1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "hostdep.h" 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 11 #include "exec/user/abitypes.h" 12 13 #include "exec/user/thunk.h" 14 #include "syscall_defs.h" 15 #include "target_syscall.h" 16 #include "exec/gdbstub.h" 17 18 /* This is the size of the host kernel's sigset_t, needed where we make 19 * direct system calls that take a sigset_t pointer and a size. 20 */ 21 #define SIGSET_T_SIZE (_NSIG / 8) 22 23 /* This struct is used to hold certain information about the image. 24 * Basically, it replicates in user space what would be certain 25 * task_struct fields in the kernel 26 */ 27 struct image_info { 28 abi_ulong load_bias; 29 abi_ulong load_addr; 30 abi_ulong start_code; 31 abi_ulong end_code; 32 abi_ulong start_data; 33 abi_ulong end_data; 34 abi_ulong start_brk; 35 abi_ulong brk; 36 abi_ulong reserve_brk; 37 abi_ulong start_mmap; 38 abi_ulong start_stack; 39 abi_ulong stack_limit; 40 abi_ulong entry; 41 abi_ulong code_offset; 42 abi_ulong data_offset; 43 abi_ulong saved_auxv; 44 abi_ulong auxv_len; 45 abi_ulong arg_start; 46 abi_ulong arg_end; 47 abi_ulong arg_strings; 48 abi_ulong env_strings; 49 abi_ulong file_string; 50 uint32_t elf_flags; 51 int personality; 52 abi_ulong alignment; 53 54 /* The fields below are used in FDPIC mode. */ 55 abi_ulong loadmap_addr; 56 uint16_t nsegs; 57 void *loadsegs; 58 abi_ulong pt_dynamic_addr; 59 abi_ulong interpreter_loadmap_addr; 60 abi_ulong interpreter_pt_dynamic_addr; 61 struct image_info *other_info; 62 63 /* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */ 64 uint32_t note_flags; 65 66 #ifdef TARGET_MIPS 67 int fp_abi; 68 int interp_fp_abi; 69 #endif 70 }; 71 72 #ifdef TARGET_I386 73 /* Information about the current linux thread */ 74 struct vm86_saved_state { 75 uint32_t eax; /* return code */ 76 uint32_t ebx; 77 uint32_t ecx; 78 uint32_t edx; 79 uint32_t esi; 80 uint32_t edi; 81 uint32_t ebp; 82 uint32_t esp; 83 uint32_t eflags; 84 uint32_t eip; 85 uint16_t cs, ss, ds, es, fs, gs; 86 }; 87 #endif 88 89 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 90 /* FPU emulator */ 91 #include "nwfpe/fpa11.h" 92 #endif 93 94 #define MAX_SIGQUEUE_SIZE 1024 95 96 struct emulated_sigtable { 97 int pending; /* true if signal is pending */ 98 target_siginfo_t info; 99 }; 100 101 /* NOTE: we force a big alignment so that the stack stored after is 102 aligned too */ 103 typedef struct TaskState { 104 pid_t ts_tid; /* tid (or pid) of this task */ 105 #ifdef TARGET_ARM 106 # ifdef TARGET_ABI32 107 /* FPA state */ 108 FPA11 fpa; 109 # endif 110 #endif 111 #if defined(TARGET_ARM) || defined(TARGET_RISCV) 112 int swi_errno; 113 #endif 114 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 115 abi_ulong target_v86; 116 struct vm86_saved_state vm86_saved_regs; 117 struct target_vm86plus_struct vm86plus; 118 uint32_t v86flags; 119 uint32_t v86mask; 120 #endif 121 abi_ulong child_tidptr; 122 #ifdef TARGET_M68K 123 abi_ulong tp_value; 124 #endif 125 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_RISCV) 126 /* Extra fields for semihosted binaries. */ 127 abi_ulong heap_base; 128 abi_ulong heap_limit; 129 #endif 130 abi_ulong stack_base; 131 int used; /* non zero if used */ 132 struct image_info *info; 133 struct linux_binprm *bprm; 134 135 struct emulated_sigtable sync_signal; 136 struct emulated_sigtable sigtab[TARGET_NSIG]; 137 /* This thread's signal mask, as requested by the guest program. 138 * The actual signal mask of this thread may differ: 139 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 140 * + sometimes we block all signals to avoid races 141 */ 142 sigset_t signal_mask; 143 /* The signal mask imposed by a guest sigsuspend syscall, if we are 144 * currently in the middle of such a syscall 145 */ 146 sigset_t sigsuspend_mask; 147 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 148 int in_sigsuspend; 149 150 /* Nonzero if process_pending_signals() needs to do something (either 151 * handle a pending signal or unblock signals). 152 * This flag is written from a signal handler so should be accessed via 153 * the qatomic_read() and qatomic_set() functions. (It is not accessed 154 * from multiple threads.) 