1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include <signal.h> 5 #include <string.h> 6 7 #include "cpu.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #include <stdlib.h> 12 #endif /* DEBUG_REMAP */ 13 14 #include "qemu-types.h" 15 16 #include "thunk.h" 17 #include "syscall_defs.h" 18 #include "syscall.h" 19 #include "target_signal.h" 20 #include "gdbstub.h" 21 22 #if defined(USE_NPTL) 23 #define THREAD __thread 24 #else 25 #define THREAD 26 #endif 27 28 /* This struct is used to hold certain information about the image. 29 * Basically, it replicates in user space what would be certain 30 * task_struct fields in the kernel 31 */ 32 struct image_info { 33 abi_ulong load_addr; 34 abi_ulong start_code; 35 abi_ulong end_code; 36 abi_ulong start_data; 37 abi_ulong end_data; 38 abi_ulong start_brk; 39 abi_ulong brk; 40 abi_ulong start_mmap; 41 abi_ulong mmap; 42 abi_ulong rss; 43 abi_ulong start_stack; 44 abi_ulong entry; 45 abi_ulong code_offset; 46 abi_ulong data_offset; 47 char **host_argv; 48 int personality; 49 }; 50 51 #ifdef TARGET_I386 52 /* Information about the current linux thread */ 53 struct vm86_saved_state { 54 uint32_t eax; /* return code */ 55 uint32_t ebx; 56 uint32_t ecx; 57 uint32_t edx; 58 uint32_t esi; 59 uint32_t edi; 60 uint32_t ebp; 61 uint32_t esp; 62 uint32_t eflags; 63 uint32_t eip; 64 uint16_t cs, ss, ds, es, fs, gs; 65 }; 66 #endif 67 68 #ifdef TARGET_ARM 69 /* FPU emulator */ 70 #include "nwfpe/fpa11.h" 71 #endif 72 73 #define MAX_SIGQUEUE_SIZE 1024 74 75 struct sigqueue { 76 struct sigqueue *next; 77 target_siginfo_t info; 78 }; 79 80 struct emulated_sigtable { 81 int pending; /* true if signal is pending */ 82 struct sigqueue *first; 83 struct sigqueue info; /* in order to always have memory for the 84 first signal, we put it here */ 85 }; 86 87 /* NOTE: we force a big alignment so that the stack stored after is 88 aligned too */ 89 typedef struct TaskState { 90 struct TaskState *next; 91 #ifdef TARGET_ARM 92 /* FPA state */ 93 FPA11 fpa; 94 int swi_errno; 95 #endif 96 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 97 abi_ulong target_v86; 98 struct vm86_saved_state vm86_saved_regs; 99 struct target_vm86plus_struct vm86plus; 100 uint32_t v86flags; 101 uint32_t v86mask; 102 #endif 103 #ifdef TARGET_M68K 104 int sim_syscalls; 105 #endif 106 #if defined(TARGET_ARM) || defined(TARGET_M68K) 107 /* Extra fields for semihosted binaries. */ 108 uint32_t stack_base; 109 uint32_t heap_base; 110 uint32_t heap_limit; 111 #endif 112 int used; /* non zero if used */ 113 struct image_info *info; 114 115 struct emulated_sigtable sigtab[TARGET_NSIG]; 116 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 117 struct sigqueue *first_free; /* first free siginfo queue entry */ 118 int signal_pending; /* non zero if a signal may be pending */ 119 120 uint8_t stack[0]; 121 } __attribute__((aligned(16))) TaskState; 122 123 void init_task_state(TaskState *ts); 124 extern const char *qemu_uname_release; 125 126 /* ??? See if we can avoid exposing so much of the loader internals. */ 127 /* 128 * MAX_ARG_PAGES defines the number of pages allocated for arguments 129 * and envelope for the new program. 32 should suffice, this gives 130 * a maximum env+arg of 128kB w/4KB pages! 131 */ 132 #define MAX_ARG_PAGES 32 133 134 /* 135 * This structure is used to hold the arguments that are 136 * used when loading binaries. 137 */ 138 struct linux_binprm { 139 char buf[128]; 140 void *page[MAX_ARG_PAGES]; 141 abi_ulong p; 142 int fd; 143 int e_uid, e_gid; 144 int argc, envc; 145 char **argv; 146 char **envp; 147 char * filename; /* Name of binary */ 148 }; 149 150 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 151 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 152 abi_ulong stringp, int push_ptr); 153 int loader_exec(const char * filename, char ** argv, char ** envp, 154 struct target_pt_regs * regs, struct image_info *infop); 155 156 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 157 struct image_info * info); 158 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 159 struct image_info * info); 160 #ifdef TARGET_HAS_ELFLOAD32 161 int load_elf_binary_multi(struct linux_binprm *bprm, 162 struct target_pt_regs *regs, 163 struct image_info *info); 164 #endif 165 166 abi_long