1 /* 2 * Emulation of Linux signals 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu.h" 21 #include "signal-common.h" 22 #include "linux-user/trace.h" 23 24 /* Size of dummy stack frame allocated when calling signal handler. 25 See arch/powerpc/include/asm/ptrace.h. */ 26 #if defined(TARGET_PPC64) 27 #define SIGNAL_FRAMESIZE 128 28 #else 29 #define SIGNAL_FRAMESIZE 64 30 #endif 31 32 /* See arch/powerpc/include/asm/ucontext.h. Only used for 32-bit PPC; 33 on 64-bit PPC, sigcontext and mcontext are one and the same. */ 34 struct target_mcontext { 35 target_ulong mc_gregs[48]; 36 /* Includes fpscr. */ 37 uint64_t mc_fregs[33]; 38 39 #if defined(TARGET_PPC64) 40 /* Pointer to the vector regs */ 41 target_ulong v_regs; 42 /* 43 * On ppc64, this mcontext structure is naturally *unaligned*, 44 * or rather it is aligned on a 8 bytes boundary but not on 45 * a 16 byte boundary. This pad fixes it up. This is why we 46 * cannot use ppc_avr_t, which would force alignment. This is 47 * also why the vector regs are referenced in the ABI by the 48 * v_regs pointer above so any amount of padding can be added here. 49 */ 50 target_ulong pad; 51 /* VSCR and VRSAVE are saved separately. Also reserve space for VSX. */ 52 struct { 53 uint64_t altivec[34 + 16][2]; 54 } mc_vregs; 55 #else 56 target_ulong mc_pad[2]; 57 58 /* We need to handle Altivec and SPE at the same time, which no 59 kernel needs to do. Fortunately, the kernel defines this bit to 60 be Altivec-register-large all the time, rather than trying to 61 twiddle it based on the specific platform. */ 62 union { 63 /* SPE vector registers. One extra for SPEFSCR. */ 64 uint32_t spe[33]; 65 /* 66 * Altivec vector registers. One extra for VRSAVE. 67 * On ppc32, we are already aligned to 16 bytes. We could 68 * use ppc_avr_t, but choose to share the same type as ppc64. 69 */ 70 uint64_t altivec[33][2]; 71 } mc_vregs; 72 #endif 73 }; 74 75 /* See arch/powerpc/include/asm/sigcontext.h. */ 76 struct target_sigcontext { 77 target_ulong _unused[4]; 78 int32_t signal; 79 #if defined(TARGET_PPC64) 80 int32_t pad0; 81 #endif 82 target_ulong handler; 83 target_ulong oldmask; 84 target_ulong regs; /* struct pt_regs __user * */ 85 #if defined(TARGET_PPC64) 86 struct target_mcontext mcontext; 87 #endif 88 }; 89 90 /* Indices for target_mcontext.mc_gregs, below. 91 See arch/powerpc/include/asm/ptrace.h for details. */ 92 enum { 93 TARGET_PT_R0 = 0, 94 TARGET_PT_R1 = 1, 95 TARGET_PT_R2 = 2, 96 TARGET_PT_R3 = 3, 97 TARGET_PT_R4 = 4, 98 TARGET_PT_R5 = 5, 99 TARGET_PT_R6 = 6, 100 TARGET_PT_R7 = 7, 101 TARGET_PT_R8 = 8, 102 TARGET_PT_R9 = 9, 103 TARGET_PT_R10 = 10, 104 TARGET_PT_R11 = 11, 105 TARGET_PT_R12 = 12, 106 TARGET_PT_R13 = 13, 107 TARGET_PT_R14 = 14, 108 TARGET_PT_R15 = 15, 109 TARGET_PT_R16 = 16, 110 TARGET_PT_R17 = 17, 111 TARGET_PT_R18 = 18, 112 TARGET_PT_R19 = 19, 113 TARGET_PT_R20 = 20, 114 TARGET_PT_R21 = 21, 115 TARGET_PT_R22 = 22, 116 TARGET_PT_R23 = 23, 117 TARGET_PT_R24 = 24, 118 TARGET_PT_R25 = 25, 119 TARGET_PT_R26 = 26, 120 TARGET_PT_R27 = 27, 121 TARGET_PT_R28 = 28, 122 TARGET_PT_R29 = 29, 123 TARGET_PT_R30 = 30, 124 TARGET_PT_R31 = 31, 125 TARGET_PT_NIP = 32, 126 TARGET_PT_MSR = 33, 127 TARGET_PT_ORIG_R3 = 34, 128 TARGET_PT_CTR = 35, 129 TARGET_PT_LNK = 36, 130 TARGET_PT_XER = 37, 131 