1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include <signal.h> 5 #include <string.h> 6 7 #include "cpu.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #include <stdlib.h> 12 #endif /* DEBUG_REMAP */ 13 14 #include "exec/user/abitypes.h" 15 16 #include "exec/user/thunk.h" 17 #include "syscall_defs.h" 18 #include "syscall.h" 19 #include "target_cpu.h" 20 #include "target_signal.h" 21 #include "exec/gdbstub.h" 22 #include "qemu/queue.h" 23 24 #if defined(CONFIG_USE_NPTL) 25 #define THREAD __thread 26 #else 27 #define THREAD 28 #endif 29 30 /* This struct is used to hold certain information about the image. 31 * Basically, it replicates in user space what would be certain 32 * task_struct fields in the kernel 33 */ 34 struct image_info { 35 abi_ulong load_bias; 36 abi_ulong load_addr; 37 abi_ulong start_code; 38 abi_ulong end_code; 39 abi_ulong start_data; 40 abi_ulong end_data; 41 abi_ulong start_brk; 42 abi_ulong brk; 43 abi_ulong start_mmap; 44 abi_ulong mmap; 45 abi_ulong rss; 46 abi_ulong start_stack; 47 abi_ulong stack_limit; 48 abi_ulong entry; 49 abi_ulong code_offset; 50 abi_ulong data_offset; 51 abi_ulong saved_auxv; 52 abi_ulong auxv_len; 53 abi_ulong arg_start; 54 abi_ulong arg_end; 55 uint32_t elf_flags; 56 int personality; 57 #ifdef CONFIG_USE_FDPIC 58 abi_ulong loadmap_addr; 59 uint16_t nsegs; 60 void *loadsegs; 61 abi_ulong pt_dynamic_addr; 62 struct image_info *other_info; 63 #endif 64 }; 65 66 #ifdef TARGET_I386 67 /* Information about the current linux thread */ 68 struct vm86_saved_state { 69 uint32_t eax; /* return code */ 70 uint32_t ebx; 71 uint32_t ecx; 72 uint32_t edx; 73 uint32_t esi; 74 uint32_t edi; 75 uint32_t ebp; 76 uint32_t esp; 77 uint32_t eflags; 78 uint32_t eip; 79 uint16_t cs, ss, ds, es, fs, gs; 80 }; 81 #endif 82 83 #ifdef TARGET_ARM 84 /* FPU emulator */ 85 #include "nwfpe/fpa11.h" 86 #endif 87 88 #define MAX_SIGQUEUE_SIZE 1024 89 90 struct sigqueue { 91 struct sigqueue *next; 92 target_siginfo_t info; 93 }; 94 95 struct emulated_sigtable { 96 int pending; /* true if signal is pending */ 97 struct sigqueue *first; 98 struct sigqueue info; /* in order to always have memory for the 99 first signal, we put it here */ 100 }; 101 102 /* NOTE: we force a big alignment so that the stack stored after is 103 aligned too */ 104 typedef struct TaskState { 105 pid_t ts_tid; /* tid (or pid) of this task */ 106 #ifdef TARGET_ARM 107 /* FPA state */ 108 FPA11 fpa; 109 int swi_errno; 110 #endif 111 #ifdef TARGET_UNICORE32 112 int swi_errno; 113 #endif 114 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 115 abi_ulong target_v86; 116 struct vm86_saved_state vm86_saved_regs; 117 struct target_vm86plus_struct vm86plus; 118 uint32_t v86flags; 119 uint32_t v86mask; 120 #endif 121 #ifdef CONFIG_USE_NPTL 122 abi_ulong child_tidptr; 123 #endif 124 #ifdef TARGET_M68K 125 int sim_syscalls; 126 #endif 127 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 128 /* Extra fields for semihosted binaries. */ 129 uint32_t heap_base; 130 uint32_t heap_limit; 131 #endif 132 uint32_t stack_base; 133 int used; /* non zero if used */ 134 struct image_info *info; 135 struct linux_binprm *bprm; 136 137 struct emulated_sigtable sigtab[TARGET_NSIG]; 138 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 139 struct sigqueue *first_free; /* first free siginfo queue entry */ 140 int signal_pending; /* non zero if a signal may be pending */ 141 } __attribute__((aligned(16))) TaskState; 142 143 extern char *exec_path; 144 void init_task_state(TaskState *ts); 145 void task_settid(TaskState *); 146 void stop_all_tasks(void); 147 extern const char *qemu_uname_release; 148 extern unsigned long mmap_min_addr; 149 150 /* ??? See if we can avoid exposing so much of the loader internals. */ 151 /* 152 * MAX_ARG_PAGES defines the number of pages allocated for arguments 153 * and envelope for the new program. 32 should suffice, this gives 154 * a maximum env+arg of 128kB w/4KB pages! 155 */ 156 #define MAX_ARG_PAGES 33 157 158 /* Read a good amount of data initially, to hopefully get all the 159 program headers loaded. */ 160 #define BPRM_BUF_SIZE 1024 161 162 /* 163 * This structure is used to hold the arguments that are 164 * used when loading binaries. 