memcpy_to_target(abi_ulong dest, const void *src, 167 unsigned long len); 168 void target_set_brk(abi_ulong new_brk); 169 abi_long do_brk(abi_ulong new_brk); 170 void syscall_init(void); 171 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 172 abi_long arg2, abi_long arg3, abi_long arg4, 173 abi_long arg5, abi_long arg6); 174 void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2))); 175 extern THREAD CPUState *thread_env; 176 void cpu_loop(CPUState *env); 177 void init_paths(const char *prefix); 178 const char *path(const char *pathname); 179 char *target_strerror(int err); 180 int get_osversion(void); 181 void fork_start(void); 182 void fork_end(int child); 183 184 #include "qemu-log.h" 185 186 /* strace.c */ 187 void print_syscall(int num, 188 abi_long arg1, abi_long arg2, abi_long arg3, 189 abi_long arg4, abi_long arg5, abi_long arg6); 190 void print_syscall_ret(int num, abi_long arg1); 191 extern int do_strace; 192 193 /* signal.c */ 194 void process_pending_signals(CPUState *cpu_env); 195 void signal_init(void); 196 int queue_signal(CPUState *env, int sig, target_siginfo_t *info); 197 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 198 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 199 int target_to_host_signal(int sig); 200 long do_sigreturn(CPUState *env); 201 long do_rt_sigreturn(CPUState *env); 202 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 203 204 #ifdef TARGET_I386 205 /* vm86.c */ 206 void save_v86_state(CPUX86State *env); 207 void handle_vm86_trap(CPUX86State *env, int trapno); 208 void handle_vm86_fault(CPUX86State *env); 209 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 210 #elif defined(TARGET_SPARC64) 211 void sparc64_set_context(CPUSPARCState *env); 212 void sparc64_get_context(CPUSPARCState *env); 213 #endif 214 215 /* mmap.c */ 216 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 217 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 218 int flags, int fd, abi_ulong offset); 219 int target_munmap(abi_ulong start, abi_ulong len); 220 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 221 abi_ulong new_size, unsigned long flags, 222 abi_ulong new_addr); 223 int target_msync(abi_ulong start, abi_ulong len, int flags); 224 extern unsigned long last_brk; 225 void mmap_lock(void); 226 void mmap_unlock(void); 227 #if defined(USE_NPTL) 228 void mmap_fork_start(void); 229 void mmap_fork_end(int child); 230 #endif 231 232 /* main.c */ 233 extern unsigned long x86_stack_size; 234 235 /* user access */ 236 237 #define VERIFY_READ 0 238 #define VERIFY_WRITE 1 /* implies read access */ 239 240 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 241 { 242 return page_check_range((target_ulong)addr, size, 243 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 244 } 245 246 /* NOTE __get_user and __put_user use host pointers and don't check access. */ 247 /* These are usually used to access struct data members once the 248 * struct has been locked - usually with lock_user_struct(). 249 */ 250 #define __put_user(x, hptr)\ 251 ({\ 252 int size = sizeof(*hptr);\ 253 switch(size) {\ 254 case 1:\ 255 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 256 break;\ 257 case 2:\ 258 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ 259 break;\ 260 case 4:\ 261 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ 262 break;\ 263 case 8:\ 264 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 265 break;\ 266 default:\ 267 abort();\ 268 }\ 269 0;\ 270 }) 271 272 #define __get_user(x, hptr) \ 273 ({\ 274 int size = sizeof(*hptr);\ 275 switch(size) {\ 276 case 1:\ 277 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 278 break;\ 279 case 2:\ 280 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 281 break;\ 282 case 4:\ 283 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 284 break;\ 285 case 8:\ 286 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 287 break;\ 288 default:\ 289 /* avoid warning */\ 290 x = 0;\ 291 abort();\ 292 }\ 293 0;\ 294 }) 295 296 /* put_user()/get_user() take a guest address and check access */ 297 /* These are usually used to access an atomic data type, such as an int, 298 * that has been passed by address. These internally perform locking 299 * and unlocking on the data type. 300 */ 301 #define put_user(x, gaddr, target_type) \ 