1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "cpu.h" 5 #include "exec/cpu_ldst.h" 6 7 #undef DEBUG_REMAP 8 9 #include "exec/user/abitypes.h" 10 11 #include "syscall_defs.h" 12 #include "target_syscall.h" 13 14 /* 15 * This is the size of the host kernel's sigset_t, needed where we make 16 * direct system calls that take a sigset_t pointer and a size. 17 */ 18 #define SIGSET_T_SIZE (_NSIG / 8) 19 20 /* 21 * This struct is used to hold certain information about the image. 22 * Basically, it replicates in user space what would be certain 23 * task_struct fields in the kernel 24 */ 25 struct image_info { 26 abi_ulong load_bias; 27 abi_ulong load_addr; 28 abi_ulong start_code; 29 abi_ulong end_code; 30 abi_ulong start_data; 31 abi_ulong end_data; 32 abi_ulong start_brk; 33 abi_ulong brk; 34 abi_ulong reserve_brk; 35 abi_ulong start_mmap; 36 abi_ulong start_stack; 37 abi_ulong stack_limit; 38 abi_ulong entry; 39 abi_ulong code_offset; 40 abi_ulong data_offset; 41 abi_ulong saved_auxv; 42 abi_ulong auxv_len; 43 abi_ulong arg_start; 44 abi_ulong arg_end; 45 abi_ulong arg_strings; 46 abi_ulong env_strings; 47 abi_ulong file_string; 48 uint32_t elf_flags; 49 int personality; 50 abi_ulong alignment; 51 52 /* The fields below are used in FDPIC mode. */ 53 abi_ulong loadmap_addr; 54 uint16_t nsegs; 55 void *loadsegs; 56 abi_ulong pt_dynamic_addr; 57 abi_ulong interpreter_loadmap_addr; 58 abi_ulong interpreter_pt_dynamic_addr; 59 struct image_info *other_info; 60 61 /* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */ 62 uint32_t note_flags; 63 64 #ifdef TARGET_MIPS 65 int fp_abi; 66 int interp_fp_abi; 67 #endif 68 }; 69 70 #ifdef TARGET_I386 71 /* Information about the current linux thread */ 72 struct vm86_saved_state { 73 uint32_t eax; /* return code */ 74 uint32_t ebx; 75 uint32_t ecx; 76 uint32_t edx; 77 uint32_t esi; 78 uint32_t edi; 79 uint32_t ebp; 80 uint32_t esp; 81 uint32_t eflags; 82 uint32_t eip; 83 uint16_t cs, ss, ds, es, fs, gs; 84 }; 85 #endif 86 87 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 88 /* FPU emulator */ 89 #include "nwfpe/fpa11.h" 90 #endif 91 92 #define MAX_SIGQUEUE_SIZE 1024 93 94 struct emulated_sigtable { 95 int pending; /* true if signal is pending */ 96 target_siginfo_t info; 97 }; 98 99 /* 100 * NOTE: we force a big alignment so that the stack stored after is 101 * aligned too 102 */ 103 typedef struct TaskState { 104 pid_t ts_tid; /* tid (or pid) of this task */ 105 #ifdef TARGET_ARM 106 # ifdef TARGET_ABI32 107 /* FPA state */ 108 FPA11 fpa; 109 # endif 110 #endif 111 #if defined(TARGET_ARM) || defined(TARGET_RISCV) 112 int swi_errno; 113 #endif 114 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 115 abi_ulong target_v86; 116 struct vm86_saved_state vm86_saved_regs; 117 struct target_vm86plus_struct vm86plus; 118 uint32_t v86flags; 119 uint32_t v86mask; 120 #endif 121 abi_ulong child_tidptr; 122 #ifdef TARGET_M68K 123 abi_ulong tp_value; 124 #endif 125 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_RISCV) 126 /* Extra fields for semihosted binaries. */ 127 abi_ulong heap_base; 128 abi_ulong heap_limit; 129 #endif 130 abi_ulong stack_base; 131 int used; /* non zero if used */ 132 struct image_info *info; 133 struct linux_binprm *bprm; 134 135 struct emulated_sigtable sync_signal; 136 struct emulated_sigtable sigtab[TARGET_NSIG]; 137 /* 138 * This thread's signal mask, as requested by the guest program. 139 * The actual signal mask of this thread may differ: 140 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 141 * + sometimes we block all signals to avoid races 142 */ 143 sigset_t signal_mask; 144 /* 145 * The signal mask imposed by a guest sigsuspend syscall, if we are 146 * currently in the middle of such a syscall 147 */ 148 sigset_t sigsuspend_mask; 149 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 150 int in_sigsuspend; 151 152 /* 153 * Nonzero if process_pending_signals() needs to do something (either 154 * handle a pending signal or unblock signals). 155 * This flag is written from a signal handler so should be accessed via 156 * the qatomic_read() and qatomic_set() functions. (It is not accessed 157 * from multiple threads.) 158 */ 159 int signal_pending; 160 161 /* This thread's sigaltstack, if it has one */ 162 struct target_sigaltstack sigaltstack_used; 163 } __attribute__((aligned(16))) TaskState; 164 165 abi_long do_brk(abi_ulong new_brk); 166 167 /* user access */ 168 169 #define VERIFY_READ PAGE_READ 170 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE) 171 172 static inline bool access_ok_untagged(int type, abi_ulong addr, abi_ulong size) 173 { 174 if (size == 0 175 ? !guest_addr_valid_untagged(addr) 176 : !guest_range_valid_untagged(addr, size)) { 177 return false; 178 } 179 return page_check_range((target_ulong)addr, size, type) == 0; 180 } 181 182 static inline bool access_ok(CPUState *cpu, int type, 183 abi_ulong addr, abi_ulong size) 184 { 185 return access_ok_untagged(type, cpu_untagged_addr(cpu, addr), size); 186 } 187 188 /* NOTE __get_user and __put_user use host pointers and don't check access. 189 These are usually used to access struct data members once the struct has 190 been locked - usually with lock_user_struct. */ 191 192 /* 193 * Tricky points: 194 * - Use __builtin_choose_expr to avoid type promotion from ?:, 195 * - Invalid sizes result in a compile time error stemming from 196 * the fact that abort has no parameters. 197 * - It's easier to use the endian-specific unaligned load/store 198 * functions than host-endian unaligned load/store plus tswapN. 199 * - The pragmas are necessary only to silence a clang false-positive 200 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 . 