165 */ 166 struct linux_binprm { 167 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 168 void *page[MAX_ARG_PAGES]; 169 abi_ulong p; 170 int fd; 171 int e_uid, e_gid; 172 int argc, envc; 173 char **argv; 174 char **envp; 175 char * filename; /* Name of binary */ 176 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 177 }; 178 179 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 180 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 181 abi_ulong stringp, int push_ptr); 182 int loader_exec(const char * filename, char ** argv, char ** envp, 183 struct target_pt_regs * regs, struct image_info *infop, 184 struct linux_binprm *); 185 186 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 187 struct image_info * info); 188 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 189 struct image_info * info); 190 191 abi_long memcpy_to_target(abi_ulong dest, const void *src, 192 unsigned long len); 193 void target_set_brk(abi_ulong new_brk); 194 abi_long do_brk(abi_ulong new_brk); 195 void syscall_init(void); 196 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 197 abi_long arg2, abi_long arg3, abi_long arg4, 198 abi_long arg5, abi_long arg6, abi_long arg7, 199 abi_long arg8); 200 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 201 extern THREAD CPUState *thread_cpu; 202 void cpu_loop(CPUArchState *env); 203 char *target_strerror(int err); 204 int get_osversion(void); 205 void fork_start(void); 206 void fork_end(int child); 207 208 /* Creates the initial guest address space in the host memory space using 209 * the given host start address hint and size. The guest_start parameter 210 * specifies the start address of the guest space. guest_base will be the 211 * difference between the host start address computed by this function and 212 * guest_start. If fixed is specified, then the mapped address space must 213 * start at host_start. The real start address of the mapped memory space is 214 * returned or -1 if there was an error. 215 */ 216 unsigned long init_guest_space(unsigned long host_start, 217 unsigned long host_size, 218 unsigned long guest_start, 219 bool fixed); 220 221 #include "qemu/log.h" 222 223 /* syscall.c */ 224 int host_to_target_waitstatus(int status); 225 226 /* strace.c */ 227 void print_syscall(int num, 228 abi_long arg1, abi_long arg2, abi_long arg3, 229 abi_long arg4, abi_long arg5, abi_long arg6); 230 void print_syscall_ret(int num, abi_long arg1); 231 extern int do_strace; 232 233 /* signal.c */ 234 void process_pending_signals(CPUArchState *cpu_env); 235 void signal_init(void); 236 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 237 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 238 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 239 int target_to_host_signal(int sig); 240 int host_to_target_signal(int sig); 241 long do_sigreturn(CPUArchState *env); 242 long do_rt_sigreturn(CPUArchState *env); 243 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 244 245 #ifdef TARGET_I386 246 /* vm86.c */ 247 void save_v86_state(CPUX86State *env); 248 void handle_vm86_trap(CPUX86State *env, int trapno); 249 void handle_vm86_fault(CPUX86State *env); 250 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 251 #elif defined(TARGET_SPARC64) 252 void sparc64_set_context(CPUSPARCState *env); 253 void sparc64_get_context(CPUSPARCState *env); 254 #endif 255 256 /* mmap.c */ 257 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 258 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 259 int flags, int fd, abi_ulong offset); 260 int target_munmap(abi_ulong start, abi_ulong len); 261 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 262 abi_ulong new_size, unsigned long flags, 263 abi_ulong new_addr); 264 int target_msync(abi_ulong start, abi_ulong len, int flags); 265 extern unsigned long last_brk; 266 extern abi_ulong mmap_next_start; 267 void mmap_lock(void); 268 void mmap_unlock(void); 269 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 270 void cpu_list_lock(void); 271 void cpu_list_unlock(void); 272 #if defined(CONFIG_USE_NPTL) 273 void mmap_fork_start(void); 274 void mmap_fork_end(int child); 275 #endif 276 277 /* main.c */ 278 extern unsigned long guest_stack_size; 279 280 /* user access */ 281 282 #define VERIFY_READ 0 283 #define VERIFY_WRITE 1 /* implies read access */ 284 285 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 286 { 287 return page_check_range((target_ulong)addr, size, 288 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 289 } 290 291 /* NOTE __get_user and __put_user use host pointers and don't check access. 292 These are usually used to access struct data members once the struct has 293 been locked - usually with lock_user_struct. */ 294 295 /* Tricky points: 296 - Use __builtin_choose_expr to avoid type promotion from ?:, 297 - Invalid sizes result in a compile time error stemming from 298 the fact that abort has no parameters. 