1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include "hostdep.h" 5 #include "cpu.h" 6 #include "exec/exec-all.h" 7 #include "exec/cpu_ldst.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #endif /* DEBUG_REMAP */ 12 13 #include "exec/user/abitypes.h" 14 15 #include "exec/user/thunk.h" 16 #include "syscall_defs.h" 17 #include "target_syscall.h" 18 #include "exec/gdbstub.h" 19 20 /* This is the size of the host kernel's sigset_t, needed where we make 21 * direct system calls that take a sigset_t pointer and a size. 22 */ 23 #define SIGSET_T_SIZE (_NSIG / 8) 24 25 /* This struct is used to hold certain information about the image. 26 * Basically, it replicates in user space what would be certain 27 * task_struct fields in the kernel 28 */ 29 struct image_info { 30 abi_ulong load_bias; 31 abi_ulong load_addr; 32 abi_ulong start_code; 33 abi_ulong end_code; 34 abi_ulong start_data; 35 abi_ulong end_data; 36 abi_ulong start_brk; 37 abi_ulong brk; 38 abi_ulong start_mmap; 39 abi_ulong start_stack; 40 abi_ulong stack_limit; 41 abi_ulong entry; 42 abi_ulong code_offset; 43 abi_ulong data_offset; 44 abi_ulong saved_auxv; 45 abi_ulong auxv_len; 46 abi_ulong arg_start; 47 abi_ulong arg_end; 48 abi_ulong arg_strings; 49 abi_ulong env_strings; 50 abi_ulong file_string; 51 uint32_t elf_flags; 52 int personality; 53 abi_ulong alignment; 54 55 /* The fields below are used in FDPIC mode. */ 56 abi_ulong loadmap_addr; 57 uint16_t nsegs; 58 void *loadsegs; 59 abi_ulong pt_dynamic_addr; 60 abi_ulong interpreter_loadmap_addr; 61 abi_ulong interpreter_pt_dynamic_addr; 62 struct image_info *other_info; 63 #ifdef TARGET_MIPS 64 int fp_abi; 65 int interp_fp_abi; 66 #endif 67 }; 68 69 #ifdef TARGET_I386 70 /* Information about the current linux thread */ 71 struct vm86_saved_state { 72 uint32_t eax; /* return code */ 73 uint32_t ebx; 74 uint32_t ecx; 75 uint32_t edx; 76 uint32_t esi; 77 uint32_t edi; 78 uint32_t ebp; 79 uint32_t esp; 80 uint32_t eflags; 81 uint32_t eip; 82 uint16_t cs, ss, ds, es, fs, gs; 83 }; 84 #endif 85 86 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 87 /* FPU emulator */ 88 #include "nwfpe/fpa11.h" 89 #endif 90 91 #define MAX_SIGQUEUE_SIZE 1024 92 93 struct emulated_sigtable { 94 int pending; /* true if signal is pending */ 95 target_siginfo_t info; 96 }; 97 98 /* NOTE: we force a big alignment so that the stack stored after is 99 aligned too */ 100 typedef struct TaskState { 101 pid_t ts_tid; /* tid (or pid) of this task */ 102 #ifdef TARGET_ARM 103 # ifdef TARGET_ABI32 104 /* FPA state */ 105 FPA11 fpa; 106 # endif 107 int swi_errno; 108 #endif 109 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 110 abi_ulong target_v86; 111 struct vm86_saved_state vm86_saved_regs; 112 struct target_vm86plus_struct vm86plus; 113 uint32_t v86flags; 114 uint32_t v86mask; 115 #endif 116 abi_ulong child_tidptr; 117 #ifdef TARGET_M68K 118 abi_ulong tp_value; 119 #endif 120 #if defined(TARGET_ARM) || defined(TARGET_M68K) 121 /* Extra fields for semihosted binaries. */ 122 abi_ulong heap_base; 123 abi_ulong heap_limit; 124 #endif 125 abi_ulong stack_base; 126 int used; /* non zero if used */ 127 struct image_info *info; 128 struct linux_binprm *bprm; 129 130 struct emulated_sigtable sync_signal; 131 struct emulated_sigtable sigtab[TARGET_NSIG]; 132 /* This thread's signal mask, as requested by the guest program. 133 * The actual signal mask of this thread may differ: 134 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code 135 * + sometimes we block all signals to avoid races 136 */ 137 sigset_t signal_mask; 138 /* The signal mask imposed by a guest sigsuspend syscall, if we are 139 * currently in the middle of such a syscall 140 */ 141 sigset_t sigsuspend_mask; 142 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ 143 int in_sigsuspend; 144 145 /* Nonzero if process_pending_signals() needs to do something (either 146 * handle a pending signal or unblock signals). 147 * This flag is written from a signal handler so should be accessed via 148 * the atomic_read() and atomic_set() functions. (It is not accessed 149 * from multiple threads.) 150 */ 151 int signal_pending; 152 153 /* This thread's sigaltstack, if it has one */ 154 struct target_sigaltstack sigaltstack_used; 155 } __attribute__((aligned(16))) TaskState; 156 157 extern char *exec_path; 158 void init_task_state(TaskState *ts); 159 void task_settid(TaskState *); 160 void stop_all_tasks(void); 161 extern const char *qemu_uname_release; 162 extern unsigned long mmap_min_addr; 163 164 /* ??? See if we can avoid exposing so much of the loader internals. */ 165 166 /* Read a good amount of data initially, to hopefully get all the 167 program headers loaded. */ 168 #define BPRM_BUF_SIZE 1024 169 170 /* 171 * This structure is used to hold the arguments that are 172 * used when loading binaries. 