1 #ifndef QEMU_H 2 #define QEMU_H 3 4 #include <signal.h> 5 #include <string.h> 6 7 #include "cpu.h" 8 9 #undef DEBUG_REMAP 10 #ifdef DEBUG_REMAP 11 #include <stdlib.h> 12 #endif /* DEBUG_REMAP */ 13 14 #include "qemu-types.h" 15 16 #include "thunk.h" 17 #include "syscall_defs.h" 18 #include "syscall.h" 19 #include "target_signal.h" 20 #include "gdbstub.h" 21 #include "qemu-queue.h" 22 23 #if defined(CONFIG_USE_NPTL) 24 #define THREAD __thread 25 #else 26 #define THREAD 27 #endif 28 29 /* This struct is used to hold certain information about the image. 30 * Basically, it replicates in user space what would be certain 31 * task_struct fields in the kernel 32 */ 33 struct image_info { 34 abi_ulong load_bias; 35 abi_ulong load_addr; 36 abi_ulong start_code; 37 abi_ulong end_code; 38 abi_ulong start_data; 39 abi_ulong end_data; 40 abi_ulong start_brk; 41 abi_ulong brk; 42 abi_ulong start_mmap; 43 abi_ulong mmap; 44 abi_ulong rss; 45 abi_ulong start_stack; 46 abi_ulong stack_limit; 47 abi_ulong entry; 48 abi_ulong code_offset; 49 abi_ulong data_offset; 50 abi_ulong saved_auxv; 51 abi_ulong arg_start; 52 abi_ulong arg_end; 53 int personality; 54 #ifdef CONFIG_USE_FDPIC 55 abi_ulong loadmap_addr; 56 uint16_t nsegs; 57 void *loadsegs; 58 abi_ulong pt_dynamic_addr; 59 struct image_info *other_info; 60 #endif 61 }; 62 63 #ifdef TARGET_I386 64 /* Information about the current linux thread */ 65 struct vm86_saved_state { 66 uint32_t eax; /* return code */ 67 uint32_t ebx; 68 uint32_t ecx; 69 uint32_t edx; 70 uint32_t esi; 71 uint32_t edi; 72 uint32_t ebp; 73 uint32_t esp; 74 uint32_t eflags; 75 uint32_t eip; 76 uint16_t cs, ss, ds, es, fs, gs; 77 }; 78 #endif 79 80 #ifdef TARGET_ARM 81 /* FPU emulator */ 82 #include "nwfpe/fpa11.h" 83 #endif 84 85 #define MAX_SIGQUEUE_SIZE 1024 86 87 struct sigqueue { 88 struct sigqueue *next; 89 target_siginfo_t info; 90 }; 91 92 struct emulated_sigtable { 93 int pending; /* true if signal is pending */ 94 struct sigqueue *first; 95 struct sigqueue info; /* in order to always have memory for the 96 first signal, we put it here */ 97 }; 98 99 /* NOTE: we force a big alignment so that the stack stored after is 100 aligned too */ 101 typedef struct TaskState { 102 pid_t ts_tid; /* tid (or pid) of this task */ 103 #ifdef TARGET_ARM 104 /* FPA state */ 105 FPA11 fpa; 106 int swi_errno; 107 #endif 108 #if defined(TARGET_I386) && !defined(TARGET_X86_64) 109 abi_ulong target_v86; 110 struct vm86_saved_state vm86_saved_regs; 111 struct target_vm86plus_struct vm86plus; 112 uint32_t v86flags; 113 uint32_t v86mask; 114 #endif 115 #ifdef CONFIG_USE_NPTL 116 abi_ulong child_tidptr; 117 #endif 118 #ifdef TARGET_M68K 119 int sim_syscalls; 120 #endif 121 #if defined(TARGET_ARM) || defined(TARGET_M68K) 122 /* Extra fields for semihosted binaries. */ 123 uint32_t stack_base; 124 uint32_t heap_base; 125 uint32_t heap_limit; 126 #endif 127 int used; /* non zero if used */ 128 struct image_info *info; 129 struct linux_binprm *bprm; 130 131 struct emulated_sigtable sigtab[TARGET_NSIG]; 132 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 133 struct sigqueue *first_free; /* first free siginfo queue entry */ 134 int signal_pending; /* non zero if a signal may be pending */ 135 } __attribute__((aligned(16))) TaskState; 136 137 extern char *exec_path; 138 void init_task_state(TaskState *ts); 139 void task_settid(TaskState *); 140 void stop_all_tasks(void); 141 extern const char *qemu_uname_release; 142 extern unsigned long mmap_min_addr; 143 144 /* ??? See if we can avoid exposing so much of the loader internals. */ 145 /* 146 * MAX_ARG_PAGES defines the number of pages allocated for arguments 147 * and envelope for the new program. 32 should suffice, this gives 148 * a maximum env+arg of 128kB w/4KB pages! 149 */ 150 #define MAX_ARG_PAGES 33 151 152 /* Read a good amount of data initially, to hopefully get all the 153 program headers loaded. */ 154 #define BPRM_BUF_SIZE 1024 155 156 /* 157 * This structure is used to hold the arguments that are 158 * used when loading binaries. 