155 */ 156 int signal_pending; 157 158 /* This thread's sigaltstack, if it has one */ 159 struct target_sigaltstack sigaltstack_used; 160 } __attribute__((aligned(16))) TaskState; 161 162 extern char *exec_path; 163 void init_task_state(TaskState *ts); 164 void task_settid(TaskState *); 165 void stop_all_tasks(void); 166 extern const char *qemu_uname_release; 167 extern unsigned long mmap_min_addr; 168 169 /* ??? See if we can avoid exposing so much of the loader internals. */ 170 171 /* Read a good amount of data initially, to hopefully get all the 172 program headers loaded. */ 173 #define BPRM_BUF_SIZE 1024 174 175 /* 176 * This structure is used to hold the arguments that are 177 * used when loading binaries. 178 */ 179 struct linux_binprm { 180 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 181 abi_ulong p; 182 int fd; 183 int e_uid, e_gid; 184 int argc, envc; 185 char **argv; 186 char **envp; 187 char * filename; /* Name of binary */ 188 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 189 }; 190 191 typedef struct IOCTLEntry IOCTLEntry; 192 193 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, 194 int fd, int cmd, abi_long arg); 195 196 struct IOCTLEntry { 197 int target_cmd; 198 unsigned int host_cmd; 199 const char *name; 200 int access; 201 do_ioctl_fn *do_ioctl; 202 const argtype arg_type[5]; 203 }; 204 205 extern IOCTLEntry ioctl_entries[]; 206 207 #define IOC_R 0x0001 208 #define IOC_W 0x0002 209 #define IOC_RW (IOC_R | IOC_W) 210 211 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 212 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 213 abi_ulong stringp, int push_ptr); 214 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 215 struct target_pt_regs * regs, struct image_info *infop, 216 struct linux_binprm *); 217 218 /* Returns true if the image uses the FDPIC ABI. If this is the case, 219 * we have to provide some information (loadmap, pt_dynamic_info) such 220 * that the program can be relocated adequately. This is also useful 221 * when handling signals. 222 */ 223 int info_is_fdpic(struct image_info *info); 224 225 uint32_t get_elf_eflags(int fd); 226 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 227 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 228 229 abi_long memcpy_to_target(abi_ulong dest, const void *src, 230 unsigned long len); 231 void target_set_brk(abi_ulong new_brk); 232 abi_long do_brk(abi_ulong new_brk); 233 void syscall_init(void); 234 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 235 abi_long arg2, abi_long arg3, abi_long arg4, 236 abi_long arg5, abi_long arg6, abi_long arg7, 237 abi_long arg8); 238 extern __thread CPUState *thread_cpu; 239 void cpu_loop(CPUArchState *env); 240 const char *target_strerror(int err); 241 int get_osversion(void); 242 void init_qemu_uname_release(void); 243 void fork_start(void); 244 void fork_end(int child); 245 246 /** 247 * probe_guest_base: 248 * @image_name: the executable being loaded 249 * @loaddr: the lowest fixed address in the executable 250 * @hiaddr: the highest fixed address in the executable 251 * 252 * Creates the initial guest address space in the host memory space. 253 * 254 * If @loaddr == 0, then no address in the executable is fixed, 255 * i.e. it is fully relocatable. In that case @hiaddr is the size 256 * of the executable. 257 * 258 * This function will not return if a valid value for guest_base 259 * cannot be chosen. On return, the executable loader can expect 260 * 261 * target_mmap(loaddr, hiaddr - loaddr, ...) 262 * 263 * to succeed. 264 */ 265 void probe_guest_base(const char *image_name, 266 abi_ulong loaddr, abi_ulong hiaddr); 267 268 #include "qemu/log.h" 269 270 /* safe_syscall.S */ 271 272 /** 273 * safe_syscall: 274 * @int number: number of system call to make 275 * ...: arguments to the system call 276 * 277 * Call a system call if guest signal not pending. 278 * This has the same API as the libc syscall() function, except that it 279 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. 280 * 281 * Returns: the system call result, or -1 with an error code in errno 282 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing 283 * with any of the host errno values.) 284 */ 285 286 /* A guide to using safe_syscall() to handle interactions between guest 287 * syscalls and guest signals: 288 * 289 * Guest syscalls come in two flavours: 290 * 291 * (1) Non-interruptible syscalls 292 * 293 * These are guest syscalls that never get interrupted by signals and 294 * so never return EINTR. They can be implemented straightforwardly in 295 * QEMU: just make sure that if the implementation code has to make any 296 * blocking calls that those calls are retried if they return EINTR. 297 * It's also OK to implement these with safe_syscall, though it will be 298 * a little less efficient if a signal is delivered at the 'wrong' moment. 