xref: /openbmc/qemu/linux-user/qemu.h (revision 2345c77c)
1 #ifndef QEMU_H
2 #define QEMU_H
3 
4 #include <signal.h>
5 #include <string.h>
6 
7 #include "cpu.h"
8 
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
13 
14 #include "qemu-types.h"
15 
16 #include "thunk.h"
17 #include "syscall_defs.h"
18 #include "syscall.h"
19 #include "target_signal.h"
20 #include "gdbstub.h"
21 #include "qemu-queue.h"
22 
23 #if defined(CONFIG_USE_NPTL)
24 #define THREAD __thread
25 #else
26 #define THREAD
27 #endif
28 
29 /* This struct is used to hold certain information about the image.
30  * Basically, it replicates in user space what would be certain
31  * task_struct fields in the kernel
32  */
33 struct image_info {
34         abi_ulong       load_bias;
35         abi_ulong       load_addr;
36         abi_ulong       start_code;
37         abi_ulong       end_code;
38         abi_ulong       start_data;
39         abi_ulong       end_data;
40         abi_ulong       start_brk;
41         abi_ulong       brk;
42         abi_ulong       start_mmap;
43         abi_ulong       mmap;
44         abi_ulong       rss;
45         abi_ulong       start_stack;
46         abi_ulong       stack_limit;
47         abi_ulong       entry;
48         abi_ulong       code_offset;
49         abi_ulong       data_offset;
50         abi_ulong       saved_auxv;
51         abi_ulong       arg_start;
52         abi_ulong       arg_end;
53 	int		personality;
54 #ifdef CONFIG_USE_FDPIC
55         abi_ulong       loadmap_addr;
56         uint16_t        nsegs;
57         void           *loadsegs;
58         abi_ulong       pt_dynamic_addr;
59         struct image_info *other_info;
60 #endif
61 };
62 
63 #ifdef TARGET_I386
64 /* Information about the current linux thread */
65 struct vm86_saved_state {
66     uint32_t eax; /* return code */
67     uint32_t ebx;
68     uint32_t ecx;
69     uint32_t edx;
70     uint32_t esi;
71     uint32_t edi;
72     uint32_t ebp;
73     uint32_t esp;
74     uint32_t eflags;
75     uint32_t eip;
76     uint16_t cs, ss, ds, es, fs, gs;
77 };
78 #endif
79 
80 #ifdef TARGET_ARM
81 /* FPU emulator */
82 #include "nwfpe/fpa11.h"
83 #endif
84 
85 #define MAX_SIGQUEUE_SIZE 1024
86 
87 struct sigqueue {
88     struct sigqueue *next;
89     target_siginfo_t info;
90 };
91 
92 struct emulated_sigtable {
93     int pending; /* true if signal is pending */
94     struct sigqueue *first;
95     struct sigqueue info; /* in order to always have memory for the
96                              first signal, we put it here */
97 };
98 
99 /* NOTE: we force a big alignment so that the stack stored after is
100    aligned too */
101 typedef struct TaskState {
102     pid_t ts_tid;     /* tid (or pid) of this task */
103 #ifdef TARGET_ARM
104     /* FPA state */
105     FPA11 fpa;
106     int swi_errno;
107 #endif
108 #ifdef TARGET_UNICORE32
109     int swi_errno;
110 #endif
111 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
112     abi_ulong target_v86;
113     struct vm86_saved_state vm86_saved_regs;
114     struct target_vm86plus_struct vm86plus;
115     uint32_t v86flags;
116     uint32_t v86mask;
117 #endif
118 #ifdef CONFIG_USE_NPTL
119     abi_ulong child_tidptr;
120 #endif
121 #ifdef TARGET_M68K
122     int sim_syscalls;
123 #endif
124 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
125     /* Extra fields for semihosted binaries.  */
126     uint32_t stack_base;
127     uint32_t heap_base;
128     uint32_t heap_limit;
129 #endif
130     int used; /* non zero if used */
131     struct image_info *info;
132     struct linux_binprm *bprm;
133 
134     struct emulated_sigtable sigtab[TARGET_NSIG];
135     struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
136     struct sigqueue *first_free; /* first free siginfo queue entry */
137     int signal_pending; /* non zero if a signal may be pending */
138 } __attribute__((aligned(16))) TaskState;
139 
140 extern char *exec_path;
141 void init_task_state(TaskState *ts);
142 void task_settid(TaskState *);
143 void stop_all_tasks(void);
144 extern const char *qemu_uname_release;
145 extern unsigned long mmap_min_addr;
146 
147 /* ??? See if we can avoid exposing so much of the loader internals.  */
148 /*
149  * MAX_ARG_PAGES defines the number of pages allocated for arguments
150  * and envelope for the new program. 32 should suffice, this gives
151  * a maximum env+arg of 128kB w/4KB pages!