173 */ 174 struct linux_binprm { 175 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 176 abi_ulong p; 177 int fd; 178 int e_uid, e_gid; 179 int argc, envc; 180 char **argv; 181 char **envp; 182 char * filename; /* Name of binary */ 183 int (*core_dump)(int, const CPUArchState *); /* coredump routine */ 184 }; 185 186 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 187 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 188 abi_ulong stringp, int push_ptr); 189 int loader_exec(int fdexec, const char *filename, char **argv, char **envp, 190 struct target_pt_regs * regs, struct image_info *infop, 191 struct linux_binprm *); 192 193 /* Returns true if the image uses the FDPIC ABI. If this is the case, 194 * we have to provide some information (loadmap, pt_dynamic_info) such 195 * that the program can be relocated adequately. This is also useful 196 * when handling signals. 197 */ 198 int info_is_fdpic(struct image_info *info); 199 200 uint32_t get_elf_eflags(int fd); 201 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); 202 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); 203 204 abi_long memcpy_to_target(abi_ulong dest, const void *src, 205 unsigned long len); 206 void target_set_brk(abi_ulong new_brk); 207 abi_long do_brk(abi_ulong new_brk); 208 void syscall_init(void); 209 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 210 abi_long arg2, abi_long arg3, abi_long arg4, 211 abi_long arg5, abi_long arg6, abi_long arg7, 212 abi_long arg8); 213 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 214 extern __thread CPUState *thread_cpu; 215 void cpu_loop(CPUArchState *env); 216 const char *target_strerror(int err); 217 int get_osversion(void); 218 void init_qemu_uname_release(void); 219 void fork_start(void); 220 void fork_end(int child); 221 222 /* Creates the initial guest address space in the host memory space using 223 * the given host start address hint and size. The guest_start parameter 224 * specifies the start address of the guest space. guest_base will be the 225 * difference between the host start address computed by this function and 226 * guest_start. If fixed is specified, then the mapped address space must 227 * start at host_start. The real start address of the mapped memory space is 228 * returned or -1 if there was an error. 229 */ 230 unsigned long init_guest_space(unsigned long host_start, 231 unsigned long host_size, 232 unsigned long guest_start, 233 bool fixed); 234 235 #include "qemu/log.h" 236 237 /* safe_syscall.S */ 238 239 /** 240 * safe_syscall: 241 * @int number: number of system call to make 242 * ...: arguments to the system call 243 * 244 * Call a system call if guest signal not pending. 245 * This has the same API as the libc syscall() function, except that it 246 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. 247 * 248 * Returns: the system call result, or -1 with an error code in errno 249 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing 250 * with any of the host errno values.) 251 */ 252 253 /* A guide to using safe_syscall() to handle interactions between guest 254 * syscalls and guest signals: 255 * 256 * Guest syscalls come in two flavours: 257 * 258 * (1) Non-interruptible syscalls 259 * 260 * These are guest syscalls that never get interrupted by signals and 261 * so never return EINTR. They can be implemented straightforwardly in 262 * QEMU: just make sure that if the implementation code has to make any 263 * blocking calls that those calls are retried if they return EINTR. 264 * It's also OK to implement these with safe_syscall, though it will be 265 * a little less efficient if a signal is delivered at the 'wrong' moment. 266 * 267 * Some non-interruptible syscalls need to be handled using block_signals() 268 * to block signals for the duration of the syscall. This mainly applies 269 * to code which needs to modify the data structures used by the 270 * host_signal_handler() function and the functions it calls, including 271 * all syscalls which change the thread's signal mask. 272 * 273 * (2) Interruptible syscalls 274 * 275 * These are guest syscalls that can be interrupted by signals and 276 * for which we need to either return EINTR or arrange for the guest 277 * syscall to be restarted. This category includes both syscalls which 278 * always restart (and in the kernel return -ERESTARTNOINTR), ones 279 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND 280 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart 281 * if the handler was registered with SA_RESTART (kernel returns 282 * -ERESTARTSYS). System calls which are only interruptible in some 283 * situations (like 'open') also need to be handled this way. 284 * 285 * Here it is important that the host syscall is made 286 * via this safe_syscall() function, and *not* via the host libc. 287 * If the host libc is used then the implementation will appear to work 288 * most of the time, but there will be a race condition where a 289 * signal could arrive just before we make the host syscall inside libc, 290 * and then then guest syscall will not correctly be interrupted. 