983463)
1 #ifndef QEMU_H
2 #define QEMU_H
3 
4 #include <signal.h>
5 #include <string.h>
6 
7 #include "cpu.h"
8 
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
13 
14 #include "exec/user/abitypes.h"
15 
16 #include "exec/user/thunk.h"
17 #include "syscall_defs.h"
18 #include "syscall.h"
19 #include "target_cpu.h"
20 #include "target_signal.h"
21 #include "exec/gdbstub.h"
22 #include "qemu/queue.h"
23 
24 #if defined(CONFIG_USE_NPTL)
25 #define THREAD __thread
26 #else
27 #define THREAD
28 #endif
29 
30 /* This struct is used to hold certain information about the image.
31  * Basically, it replicates in user space what would be certain
32  * task_struct fields in the kernel
33  */
34 struct image_info {
35         abi_ulong       load_bias;
36         abi_ulong       load_addr;
37         abi_ulong       start_code;
38         abi_ulong       end_code;
39         abi_ulong       start_data;
40         abi_ulong       end_data;
41         abi_ulong       start_brk;
42         abi_ulong       brk;
43         abi_ulong       start_mmap;
44         abi_ulong       mmap;
45         abi_ulong       rss;
46         abi_ulong       start_stack;
47         abi_ulong       stack_limit;
48         abi_ulong       entry;
49         abi_ulong       code_offset;
50         abi_ulong       data_offset;
51         abi_ulong       saved_auxv;
52         abi_ulong       auxv_len;
53         abi_ulong       arg_start;
54         abi_ulong       arg_end;
55         uint32_t        elf_flags;
56 	int		personality;
57 #ifdef CONFIG_USE_FDPIC
58         abi_ulong       loadmap_addr;
59         uint16_t        nsegs;
60         void           *loadsegs;
61         abi_ulong       pt_dynamic_addr;
62         struct image_info *other_info;
63 #endif
64 };
65 
66 #ifdef TARGET_I386
67 /* Information about the current linux thread */
68 struct vm86_saved_state {
69     uint32_t eax; /* return code */
70     uint32_t ebx;
71     uint32_t ecx;
72     uint32_t edx;
73     uint32_t esi;
74     uint32_t edi;
75     uint32_t ebp;
76     uint32_t esp;
77     uint32_t eflags;
78     uint32_t eip;
79     uint16_t cs, ss, ds, es, fs, gs;
80 };
81 #endif
82 
83 #ifdef TARGET_ARM
84 /* FPU emulator */
85 #include "nwfpe/fpa11.h"
86 #endif
87 
88 #define MAX_SIGQUEUE_SIZE 1024
89 
90 struct sigqueue {
91     struct sigqueue *next;
92     target_siginfo_t info;
93 };
94 
95 struct emulated_sigtable {
96     int pending; /* true if signal is pending */
97     struct sigqueue *first;
98     struct sigqueue info; /* in order to always have memory for the
99                              first signal, we put it here */
100 };
101 
102 /* NOTE: we force a big alignment so that the stack stored after is
103    aligned too */
104 typedef struct TaskState {
105     pid_t ts_tid;     /* tid (or pid) of this task */
106 #ifdef TARGET_ARM
107     /* FPA state */
108     FPA11 fpa;
109     int swi_errno;
110 #endif
111 #ifdef TARGET_UNICORE32
112     int swi_errno;
113 #endif
114 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
115     abi_ulong target_v86;
116     struct vm86_saved_state vm86_saved_regs;
117     struct target_vm86plus_struct vm86plus;
118     uint32_t v86flags;
119     uint32_t v86mask;
120 #endif
121 #ifdef CONFIG_USE_NPTL
122     abi_ulong child_tidptr;
123 #endif
124 #ifdef TARGET_M68K
125     int sim_syscalls;
126 #endif
127 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
128     /* Extra fields for semihosted binaries.  */
129     uint32_t heap_base;
130     uint32_t heap_limit;
131 #endif
132     uint32_t stack_base;
133     int used; /* non zero if used */
134     struct image_info *info;
135     struct linux_binprm *bprm;
136 
137     struct emulated_sigtable sigtab[TARGET_NSIG];
138     struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
139     struct sigqueue *first_free; /* first free siginfo queue entry */
140     int signal_pending; /* non zero if a signal may be pending */
141 } __attribute__((aligned(16))) TaskState;
142 
143 extern char *exec_path;
144 void init_task_state(TaskState *ts);
145 void task_settid(TaskState *);
146 void stop_all_tasks(void);
147 extern const char *qemu_uname_release;
148 extern unsigned long mmap_min_addr;
149 
150 /* ??? See if we can avoid exposing so much of the loader internals.  */
151 /*
152  * MAX_ARG_PAGES defines the number of pages allocated for arguments
153  * and envelope for the new program. 32 should suffice, this gives
154  * a maximum env+arg of 128kB w/4KB pages!