159 */ 160 struct linux_binprm { 161 char buf[BPRM_BUF_SIZE] __attribute__((aligned)); 162 void *page[MAX_ARG_PAGES]; 163 abi_ulong p; 164 int fd; 165 int e_uid, e_gid; 166 int argc, envc; 167 char **argv; 168 char **envp; 169 char * filename; /* Name of binary */ 170 int (*core_dump)(int, const CPUState *); /* coredump routine */ 171 }; 172 173 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 174 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 175 abi_ulong stringp, int push_ptr); 176 int loader_exec(const char * filename, char ** argv, char ** envp, 177 struct target_pt_regs * regs, struct image_info *infop, 178 struct linux_binprm *); 179 180 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 181 struct image_info * info); 182 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 183 struct image_info * info); 184 185 abi_long memcpy_to_target(abi_ulong dest, const void *src, 186 unsigned long len); 187 void target_set_brk(abi_ulong new_brk); 188 abi_long do_brk(abi_ulong new_brk); 189 void syscall_init(void); 190 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 191 abi_long arg2, abi_long arg3, abi_long arg4, 192 abi_long arg5, abi_long arg6); 193 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 194 extern THREAD CPUState *thread_env; 195 void cpu_loop(CPUState *env); 196 char *target_strerror(int err); 197 int get_osversion(void); 198 void fork_start(void); 199 void fork_end(int child); 200 201 #include "qemu-log.h" 202 203 /* strace.c */ 204 void print_syscall(int num, 205 abi_long arg1, abi_long arg2, abi_long arg3, 206 abi_long arg4, abi_long arg5, abi_long arg6); 207 void print_syscall_ret(int num, abi_long arg1); 208 extern int do_strace; 209 210 /* signal.c */ 211 void process_pending_signals(CPUState *cpu_env); 212 void signal_init(void); 213 int queue_signal(CPUState *env, int sig, target_siginfo_t *info); 214 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 215 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 216 int target_to_host_signal(int sig); 217 int host_to_target_signal(int sig); 218 long do_sigreturn(CPUState *env); 219 long do_rt_sigreturn(CPUState *env); 220 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 221 222 #ifdef TARGET_I386 223 /* vm86.c */ 224 void save_v86_state(CPUX86State *env); 225 void handle_vm86_trap(CPUX86State *env, int trapno); 226 void handle_vm86_fault(CPUX86State *env); 227 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); 228 #elif defined(TARGET_SPARC64) 229 void sparc64_set_context(CPUSPARCState *env); 230 void sparc64_get_context(CPUSPARCState *env); 231 #endif 232 233 /* mmap.c */ 234 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 235 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 236 int flags, int fd, abi_ulong offset); 237 int target_munmap(abi_ulong start, abi_ulong len); 238 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 239 abi_ulong new_size, unsigned long flags, 240 abi_ulong new_addr); 241 int target_msync(abi_ulong start, abi_ulong len, int flags); 242 extern unsigned long last_brk; 243 void mmap_lock(void); 244 void mmap_unlock(void); 245 abi_ulong mmap_find_vma(abi_ulong, abi_ulong); 246 void cpu_list_lock(void); 247 void cpu_list_unlock(void); 248 #if defined(CONFIG_USE_NPTL) 249 void mmap_fork_start(void); 250 void mmap_fork_end(int child); 251 #endif 252 253 /* main.c */ 254 extern unsigned long guest_stack_size; 255 256 /* user access */ 257 258 #define VERIFY_READ 0 259 #define VERIFY_WRITE 1 /* implies read access */ 260 261 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 262 { 263 return page_check_range((target_ulong)addr, size, 264 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 265 } 266 267 /* NOTE __get_user and __put_user use host pointers and don't check access. */ 268 /* These are usually used to access struct data members once the 269 * struct has been locked - usually with lock_user_struct(). 270 */ 271 #define __put_user(x, hptr)\ 272 ({\ 273 switch(sizeof(*hptr)) {\ 274 case 1:\ 275 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 276 break;\ 277 case 2:\ 278 *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\ 279 break;\ 280 case 4:\ 281 *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\ 282 break;\ 283 case 8:\ 284 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 285 break;\ 286 default:\ 287 abort();\ 288 }\ 289 0;\ 290 }) 291 292 #define __get_user(x, hptr) \ 293 ({\ 294 switch(sizeof(*hptr)) {\ 295 case 1:\ 296 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 297 break;\ 298 case 2:\ 299 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 300 break;\ 301 case 4:\ 302 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 303 break;\ 304 case 8:\ 305 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 306 break;\ 307 default:\ 308 /* avoid warning */\ 309 x = 0;\ 310 abort();\ 311 }\ 312 0;\ 313 }) 314 315 /* put_user()/get_user() take a guest address and check access */ 316 /* These are usually