299 - It's easier to use the endian-specific unaligned load/store 300 functions than host-endian unaligned load/store plus tswapN. */ 301 302 #define __put_user_e(x, hptr, e) \ 303 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 304 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 305 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 306 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 307 ((hptr), (x)), 0) 308 309 #define __get_user_e(x, hptr, e) \ 310 ((x) = (typeof(*hptr))( \ 311 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 312 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 313 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 314 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 315 (hptr)), 0) 316 317 #ifdef TARGET_WORDS_BIGENDIAN 318 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 319 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 320 #else 321 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 322 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 323 #endif 324 325 /* put_user()/get_user() take a guest address and check access */ 326 /* These are usually used to access an atomic data type, such as an int, 327 * that has been passed by address. These internally perform locking 328 * and unlocking on the data type. 329 */ 330 #define put_user(x, gaddr, target_type) \ 331 ({ \ 332 abi_ulong __gaddr = (gaddr); \ 333 target_type *__hptr; \ 334 abi_long __ret; \ 335 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 336 __ret = __put_user((x), __hptr); \ 337 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 338 } else \ 339 __ret = -TARGET_EFAULT; \ 340 __ret; \ 341 }) 342 343 #define get_user(x, gaddr, target_type) \ 344 ({ \ 345 abi_ulong __gaddr = (gaddr); \ 346 target_type *__hptr; \ 347 abi_long __ret; \ 348 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 349 __ret = __get_user((x), __hptr); \ 350 unlock_user(__hptr, __gaddr, 0); \ 351 } else { \ 352 /* avoid warning */ \ 353 (x) = 0; \ 354 __ret = -TARGET_EFAULT; \ 355 } \ 356 __ret; \ 357 }) 358 359 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 360 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 361 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 362 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 363 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 364 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 365 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 366 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 367 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 368 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 369 370 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 371 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 372 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 373 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 374 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 375 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 376 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 377 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 378 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 379 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 380 381 /* copy_from_user() and copy_to_user() are usually used to copy data 382 * buffers between the target and host. These internally perform 383 * locking/unlocking of the memory. 384 */ 385 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 386 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 387 388 /* Functions for accessing guest memory. The tget and tput functions 389 read/write single values, byteswapping as necessary. The lock_user 390 gets a pointer to a contiguous area of guest memory, but does not perform 391 and byteswapping. lock_user may return either a pointer to the guest 392 memory, or a temporary buffer. */ 393 394 /* Lock an area of guest memory into the host. If copy is true then the 395 host area will have the same contents as the guest. */ 396 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 397 { 398 if (!access_ok(type, guest_addr, len)) 399 return NULL; 400 #ifdef DEBUG_REMAP 401 { 402 void *addr; 403 addr = malloc(len); 404 if (copy) 405 memcpy(addr, g2h(guest_addr), len); 406 else 407 memset(addr, 0, len); 408 return addr; 409 } 410 #else 411 return g2h(guest_addr); 412 #endif 413 } 414 415 /* Unlock an area of guest memory. The first LEN bytes must be 416 flushed back to guest memory. host_ptr = NULL is explicitly 417 allowed and does nothing. */ 418 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 419 long len) 420 { 421 422 #ifdef DEBUG_REMAP 423 if (!host_ptr) 424 return; 425 if (host_ptr == g2h(guest_addr)) 426 return; 427 if (len > 0) 428 memcpy(g2h(guest_addr), host_ptr, len); 429 free(host_ptr); 430 #endif 431 } 432 433 /* Return the length of a string in target memory or -TARGET_EFAULT if 434 access error. */ 435 abi_long target_strlen(abi_ulong gaddr); 436 437 /* Like lock_user but for null terminated strings. */ 438 static inline void *lock_user_string(abi_ulong guest_addr) 439 { 440 abi_long len; 441 len = target_strlen(guest_addr); 442 if (len < 0) 443 return NULL; 444 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 445 } 446 447 /* Helper macros for locking/ulocking a target struct. */ 448 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 449 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 450 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 451 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 452 453 #if defined(CONFIG_USE_NPTL) 454 #include <pthread.h> 455 #endif 456 457 #endif /* QEMU_H */ 458