291 * Instead the implementation of the guest syscall can use the safe_syscall 292 * function but otherwise just return the result or errno in the usual 293 * way; the main loop code will take care of restarting the syscall 294 * if appropriate. 295 * 296 * (If the implementation needs to make multiple host syscalls this is 297 * OK; any which might really block must be via safe_syscall(); for those 298 * which are only technically blocking (ie which we know in practice won't 299 * stay in the host kernel indefinitely) it's OK to use libc if necessary. 300 * You must be able to cope with backing out correctly if some safe_syscall 301 * you make in the implementation returns either -TARGET_ERESTARTSYS or 302 * EINTR though.) 303 * 304 * block_signals() cannot be used for interruptible syscalls. 305 * 306 * 307 * How and why the safe_syscall implementation works: 308 * 309 * The basic setup is that we make the host syscall via a known 310 * section of host native assembly. If a signal occurs, our signal 311 * handler checks the interrupted host PC against the addresse of that 312 * known section. If the PC is before or at the address of the syscall 313 * instruction then we change the PC to point at a "return 314 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler 315 * (causing the safe_syscall() call to immediately return that value). 316 * Then in the main.c loop if we see this magic return value we adjust 317 * the guest PC to wind it back to before the system call, and invoke 318 * the guest signal handler as usual. 319 * 320 * This winding-back will happen in two cases: 321 * (1) signal came in just before we took the host syscall (a race); 322 * in this case we'll take the guest signal and have another go 323 * at the syscall afterwards, and this is indistinguishable for the 324 * guest from the timing having been different such that the guest 325 * signal really did win the race 326 * (2) signal came in while the host syscall was blocking, and the 327 * host kernel decided the syscall should be restarted; 328 * in this case we want to restart the guest syscall also, and so 329 * rewinding is the right thing. (Note that "restart" semantics mean 330 * "first call the signal handler, then reattempt the syscall".) 331 * The other situation to consider is when a signal came in while the 332 * host syscall was blocking, and the host kernel decided that the syscall 333 * should not be restarted; in this case QEMU's host signal handler will 334 * be invoked with the PC pointing just after the syscall instruction, 335 * with registers indicating an EINTR return; the special code in the 336 * handler will not kick in, and we will return EINTR to the guest as 337 * we should. 338 * 339 * Notice that we can leave the host kernel to make the decision for 340 * us about whether to do a restart of the syscall or not; we do not 341 * need to check SA_RESTART flags in QEMU or distinguish the various 342 * kinds of restartability. 343 */ 344 #ifdef HAVE_SAFE_SYSCALL 345 /* The core part of this function is implemented in assembly */ 346 extern long safe_syscall_base(int *pending, long number, ...); 347 348 #define safe_syscall(...) \ 349 ({ \ 350 long ret_; \ 351 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ 352 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ 353 if (is_error(ret_)) { \ 354 errno = -ret_; \ 355 ret_ = -1; \ 356 } \ 357 ret_; \ 358 }) 359 360 #else 361 362 /* Fallback for architectures which don't yet provide a safe-syscall assembly 363 * fragment; note that this is racy! 364 * This should go away when all host architectures have been updated. 365 */ 366 #define safe_syscall syscall 367 368 #endif 369 370 /* syscall.c */ 371 int host_to_target_waitstatus(int status); 372 373 /* strace.c */ 374 void print_syscall(int num, 375 abi_long arg1, abi_long arg2, abi_long arg3, 376 abi_long arg4, abi_long arg5, abi_long arg6); 377 void print_syscall_ret(int num, abi_long arg1); 378 /** 379 * print_taken_signal: 380 * @target_signum: target signal being taken 381 * @tinfo: target_siginfo_t which will be passed to the guest for the signal 382 * 383 * Print strace output indicating that this signal is being taken by the guest, 384 * in a format similar to: 385 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- 386 */ 387 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); 388 extern int do_strace; 389 390 /* signal.c */ 391 void process_pending_signals(CPUArchState *cpu_env); 392 void signal_init(void); 393 int queue_signal(CPUArchState *env, int sig, int si_type, 394 target_siginfo_t *info); 395 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 396 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 397 int target_to_host_signal(int sig); 398 int host_to_target_signal(int sig); 399 long do_sigreturn(CPUArchState *env); 400 long do_rt_sigreturn(CPUArchState *env); 401 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 402 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); 403 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx, 404 abi_ulong unew_ctx, abi_long ctx_size); 405 /** 406 * block_signals: block all signals while handling this guest syscall 407 * 408 * Block all signals, and arrange that the signal mask is returned to 409 * its correct value for the guest before we resume execution of guest code. 410 * If this function returns non-zero, then the caller should immediately 411 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending 412 * signal and restart execution of the syscall. 