299 * 300 * Some non-interruptible syscalls need to be handled using block_signals() 301 * to block signals for the duration of the syscall. This mainly applies 302 * to code which needs to modify the data structures used by the 303 * host_signal_handler() function and the functions it calls, including 304 * all syscalls which change the thread's signal mask. 305 * 306 * (2) Interruptible syscalls 307 * 308 * These are guest syscalls that can be interrupted by signals and 309 * for which we need to either return EINTR or arrange for the guest 310 * syscall to be restarted. This category includes both syscalls which 311 * always restart (and in the kernel return -ERESTARTNOINTR), ones 312 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND 313 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart 314 * if the handler was registered with SA_RESTART (kernel returns 315 * -ERESTARTSYS). System calls which are only interruptible in some 316 * situations (like 'open') also need to be handled this way. 317 * 318 * Here it is important that the host syscall is made 319 * via this safe_syscall() function, and *not* via the host libc. 320 * If the host libc is used then the implementation will appear to work 321 * most of the time, but there will be a race condition where a 322 * signal could arrive just before we make the host syscall inside libc, 323 * and then then guest syscall will not correctly be interrupted. 324 * Instead the implementation of the guest syscall can use the safe_syscall 325 * function but otherwise just return the result or errno in the usual 326 * way; the main loop code will take care of restarting the syscall 327 * if appropriate. 328 * 329 * (If the implementation needs to make multiple host syscalls this is 330 * OK; any which might really block must be via safe_syscall(); for those 331 * which are only technically blocking (ie which we know in practice won't 332 * stay in the host kernel indefinitely) it's OK to use libc if necessary. 333 * You must be able to cope with backing out correctly if some safe_syscall 334 * you make in the implementation returns either -TARGET_ERESTARTSYS or 335 * EINTR though.) 336 * 337 * block_signals() cannot be used for interruptible syscalls. 338 * 339 * 340 * How and why the safe_syscall implementation works: 341 * 342 * The basic setup is that we make the host syscall via a known 343 * section of host native assembly. If a signal occurs, our signal 344 * handler checks the interrupted host PC against the addresse of that 345 * known section. If the PC is before or at the address of the syscall 346 * instruction then we change the PC to point at a "return 347 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler 348 * (causing the safe_syscall() call to immediately return that value). 349 * Then in the main.c loop if we see this magic return value we adjust 350 * the guest PC to wind it back to before the system call, and invoke 351 * the guest signal handler as usual. 352 * 353 * This winding-back will happen in two cases: 354 * (1) signal came in just before we took the host syscall (a race); 355 * in this case we'll take the guest signal and have another go 356 * at the syscall afterwards, and this is indistinguishable for the 357 * guest from the timing having been different such that the guest 358 * signal really did win the race 359 * (2) signal came in while the host syscall was blocking, and the 360 * host kernel decided the syscall should be restarted; 361 * in this case we want to restart the guest syscall also, and so 362 * rewinding is the right thing. (Note that "restart" semantics mean 363 * "first call the signal handler, then reattempt the syscall".) 364 * The other situation to consider is when a signal came in while the 365 * host syscall was blocking, and the host kernel decided that the syscall 366 * should not be restarted; in this case QEMU's host signal handler will 367 * be invoked with the PC pointing just after the syscall instruction, 368 * with registers indicating an EINTR return; the special code in the 369 * handler will not kick in, and we will return EINTR to the guest as 370 * we should. 371 * 372 * Notice that we can leave the host kernel to make the decision for 373 * us about whether to do a restart of the syscall or not; we do not 374 * need to check SA_RESTART flags in QEMU or distinguish the various 375 * kinds of restartability. 