155  */
156 #define MAX_ARG_PAGES 33
157 
158 /* Read a good amount of data initially, to hopefully get all the
159    program headers loaded.  */
160 #define BPRM_BUF_SIZE  1024
161 
162 /*
163  * This structure is used to hold the arguments that are
164  * used when loading binaries.
165  */
166 struct linux_binprm {
167         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
168         void *page[MAX_ARG_PAGES];
169         abi_ulong p;
170 	int fd;
171         int e_uid, e_gid;
172         int argc, envc;
173         char **argv;
174         char **envp;
175         char * filename;        /* Name of binary */
176         int (*core_dump)(int, const CPUArchState *); /* coredump routine */
177 };
178 
179 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
180 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
181                               abi_ulong stringp, int push_ptr);
182 int loader_exec(const char * filename, char ** argv, char ** envp,
183              struct target_pt_regs * regs, struct image_info *infop,
184              struct linux_binprm *);
185 
186 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
187                     struct image_info * info);
188 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
189                     struct image_info * info);
190 
191 abi_long memcpy_to_target(abi_ulong dest, const void *src,
192                           unsigned long len);
193 void target_set_brk(abi_ulong new_brk);
194 abi_long do_brk(abi_ulong new_brk);
195 void syscall_init(void);
196 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
197                     abi_long arg2, abi_long arg3, abi_long arg4,
198                     abi_long arg5, abi_long arg6, abi_long arg7,
199                     abi_long arg8);
200 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
201 extern THREAD CPUState *thread_cpu;
202 void cpu_loop(CPUArchState *env);
203 char *target_strerror(int err);
204 int get_osversion(void);
205 void fork_start(void);
206 void fork_end(int child);
207 
208 /* Creates the initial guest address space in the host memory space using
209  * the given host start address hint and size.  The guest_start parameter
210  * specifies the start address of the guest space.  guest_base will be the
211  * difference between the host start address computed by this function and
212  * guest_start.  If fixed is specified, then the mapped address space must
213  * start at host_start.  The real start address of the mapped memory space is
214  * returned or -1 if there was an error.
215  */
216 unsigned long init_guest_space(unsigned long host_start,
217                                unsigned long host_size,
218                                unsigned long guest_start,
219                                bool fixed);
220 
221 #include "qemu/log.h"
222 
223 /* syscall.c */
224 int host_to_target_waitstatus(int status);
225 
226 /* strace.c */
227 void print_syscall(int num,
228                    abi_long arg1, abi_long arg2, abi_long arg3,
229                    abi_long arg4, abi_long arg5, abi_long arg6);
230 void print_syscall_ret(int num, abi_long arg1);
231 extern int do_strace;
232 
233 /* signal.c */
234 void process_pending_signals(CPUArchState *cpu_env);
235 void signal_init(void);
236 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
237 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
238 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
239 int target_to_host_signal(int sig);
240 int host_to_target_signal(int sig);
241 long do_sigreturn(CPUArchState *env);
242 long do_rt_sigreturn(CPUArchState *env);
243 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
244 
245 #ifdef TARGET_I386
246 /* vm86.c */
247 void save_v86_state(CPUX86State *env);
248 void handle_vm86_trap(CPUX86State *env, int trapno);
249 void handle_vm86_fault(CPUX86State *env);
250 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
251 #elif defined(TARGET_SPARC64)
252 void sparc64_set_context(CPUSPARCState *env);
253 void sparc64_get_context(CPUSPARCState *env);
254 #endif
255 
256 /* mmap.c */
257 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
258 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
259                      int flags, int fd, abi_ulong offset);
260 int target_munmap(abi_ulong start, abi_ulong len);
261 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
262                        abi_ulong new_size, unsigned long flags,
263                        abi_ulong new_addr);
264 int target_msync(abi_ulong start, abi_ulong len, int flags);
265 extern unsigned long last_brk;
266 extern abi_ulong mmap_next_start;
267 void mmap_lock(void);
268 void mmap_unlock(void);
269 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
270 void cpu_list_lock(void);
271 void cpu_list_unlock(void);
272 #if defined(CONFIG_USE_NPTL)
273 void mmap_fork_start(void);
274 void mmap_fork_end(int child);
275 #endif
276 
277 /* main.c */
278 extern unsigned long guest_stack_size;
279 
280 /* user access */
281 
282 #define VERIFY_READ 0
283 #define VERIFY_WRITE 1 /* implies read access */
284 
285 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
286 {
287     return page_check_range((target_ulong)addr, size,
288                             (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
289 }
290 
291 /* NOTE __get_user and __put_user use host pointers and don't check access.