152  */
153 #define MAX_ARG_PAGES 33
154 
155 /* Read a good amount of data initially, to hopefully get all the
156    program headers loaded.  */
157 #define BPRM_BUF_SIZE  1024
158 
159 /*
160  * This structure is used to hold the arguments that are
161  * used when loading binaries.
162  */
163 struct linux_binprm {
164         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
165         void *page[MAX_ARG_PAGES];
166         abi_ulong p;
167 	int fd;
168         int e_uid, e_gid;
169         int argc, envc;
170         char **argv;
171         char **envp;
172         char * filename;        /* Name of binary */
173         int (*core_dump)(int, const CPUState *); /* coredump routine */
174 };
175 
176 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
177 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
178                               abi_ulong stringp, int push_ptr);
179 int loader_exec(const char * filename, char ** argv, char ** envp,
180              struct target_pt_regs * regs, struct image_info *infop,
181              struct linux_binprm *);
182 
183 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
184                     struct image_info * info);
185 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
186                     struct image_info * info);
187 
188 abi_long memcpy_to_target(abi_ulong dest, const void *src,
189                           unsigned long len);
190 void target_set_brk(abi_ulong new_brk);
191 abi_long do_brk(abi_ulong new_brk);
192 void syscall_init(void);
193 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
194                     abi_long arg2, abi_long arg3, abi_long arg4,
195                     abi_long arg5, abi_long arg6, abi_long arg7,
196                     abi_long arg8);
197 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
198 extern THREAD CPUState *thread_env;
199 void cpu_loop(CPUState *env);
200 char *target_strerror(int err);
201 int get_osversion(void);
202 void fork_start(void);
203 void fork_end(int child);
204 
205 #include "qemu-log.h"
206 
207 /* strace.c */
208 void print_syscall(int num,
209                    abi_long arg1, abi_long arg2, abi_long arg3,
210                    abi_long arg4, abi_long arg5, abi_long arg6);
211 void print_syscall_ret(int num, abi_long arg1);
212 extern int do_strace;
213 
214 /* signal.c */
215 void process_pending_signals(CPUState *cpu_env);
216 void signal_init(void);
217 int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
218 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
219 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
220 int target_to_host_signal(int sig);
221 int host_to_target_signal(int sig);
222 long do_sigreturn(CPUState *env);
223 long do_rt_sigreturn(CPUState *env);
224 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
225 
226 #ifdef TARGET_I386
227 /* vm86.c */
228 void save_v86_state(CPUX86State *env);
229 void handle_vm86_trap(CPUX86State *env, int trapno);
230 void handle_vm86_fault(CPUX86State *env);
231 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
232 #elif defined(TARGET_SPARC64)
233 void sparc64_set_context(CPUSPARCState *env);
234 void sparc64_get_context(CPUSPARCState *env);
235 #endif
236 
237 /* mmap.c */
238 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
239 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
240                      int flags, int fd, abi_ulong offset);
241 int target_munmap(abi_ulong start, abi_ulong len);
242 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
243                        abi_ulong new_size, unsigned long flags,
244                        abi_ulong new_addr);
245 int target_msync(abi_ulong start, abi_ulong len, int flags);
246 extern unsigned long last_brk;
247 void mmap_lock(void);
248 void mmap_unlock(void);
249 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
250 void cpu_list_lock(void);
251 void cpu_list_unlock(void);
252 #if defined(CONFIG_USE_NPTL)
253 void mmap_fork_start(void);
254 void mmap_fork_end(int child);
255 #endif
256 
257 /* main.c */
258 extern unsigned long guest_stack_size;
259 
260 /* user access */
261 
262 #define VERIFY_READ 0
263 #define VERIFY_WRITE 1 /* implies read access */
264 
265 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
266 {
267     return page_check_range((target_ulong)addr, size,
268                             (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
269 }
270 
271 /* NOTE __get_user and __put_user use host pointers and don't check access. */
272 /* These are usually used to access struct data members once the
273  * struct has been locked - usually with lock_user_struct().