376 */ 377 #ifdef HAVE_SAFE_SYSCALL 378 /* The core part of this function is implemented in assembly */ 379 extern long safe_syscall_base(int *pending, long number, ...); 380 381 #define safe_syscall(...) \ 382 ({ \ 383 long ret_; \ 384 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ 385 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ 386 if (is_error(ret_)) { \ 387 errno = -ret_; \ 388 ret_ = -1; \ 389 } \ 390 ret_; \ 391 }) 392 393 #else 394 395 /* Fallback for architectures which don't yet provide a safe-syscall assembly 396 * fragment; note that this is racy! 397 * This should go away when all host architectures have been updated. 398 */ 399 #define safe_syscall syscall 400 401 #endif 402 403 /* syscall.c */ 404 int host_to_target_waitstatus(int status); 405 406 /* strace.c */ 407 void print_syscall(void *cpu_env, int num, 408 abi_long arg1, abi_long arg2, abi_long arg3, 409 abi_long arg4, abi_long arg5, abi_long arg6); 410 void print_syscall_ret(void *cpu_env, int num, abi_long ret, 411 abi_long arg1, abi_long arg2, abi_long arg3, 412 abi_long arg4, abi_long arg5, abi_long arg6); 413 /** 414 * print_taken_signal: 415 * @target_signum: target signal being taken 416 * @tinfo: target_siginfo_t which will be passed to the guest for the signal 417 * 418 * Print strace output indicating that this signal is being taken by the guest, 419 * in a format similar to: 420 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- 421 */ 422 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); 423 424 /* signal.c */ 425 void process_pending_signals(CPUArchState *cpu_env); 426 void signal_init(void); 427 int queue_signal(CPUArchState *env, int sig, int si_type, 428 target_siginfo_t *info); 429 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 430 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 431 int target_to_host_signal(int sig); 432 int host_to_target_signal(int sig); 433 long do_sigreturn(CPUArchState *env); 434 long do_rt_sigreturn(CPUArchState *env); 435 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 436 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 437 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx, 438 abi_ulong unew_ctx, abi_long ctx_size); 439 /** 440 * block_signals: block all signals while handling this guest syscall 441 * 442 * Block all signals, and arrange that the signal mask is returned to 443 * its correct value for the guest before we resume execution of guest code. 444 * If this function returns non-zero, then the caller should immediately 445 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending 446 * signal and restart execution of the syscall. 447 * If block_signals() returns zero, then the caller can continue with 448 * emulation of the system call knowing that no signals can be taken 449 * (and therefore that no race conditions will result). 450 * This should only be called once, because if it is called a second time 451 * it will always return non-zero. (Think of it like a mutex that can't 452 * be recursively locked.) 453 * Signals will be unblocked again by process_pending_signals(). 454 * 455 * Return value: non-zero if there was a pending signal, zero if not. 456 */ 457 int block_signals(void); /* Returns non zero if signal pending */ 458 459 #ifdef TARGET_I386 460 /* vm86.c */ 461 void save_v86_state(CPUX86State *env); 462 void handle_vm86_trap(CPUX86State *env, int trapno); 463 void handle_vm86_fault(CPUX86State *env); 464 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 465 #elif defined(TARGET_SPARC64) 466 void sparc64_set_context(CPUSPARCState *env); 467 void sparc64_get_context(CPUSPARCState *env); 468 #endif 469 470 /* mmap.c */ 471 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 472 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 473 int flags, int fd, abi_ulong offset); 474 int target_munmap(abi_ulong start, abi_ulong len); 475 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 476 abi_ulong new_size, unsigned long flags, 477 abi_ulong new_addr); 478 extern unsigned long last_brk; 479 extern abi_ulong mmap_next_start; 480 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong); 481 void mmap_fork_start(void); 482 void mmap_fork_end(int child); 483 484 /* main.c */ 485 extern unsigned long guest_stack_size; 486 487 /* user access */ 488 489 #define VERIFY_READ PAGE_READ 490 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE) 491 492 static inline bool access_ok_untagged(int type, abi_ulong addr, abi_ulong size) 493 { 494 if (size == 0 495 ? !guest_addr_valid_untagged(addr) 496 : !guest_range_valid_untagged(addr, size)) { 497 return false; 498 } 499 return page_check_range((target_ulong)addr, size, type) == 0; 500 } 501 502 static inline bool access_ok(CPUState *cpu, int type, 503 abi_ulong addr, abi_ulong size) 504 { 505 return access_ok_untagged(type, cpu_untagged_addr(cpu, addr), size); 506 } 507 508 /* NOTE __get_user and __put_user use host pointers and don't check access. 