201 * - gcc has bugs in its _Pragma() support in some versions, eg 202 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only 203 * include the warning-suppression pragmas for clang 204 */ 205 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member") 206 #define PRAGMA_DISABLE_PACKED_WARNING \ 207 _Pragma("GCC diagnostic push"); \ 208 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"") 209 210 #define PRAGMA_REENABLE_PACKED_WARNING \ 211 _Pragma("GCC diagnostic pop") 212 213 #else 214 #define PRAGMA_DISABLE_PACKED_WARNING 215 #define PRAGMA_REENABLE_PACKED_WARNING 216 #endif 217 218 #define __put_user_e(x, hptr, e) \ 219 do { \ 220 PRAGMA_DISABLE_PACKED_WARNING; \ 221 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 222 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 223 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 224 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 225 ((hptr), (x)), (void)0); \ 226 PRAGMA_REENABLE_PACKED_WARNING; \ 227 } while (0) 228 229 #define __get_user_e(x, hptr, e) \ 230 do { \ 231 PRAGMA_DISABLE_PACKED_WARNING; \ 232 ((x) = (typeof(*hptr))( \ 233 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 234 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 235 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 236 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 237 (hptr)), (void)0); \ 238 PRAGMA_REENABLE_PACKED_WARNING; \ 239 } while (0) 240 241 242 #ifdef TARGET_WORDS_BIGENDIAN 243 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 244 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 245 #else 246 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 247 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 248 #endif 249 250 /* put_user()/get_user() take a guest address and check access */ 251 /* These are usually used to access an atomic data type, such as an int, 252 * that has been passed by address. These internally perform locking 253 * and unlocking on the data type. 254 */ 255 #define put_user(x, gaddr, target_type) \ 256 ({ \ 257 abi_ulong __gaddr = (gaddr); \ 258 target_type *__hptr; \ 259 abi_long __ret = 0; \ 260 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 261 __put_user((x), __hptr); \ 262 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 263 } else \ 264 __ret = -TARGET_EFAULT; \ 265 __ret; \ 266 }) 267 268 #define get_user(x, gaddr, target_type) \ 269 ({ \ 270 abi_ulong __gaddr = (gaddr); \ 271 target_type *__hptr; \ 272 abi_long __ret = 0; \ 273 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 274 __get_user((x), __hptr); \ 275 unlock_user(__hptr, __gaddr, 0); \ 276 } else { \ 277 /* avoid warning */ \ 278 (x) = 0; \ 279 __ret = -TARGET_EFAULT; \ 280 } \ 281 __ret; \ 282 }) 283 284 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 285 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 286 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 287 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 288 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 289 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 290 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 291 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 292 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 293 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 294 295 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 296 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 297 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 298 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 299 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 300 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 301 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 302 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 303 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 304 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 305 306 /* copy_from_user() and copy_to_user() are usually used to copy data 307 * buffers between the target and host. These internally perform 308 * locking/unlocking of the memory. 309 */ 310 int copy_from_user(void *hptr, abi_ulong gaddr, ssize_t len); 311 int copy_to_user(abi_ulong gaddr, void *hptr, ssize_t len); 312 313 /* Functions for accessing guest memory. The tget and tput functions 314 read/write single values, byteswapping as necessary. The lock_user function 315 gets a pointer to a contiguous area of guest memory, but does not perform 316 any byteswapping. lock_user may return either a pointer to the guest 317 memory, or a temporary buffer. */ 318 319 /* Lock an area of guest memory into the host. If copy is true then the 320 host area will have the same contents as the guest. */ 321 void *lock_user(int type, abi_ulong guest_addr, ssize_t len, bool copy); 322 323 /* Unlock an area of guest memory. The first LEN bytes must be 324 flushed back to guest memory. host_ptr = NULL is explicitly 325 allowed and does nothing. */ 326 #ifndef DEBUG_REMAP 327 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 328 ssize_t len) 329 { 330 /* no-op */ 331 } 332 #else 333 void unlock_user(void *host_ptr, abi_ulong guest_addr, ssize_t len); 334 #endif 335 336 /* Return the length of a string in target memory or -TARGET_EFAULT if 337 access error. */ 338 ssize_t target_strlen(abi_ulong gaddr); 339 340 /* Like lock_user but for null terminated strings. */ 341 void *lock_user_string(abi_ulong guest_addr); 342 343 /* Helper macros for locking/unlocking a target struct. */ 344 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 345 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 346 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 347 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 348 349 #endif /* QEMU_H */ 350