413 * If block_signals() returns zero, then the caller can continue with 414 * emulation of the system call knowing that no signals can be taken 415 * (and therefore that no race conditions will result). 416 * This should only be called once, because if it is called a second time 417 * it will always return non-zero. (Think of it like a mutex that can't 418 * be recursively locked.) 419 * Signals will be unblocked again by process_pending_signals(). 420 * 421 * Return value: non-zero if there was a pending signal, zero if not. 422 */ 423 int block_signals(void); /* Returns non zero if signal pending */ 424 425 #ifdef TARGET_I386 426 /* vm86.c */ 427 void save_v86_state(CPUX86State *env); 428 void handle_vm86_trap(CPUX86State *env, int trapno); 429 void handle_vm86_fault(CPUX86State *env); 430 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 431 #elif defined(TARGET_SPARC64) 432 void sparc64_set_context(CPUSPARCState *env); 433 void sparc64_get_context(CPUSPARCState *env); 434 #endif 435 436 /* mmap.c */ 437 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 438 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 439 int flags, int fd, abi_ulong offset); 440 int target_munmap(abi_ulong start, abi_ulong len); 441 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 442 abi_ulong new_size, unsigned long flags, 443 abi_ulong new_addr); 444 extern unsigned long last_brk; 445 extern abi_ulong mmap_next_start; 446 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong); 447 void mmap_fork_start(void); 448 void mmap_fork_end(int child); 449 450 /* main.c */ 451 extern unsigned long guest_stack_size; 452 453 /* user access */ 454 455 #define VERIFY_READ 0 456 #define VERIFY_WRITE 1 /* implies read access */ 457 458 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 459 { 460 return guest_addr_valid(addr) && 461 (size == 0 || guest_addr_valid(addr + size - 1)) && 462 page_check_range((target_ulong)addr, size, 463 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 464 } 465 466 /* NOTE __get_user and __put_user use host pointers and don't check access. 467 These are usually used to access struct data members once the struct has 468 been locked - usually with lock_user_struct. */ 469 470 /* 471 * Tricky points: 472 * - Use __builtin_choose_expr to avoid type promotion from ?:, 473 * - Invalid sizes result in a compile time error stemming from 474 * the fact that abort has no parameters. 475 * - It's easier to use the endian-specific unaligned load/store 476 * functions than host-endian unaligned load/store plus tswapN. 477 * - The pragmas are necessary only to silence a clang false-positive 478 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 . 479 * - gcc has bugs in its _Pragma() support in some versions, eg 480 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only 481 * include the warning-suppression pragmas for clang 482 */ 483 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member") 484 #define PRAGMA_DISABLE_PACKED_WARNING \ 485 _Pragma("GCC diagnostic push"); \ 486 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"") 487 488 #define PRAGMA_REENABLE_PACKED_WARNING \ 489 _Pragma("GCC diagnostic pop") 490 491 #else 492 #define PRAGMA_DISABLE_PACKED_WARNING 493 #define PRAGMA_REENABLE_PACKED_WARNING 494 #endif 495 496 #define __put_user_e(x, hptr, e) \ 497 do { \ 498 PRAGMA_DISABLE_PACKED_WARNING; \ 499 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ 500 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ 501 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ 502 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ 503 ((hptr), (x)), (void)0); \ 504 PRAGMA_REENABLE_PACKED_WARNING; \ 505 } while (0) 506 507 #define __get_user_e(x, hptr, e) \ 508 do { \ 509 PRAGMA_DISABLE_PACKED_WARNING; \ 510 ((x) = (typeof(*hptr))( \ 511 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ 512 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ 513 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ 514 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ 515 (hptr)), (void)0); \ 516 PRAGMA_REENABLE_PACKED_WARNING; \ 517 } while (0) 518 519 520 #ifdef TARGET_WORDS_BIGENDIAN 521 # define __put_user(x, hptr) __put_user_e(x, hptr, be) 522 # define __get_user(x, hptr) __get_user_e(x, hptr, be) 523 #else 524 # define __put_user(x, hptr) __put_user_e(x, hptr, le) 525 # define __get_user(x, hptr) __get_user_e(x, hptr, le) 526 #endif 527 528 /* put_user()/get_user() take a guest address and check access */ 529 /* These are usually