509 These are usually used to access struct data members once the struct has 510 been locked - usually with lock_user_struct. */ 511 512 /* 513 * Tricky points: 514 * - Use __builtin_choose_expr to avoid type promotion from ?:, 515 * - Invalid sizes result in a compile time error stemming from 516 * the fact that abort has no parameters. 517 * - It's easier to use the endian-specific unaligned load/store 518 * functions than host-endian unaligned load/store plus tswapN. 519 * - The pragmas are necessary only to silence a clang false-positive 520 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 . 521 * - gcc has bugs in its _Pragma() support in some versions, eg 522 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only 523 * include the warning-suppression pragmas for clang 524 */ 525 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member") 526 #define PRAGMA_DISABLE_PACKED_WARNING \ 527 _Pragma("GCC diagnostic push"); \ 528 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"") 529 530 #define PRAGMA_REENABLE_PACKED_WARNING \ 531 _Pragma("GCC diagnostic pop") 532 533 #else 534 #define PRAGMA_DISABLE_PACKED_WARNING 535 #define PRAGMA_REENABLE_PACKED_WARNING 536 #endif 537 538 #define __put_user_e(x, hptr, e) \ 539 do { \ 540 PRAGMA_DISABLE_PACKED_WARNING; \ 541 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 542 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 543 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 544 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 545 ((hptr), (x)), (void)0); \ 546 PRAGMA_REENABLE_PACKED_WARNING; \ 547 } while (0) 548 549 #define __get_user_e(x, hptr, e) \ 550 do { \ 551 PRAGMA_DISABLE_PACKED_WARNING; \ 552 ((x) = (typeof(*hptr))( \ 553 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 554 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 555 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 556 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 557 (hptr)), (void)0); \ 558 PRAGMA_REENABLE_PACKED_WARNING; \ 559 } while (0) 560 561 562 #ifdef TARGET_WORDS_BIGENDIAN 563 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 564 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 565 #else 566 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 567 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 568 #endif 569 570 /* put_user()/get_user() take a guest address and check access */ 571 /* These are usually used to access an atomic data type, such as an int, 572 * that has been passed by address. These internally perform locking 573 * and unlocking on the data type. 574 */ 575 #define put_user(x, gaddr, target_type) \ 576 ({ \ 577 abi_ulong __gaddr = (gaddr); \ 578 target_type *__hptr; \ 579 abi_long __ret = 0; \ 580 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 581 __put_user((x), __hptr); \ 582 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 583 } else \ 584 __ret = -TARGET_EFAULT; \ 585 __ret; \ 586 }) 587 588 #define get_user(x, gaddr, target_type) \ 589 ({ \ 590 abi_ulong __gaddr = (gaddr); \ 591 target_type *__hptr; \ 592 abi_long __ret = 0; \ 593 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 594 __get_user((x), __hptr); \ 595 unlock_user(__hptr, __gaddr, 0); \ 596 } else { \ 597 /* avoid warning */ \ 598 (x) = 0; \ 599 __ret = -TARGET_EFAULT; \ 600 } \ 601 __ret; \ 602 }) 603 604 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 605 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 606 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 607 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 608 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 609 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 610 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 611 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 612 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 613 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 614 615 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 616 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 617 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 618 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 619 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 620 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 621 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 622 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 623 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 624 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 625 626 /* copy_from_user() and copy_to_user() are usually used to copy data 627 * buffers between the target and host. These internally perform 628 * locking/unlocking of the memory. 