274  */
275 #define __put_user(x, hptr)\
276 ({\
277     switch(sizeof(*hptr)) {\
278     case 1:\
279         *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
280         break;\
281     case 2:\
282         *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\
283         break;\
284     case 4:\
285         *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\
286         break;\
287     case 8:\
288         *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
289         break;\
290     default:\
291         abort();\
292     }\
293     0;\
294 })
295 
296 #define __get_user(x, hptr) \
297 ({\
298     switch(sizeof(*hptr)) {\
299     case 1:\
300         x = (typeof(*hptr))*(uint8_t *)(hptr);\
301         break;\
302     case 2:\
303         x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
304         break;\
305     case 4:\
306         x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
307         break;\
308     case 8:\
309         x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
310         break;\
311     default:\
312         /* avoid warning */\
313         x = 0;\
314         abort();\
315     }\
316     0;\
317 })
318 
319 /* put_user()/get_user() take a guest address and check access */
320 /* These are usually used to access an atomic data type, such as an int,
321  * that has been passed by address.  These internally perform locking
322  * and unlocking on the data type.
323  */
324 #define put_user(x, gaddr, target_type)					\
325 ({									\
326     abi_ulong __gaddr = (gaddr);					\
327     target_type *__hptr;						\
328     abi_long __ret;							\
329     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
330         __ret = __put_user((x), __hptr);				\
331         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
332     } else								\
333         __ret = -TARGET_EFAULT;						\
334     __ret;								\
335 })
336 
337 #define get_user(x, gaddr, target_type)					\
338 ({									\
339     abi_ulong __gaddr = (gaddr);					\
340     target_type *__hptr;						\
341     abi_long __ret;							\
342     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
343         __ret = __get_user((x), __hptr);				\
344         unlock_user(__hptr, __gaddr, 0);				\
345     } else {								\
346         /* avoid warning */						\
347         (x) = 0;							\
348         __ret = -TARGET_EFAULT;						\
349     }									\
350     __ret;								\
351 })
352 
353 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
354 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
355 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
356 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
357 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
358 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
359 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
360 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
361 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
362 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
363 
364 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
365 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
366 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
367 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
368 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
369 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
370 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
371 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
372 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
373 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
374 
375 /* copy_from_user() and copy_to_user() are usually used to copy data
376  * buffers between the target and host.  These internally perform
377  * locking/unlocking of the memory.
378  */
379 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
380 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
381 
382 /* Functions for accessing guest memory.  The tget and tput functions
383    read/write single values, byteswapping as necessary.  The lock_user
384    gets a pointer to a contiguous area of guest memory, but does not perform
385    and byteswapping.  lock_user may return either a pointer to the guest
386    memory, or a temporary buffer.  */
387 
388 /* Lock an area of guest memory into the host.  If copy is true then the
389    host area will have the same contents as the guest.  */
390 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
391 {
392     if (!access_ok(type, guest_addr, len))
393         return NULL;
394 #ifdef DEBUG_REMAP
395     {
396         void *addr;
397         addr = malloc(len);
398         if (copy)
399             memcpy(addr, g2h(guest_addr), len);
400         else
401             memset(addr, 0, len);
402         return addr;
403     }
404 #else
405     return g2h(guest_addr);
406 #endif
407 }
408 
409 /* Unlock an area of guest memory.  The first LEN bytes must be
410    flushed back to guest memory. host_ptr = NULL is explicitly
411    allowed and does nothing. */
412 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
413                                long len)
414 {
415 
416 #ifdef DEBUG_REMAP
417     if (!host_ptr)
418         return;
419     if (host_ptr == g2h(guest_addr))
420         return;
421     if (len > 0)
422         memcpy(g2h(guest_addr), host_ptr, len);
423     free(host_ptr);
424 #endif
425 }
426 
427 /* Return the length of a string in target memory or -TARGET_EFAULT if
428    access error. */
429 abi_long target_strlen(abi_ulong gaddr);
430 
431 /* Like lock_user but for null terminated strings.  */
432 static inline void *lock_user_string(abi_ulong guest_addr)
433 {
434     abi_long len;
435     len = target_strlen(guest_addr);
436     if (len < 0)
437         return NULL;
438     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
439 }
440 
441 /* Helper macros for locking/ulocking a target struct.  */
442 #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
443     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
444 #define unlock_user_struct(host_ptr, guest_addr, copy)		\
445     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
446 
447 #if defined(CONFIG_USE_NPTL)
448 #include <pthread.h>
449 #endif
450 
451 #endif /* QEMU_H */
452