used to access an atomic data type, such as an int, 317 * that has been passed by address. These internally perform locking 318 * and unlocking on the data type. 319 */ 320 #define put_user(x, gaddr, target_type) \ 321 ({ \ 322 abi_ulong __gaddr = (gaddr); \ 323 target_type *__hptr; \ 324 abi_long __ret; \ 325 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 326 __ret = __put_user((x), __hptr); \ 327 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 328 } else \ 329 __ret = -TARGET_EFAULT; \ 330 __ret; \ 331 }) 332 333 #define get_user(x, gaddr, target_type) \ 334 ({ \ 335 abi_ulong __gaddr = (gaddr); \ 336 target_type *__hptr; \ 337 abi_long __ret; \ 338 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 339 __ret = __get_user((x), __hptr); \ 340 unlock_user(__hptr, __gaddr, 0); \ 341 } else { \ 342 /* avoid warning */ \ 343 (x) = 0; \ 344 __ret = -TARGET_EFAULT; \ 345 } \ 346 __ret; \ 347 }) 348 349 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 350 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 351 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 352 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 353 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 354 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 355 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 356 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 357 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 358 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 359 360 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 361 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 362 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 363 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 364 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 365 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 366 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 367 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 368 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 369 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 370 371 /* copy_from_user() and copy_to_user() are usually used to copy data 372 * buffers between the target and host. These internally perform 373 * locking/unlocking of the memory. 374 */ 375 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 376 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 377 378 /* Functions for accessing guest memory. The tget and tput functions 379 read/write single values, byteswapping as neccessary. The lock_user 380 gets a pointer to a contiguous area of guest memory, but does not perform 381 and byteswapping. lock_user may return either a pointer to the guest 382 memory, or a temporary buffer. */ 383 384 /* Lock an area of guest memory into the host. If copy is true then the 385 host area will have the same contents as the guest. */ 386 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 387 { 388 if (!access_ok(type, guest_addr, len)) 389 return NULL; 390 #ifdef DEBUG_REMAP 391 { 392 void *addr; 393 addr = malloc(len); 394 if (copy) 395 memcpy(addr, g2h(guest_addr), len); 396 else 397 memset(addr, 0, len); 398 return addr; 399 } 400 #else 401 return g2h(guest_addr); 402 #endif 403 } 404 405 /* Unlock an area of guest memory. The first LEN bytes must be 406 flushed back to guest memory. host_ptr = NULL is explicitly 407 allowed and does nothing. */ 408 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 409 long len) 410 { 411 412 #ifdef DEBUG_REMAP 413 if (!host_ptr) 414 return; 415 if (host_ptr == g2h(guest_addr)) 416 return; 417 if (len > 0) 418 memcpy(g2h(guest_addr), host_ptr, len); 419 free(host_ptr); 420 #endif 421 } 422 423 /* Return the length of a string in target memory or -TARGET_EFAULT if 424 access error. */ 425 abi_long target_strlen(abi_ulong gaddr); 426 427 /* Like lock_user but for null terminated strings. */ 428 static inline void *lock_user_string(abi_ulong guest_addr) 429 { 430 abi_long len; 431 len = target_strlen(guest_addr); 432 if (len < 0) 433 return NULL; 434 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 435 } 436 437 /* Helper macros for locking/ulocking a target struct. */ 438 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 439 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 440 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 441 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 442 443 #if defined(CONFIG_USE_NPTL) 444 #include <pthread.h> 445 #endif 446 447 #endif /* QEMU_H */ 448