629 */ 630 int copy_from_user(void *hptr, abi_ulong gaddr, ssize_t len); 631 int copy_to_user(abi_ulong gaddr, void *hptr, ssize_t len); 632 633 /* Functions for accessing guest memory. The tget and tput functions 634 read/write single values, byteswapping as necessary. The lock_user function 635 gets a pointer to a contiguous area of guest memory, but does not perform 636 any byteswapping. lock_user may return either a pointer to the guest 637 memory, or a temporary buffer. */ 638 639 /* Lock an area of guest memory into the host. If copy is true then the 640 host area will have the same contents as the guest. */ 641 void *lock_user(int type, abi_ulong guest_addr, ssize_t len, bool copy); 642 643 /* Unlock an area of guest memory. The first LEN bytes must be 644 flushed back to guest memory. host_ptr = NULL is explicitly 645 allowed and does nothing. */ 646 #ifndef DEBUG_REMAP 647 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 648 ssize_t len) 649 { 650 /* no-op */ 651 } 652 #else 653 void unlock_user(void *host_ptr, abi_ulong guest_addr, ssize_t len); 654 #endif 655 656 /* Return the length of a string in target memory or -TARGET_EFAULT if 657 access error. */ 658 ssize_t target_strlen(abi_ulong gaddr); 659 660 /* Like lock_user but for null terminated strings. */ 661 void *lock_user_string(abi_ulong guest_addr); 662 663 /* Helper macros for locking/unlocking a target struct. */ 664 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 665 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 666 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 667 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 668 669 #include <pthread.h> 670 671 static inline int is_error(abi_long ret) 672 { 673 return (abi_ulong)ret >= (abi_ulong)(-4096); 674 } 675 676 #if TARGET_ABI_BITS == 32 677 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) 678 { 679 #ifdef TARGET_WORDS_BIGENDIAN 680 return ((uint64_t)word0 << 32) | word1; 681 #else 682 return ((uint64_t)word1 << 32) | word0; 683 #endif 684 } 685 #else /* TARGET_ABI_BITS == 32 */ 686 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) 687 { 688 return word0; 689 } 690 #endif /* TARGET_ABI_BITS != 32 */ 691 692 void print_termios(void *arg); 693 694 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ 695 #ifdef TARGET_ARM 696 static inline int regpairs_aligned(void *cpu_env, int num) 697 { 698 return ((((CPUARMState *)cpu_env)->eabi) == 1) ; 699 } 700 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32) 701 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 702 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) 703 /* 704 * SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs 705 * of registers which translates to the same as ARM/MIPS, because we start with 706 * r3 as arg1 707 */ 708 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 709 #elif defined(TARGET_SH4) 710 /* SH4 doesn't align register pairs, except for p{read,write}64 */ 711 static inline int regpairs_aligned(void *cpu_env, int num) 712 { 713 switch (num) { 714 case TARGET_NR_pread64: 715 case TARGET_NR_pwrite64: 716 return 1; 717 718 default: 719 return 0; 720 } 721 } 722 #elif defined(TARGET_XTENSA) 723 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 724 #elif defined(TARGET_HEXAGON) 725 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } 726 #else 727 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; } 728 #endif 729 730 /** 731 * preexit_cleanup: housekeeping before the guest exits 732 * 733 * env: the CPU state 734 * code: the exit code 735 */ 736 void preexit_cleanup(CPUArchState *env, int code); 737 738 /* Include target-specific struct and function definitions; 739 * they may need access to the target-independent structures 740 * above, so include them last. 741 */ 742 #include "target_cpu.h" 743 #include "target_structs.h" 744 745 #endif /* QEMU_H */ 746