302 ({ \ 303 abi_ulong __gaddr = (gaddr); \ 304 target_type *__hptr; \ 305 abi_long __ret; \ 306 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 307 __ret = __put_user((x), __hptr); \ 308 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 309 } else \ 310 __ret = -TARGET_EFAULT; \ 311 __ret; \ 312 }) 313 314 #define get_user(x, gaddr, target_type) \ 315 ({ \ 316 abi_ulong __gaddr = (gaddr); \ 317 target_type *__hptr; \ 318 abi_long __ret; \ 319 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 320 __ret = __get_user((x), __hptr); \ 321 unlock_user(__hptr, __gaddr, 0); \ 322 } else { \ 323 /* avoid warning */ \ 324 (x) = 0; \ 325 __ret = -TARGET_EFAULT; \ 326 } \ 327 __ret; \ 328 }) 329 330 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 331 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 332 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 333 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 334 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 335 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 336 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 337 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 338 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 339 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 340 341 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 342 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 343 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 344 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 345 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 346 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 347 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 348 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 349 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 350 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 351 352 /* copy_from_user() and copy_to_user() are usually used to copy data 353 * buffers between the target and host. These internally perform 354 * locking/unlocking of the memory. 355 */ 356 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 357 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 358 359 /* Functions for accessing guest memory. The tget and tput functions 360 read/write single values, byteswapping as neccessary. The lock_user 361 gets a pointer to a contiguous area of guest memory, but does not perform 362 and byteswapping. lock_user may return either a pointer to the guest 363 memory, or a temporary buffer. */ 364 365 /* Lock an area of guest memory into the host. If copy is true then the 366 host area will have the same contents as the guest. */ 367 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 368 { 369 if (!access_ok(type, guest_addr, len)) 370 return NULL; 371 #ifdef DEBUG_REMAP 372 { 373 void *addr; 374 addr = malloc(len); 375 if (copy) 376 memcpy(addr, g2h(guest_addr), len); 377 else 378 memset(addr, 0, len); 379 return addr; 380 } 381 #else 382 return g2h(guest_addr); 383 #endif 384 } 385 386 /* Unlock an area of guest memory. The first LEN bytes must be 387 flushed back to guest memory. host_ptr = NULL is explicitly 388 allowed and does nothing. */ 389 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 390 long len) 391 { 392 393 #ifdef DEBUG_REMAP 394 if (!host_ptr) 395 return; 396 if (host_ptr == g2h(guest_addr)) 397 return; 398 if (len > 0) 399 memcpy(g2h(guest_addr), host_ptr, len); 400 free(host_ptr); 401 #endif 402 } 403 404 /* Return the length of a string in target memory or -TARGET_EFAULT if 405 access error. */ 406 abi_long target_strlen(abi_ulong gaddr); 407 408 /* Like lock_user but for null terminated strings. */ 409 static inline void *lock_user_string(abi_ulong guest_addr) 410 { 411 abi_long len; 412 len = target_strlen(guest_addr); 413 if (len < 0) 414 return NULL; 415 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 416 } 417 418 /* Helper macros for locking/ulocking a target struct. */ 419 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 420 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 421 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 422 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 423 424 #if defined(USE_NPTL) 425 #include <pthread.h> 426 #endif 427 428 #endif /* QEMU_H */ 429