used to access an atomic data type, such as an int, 530 * that has been passed by address. These internally perform locking 531 * and unlocking on the data type. 532 */ 533 #define put_user(x, gaddr, target_type) \ 534 ({ \ 535 abi_ulong __gaddr = (gaddr); \ 536 target_type *__hptr; \ 537 abi_long __ret = 0; \ 538 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 539 __put_user((x), __hptr); \ 540 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 541 } else \ 542 __ret = -TARGET_EFAULT; \ 543 __ret; \ 544 }) 545 546 #define get_user(x, gaddr, target_type) \ 547 ({ \ 548 abi_ulong __gaddr = (gaddr); \ 549 target_type *__hptr; \ 550 abi_long __ret = 0; \ 551 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 552 __get_user((x), __hptr); \ 553 unlock_user(__hptr, __gaddr, 0); \ 554 } else { \ 555 /* avoid warning */ \ 556 (x) = 0; \ 557 __ret = -TARGET_EFAULT; \ 558 } \ 559 __ret; \ 560 }) 561 562 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 563 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 564 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 565 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 566 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 567 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 568 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 569 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 570 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 571 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 572 573 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 574 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 575 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 576 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 577 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 578 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 579 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 580 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 581 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 582 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 583 584 /* copy_from_user() and copy_to_user() are usually used to copy data 585 * buffers between the target and host. These internally perform 586 * locking/unlocking of the memory. 587 */ 588 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 589 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 590 591 /* Functions for accessing guest memory. The tget and tput functions 592 read/write single values, byteswapping as necessary. The lock_user function 593 gets a pointer to a contiguous area of guest memory, but does not perform 594 any byteswapping. lock_user may return either a pointer to the guest 595 memory, or a temporary buffer. */ 596 597 /* Lock an area of guest memory into the host. If copy is true then the 598 host area will have the same contents as the guest. */ 599 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 600 { 601 if (!access_ok(type, guest_addr, len)) 602 return NULL; 603 #ifdef DEBUG_REMAP 604 { 605 void *addr; 606 addr = g_malloc(len); 607 if (copy) 608 memcpy(addr, g2h(guest_addr), len); 609 else 610 memset(addr, 0, len); 611 return addr; 612 } 613 #else 614 return g2h(guest_addr); 615 #endif 616 } 617 618 /* Unlock an area of guest memory. The first LEN bytes must be 619 flushed back to guest memory. host_ptr = NULL is explicitly 620 allowed and does nothing. */ 621 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 622 long len) 623 { 624 625 #ifdef DEBUG_REMAP 626 if (!host_ptr) 627 return; 628 if (host_ptr == g2h(guest_addr)) 629 return; 630 if (len > 0) 631 memcpy(g2h(guest_addr), host_ptr, len); 632 g_free(host_ptr); 633 #endif 634 } 635 636 /* Return the length of a string in target memory or -TARGET_EFAULT if 637 access error. */ 638 abi_long target_strlen(abi_ulong gaddr); 639 640 /* Like lock_user but for null terminated strings. */ 641 static inline void *lock_user_string(abi_ulong guest_addr) 642 { 643 abi_long len; 644 len = target_strlen(guest_addr); 645 if (len < 0) 646 return NULL; 647 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 648 } 649 650 /* Helper macros for locking/unlocking a target struct. */ 651 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 652 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 653 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 654 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 655 656 #include <pthread.h> 657 658 static inline int is_error(abi_long ret) 659 { 660 return (abi_ulong)ret >= (abi_ulong)(-4096); 661 } 662 663 /** 664 * preexit_cleanup: housekeeping before the guest exits 665 * 666 * env: the CPU state 667 * code: the exit code 668 */ 669 void preexit_cleanup(CPUArchState *env, int code); 670 671 /* Include target-specific struct and function definitions; 672 * they may need access to the target-independent structures 673 * above, so include them last. 674 */ 675 #include "target_cpu.h" 676 #include "target_structs.h" 677 678 #endif /* QEMU_H */ 679