292    These are usually used to access struct data members once the struct has
293    been locked - usually with lock_user_struct.  */
294 
295 /* Tricky points:
296    - Use __builtin_choose_expr to avoid type promotion from ?:,
297    - Invalid sizes result in a compile time error stemming from
298      the fact that abort has no parameters.
299    - It's easier to use the endian-specific unaligned load/store
300      functions than host-endian unaligned load/store plus tswapN.  */
301 
302 #define __put_user_e(x, hptr, e)                                        \
303   (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
304    __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
305    __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
306    __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
307      ((hptr), (x)), 0)
308 
309 #define __get_user_e(x, hptr, e)                                        \
310   ((x) = (typeof(*hptr))(                                               \
311    __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
312    __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
313    __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
314    __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
315      (hptr)), 0)
316 
317 #ifdef TARGET_WORDS_BIGENDIAN
318 # define __put_user(x, hptr)  __put_user_e(x, hptr, be)
319 # define __get_user(x, hptr)  __get_user_e(x, hptr, be)
320 #else
321 # define __put_user(x, hptr)  __put_user_e(x, hptr, le)
322 # define __get_user(x, hptr)  __get_user_e(x, hptr, le)
323 #endif
324 
325 /* put_user()/get_user() take a guest address and check access */
326 /* These are usually used to access an atomic data type, such as an int,
327  * that has been passed by address.  These internally perform locking
328  * and unlocking on the data type.
329  */
330 #define put_user(x, gaddr, target_type)					\
331 ({									\
332     abi_ulong __gaddr = (gaddr);					\
333     target_type *__hptr;						\
334     abi_long __ret;							\
335     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
336         __ret = __put_user((x), __hptr);				\
337         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
338     } else								\
339         __ret = -TARGET_EFAULT;						\
340     __ret;								\
341 })
342 
343 #define get_user(x, gaddr, target_type)					\
344 ({									\
345     abi_ulong __gaddr = (gaddr);					\
346     target_type *__hptr;						\
347     abi_long __ret;							\
348     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
349         __ret = __get_user((x), __hptr);				\
350         unlock_user(__hptr, __gaddr, 0);				\
351     } else {								\
352         /* avoid warning */						\
353         (x) = 0;							\
354         __ret = -TARGET_EFAULT;						\
355     }									\
356     __ret;								\
357 })
358 
359 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
360 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
361 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
362 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
363 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
364 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
365 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
366 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
367 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
368 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
369 
370 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
371 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
372 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
373 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
374 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
375 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
376 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
377 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
378 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
379 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
380 
381 /* copy_from_user() and copy_to_user() are usually used to copy data
382  * buffers between the target and host.  These internally perform
383  * locking/unlocking of the memory.
384  */
385 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
386 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
387 
388 /* Functions for accessing guest memory.  The tget and tput functions
389    read/write single values, byteswapping as necessary.  The lock_user
390    gets a pointer to a contiguous area of guest memory, but does not perform
391    and byteswapping.  lock_user may return either a pointer to the guest
392    memory, or a temporary buffer.  */
393 
394 /* Lock an area of guest memory into the host.  If copy is true then the
395    host area will have the same contents as the guest.  */
396 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
397 {
398     if (!access_ok(type, guest_addr, len))
399         return NULL;
400 #ifdef DEBUG_REMAP
401     {
402         void *addr;
403         addr = malloc(len);
404         if (copy)
405             memcpy(addr, g2h(guest_addr), len);
406         else
407             memset(addr, 0, len);
408         return addr;
409     }
410 #else
411     return g2h(guest_addr);
412 #endif
413 }
414 
415 /* Unlock an area of guest memory.  The first LEN bytes must be
416    flushed back to guest memory. host_ptr = NULL is explicitly
417    allowed and does nothing. */
418 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
419                                long len)
420 {
421 
422 #ifdef DEBUG_REMAP
423     if (!host_ptr)
424         return;
425     if (host_ptr == g2h(guest_addr))
426         return;
427     if (len > 0)
428         memcpy(g2h(guest_addr), host_ptr, len);
429     free(host_ptr);
430 #endif
431 }
432 
433 /* Return the length of a string in target memory or -TARGET_EFAULT if
434    access error. */
435 abi_long target_strlen(abi_ulong gaddr);
436 
437 /* Like lock_user but for null terminated strings.  */
438 static inline void *lock_user_string(abi_ulong guest_addr)
439 {
440     abi_long len;
441     len = target_strlen(guest_addr);
442     if (len < 0)
443         return NULL;
444     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
445 }
446 
447 /* Helper macros for locking/ulocking a target struct.  */
448 #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
449     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
450 #define unlock_user_struct(host_ptr, guest_addr, copy)		\
451     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
452 
453 #if defined(CONFIG_USE_NPTL)
454 #include <pthread.h>
455 #endif
456 
457 #endif /* QEMU_H */
458