TARGET_PT_CCR = 38, 132 /* Yes, there are two registers with #39. One is 64-bit only. */ 133 TARGET_PT_MQ = 39, 134 TARGET_PT_SOFTE = 39, 135 TARGET_PT_TRAP = 40, 136 TARGET_PT_DAR = 41, 137 TARGET_PT_DSISR = 42, 138 TARGET_PT_RESULT = 43, 139 TARGET_PT_REGS_COUNT = 44 140 }; 141 142 143 struct target_ucontext { 144 target_ulong tuc_flags; 145 target_ulong tuc_link; /* ucontext_t __user * */ 146 struct target_sigaltstack tuc_stack; 147 #if !defined(TARGET_PPC64) 148 int32_t tuc_pad[7]; 149 target_ulong tuc_regs; /* struct mcontext __user * 150 points to uc_mcontext field */ 151 #endif 152 target_sigset_t tuc_sigmask; 153 #if defined(TARGET_PPC64) 154 target_sigset_t unused[15]; /* Allow for uc_sigmask growth */ 155 struct target_sigcontext tuc_sigcontext; 156 #else 157 int32_t tuc_maskext[30]; 158 int32_t tuc_pad2[3]; 159 struct target_mcontext tuc_mcontext; 160 #endif 161 }; 162 163 /* See arch/powerpc/kernel/signal_32.c. */ 164 struct target_sigframe { 165 struct target_sigcontext sctx; 166 struct target_mcontext mctx; 167 int32_t abigap[56]; 168 }; 169 170 #if defined(TARGET_PPC64) 171 172 #define TARGET_TRAMP_SIZE 6 173 174 struct target_rt_sigframe { 175 /* sys_rt_sigreturn requires the ucontext be the first field */ 176 struct target_ucontext uc; 177 target_ulong _unused[2]; 178 uint32_t trampoline[TARGET_TRAMP_SIZE]; 179 target_ulong pinfo; /* struct siginfo __user * */ 180 target_ulong puc; /* void __user * */ 181 struct target_siginfo info; 182 /* 64 bit ABI allows for 288 bytes below sp before decrementing it. */ 183 char abigap[288]; 184 } __attribute__((aligned(16))); 185 186 #else 187 188 struct target_rt_sigframe { 189 struct target_siginfo info; 190 struct target_ucontext uc; 191 int32_t abigap[56]; 192 }; 193 194 #endif 195 196 #if defined(TARGET_PPC64) 197 198 struct target_func_ptr { 199 target_ulong entry; 200 target_ulong toc; 201 }; 202 203 #endif 204 205 /* We use the mc_pad field for the signal return trampoline. */ 206 #define tramp mc_pad 207 208 /* See arch/powerpc/kernel/signal.c. */ 209 static target_ulong get_sigframe(struct target_sigaction *ka, 210 CPUPPCState *env, 211 int frame_size) 212 { 213 target_ulong oldsp; 214 215 oldsp = target_sigsp(get_sp_from_cpustate(env), ka); 216 217 return (oldsp - frame_size) & ~0xFUL; 218 } 219 220 #if ((defined(TARGET_WORDS_BIGENDIAN) && defined(HOST_WORDS_BIGENDIAN)) || \ 221 (!defined(HOST_WORDS_BIGENDIAN) && !defined(TARGET_WORDS_BIGENDIAN))) 222 #define PPC_VEC_HI 0 223 #define PPC_VEC_LO 1 224 #else 225 #define PPC_VEC_HI 1 226 #define PPC_VEC_LO 0 227 #endif 228 229 230 static void save_user_regs(CPUPPCState *env, struct target_mcontext *frame) 231 { 232 target_ulong msr = env->msr; 233 int i; 234 target_ulong ccr = 0; 235 236 /* In general, the kernel attempts to be intelligent about what it 237 needs to save for Altivec/FP/SPE registers. We don't care that 238 much, so we just go ahead and save everything. */ 239 240 /* Save general registers. */ 241 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 242 __put_user(env->gpr[i], &frame->mc_gregs[i]); 243 } 244 __put_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]); 245 __put_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]); 246 __put_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]); 247 __put_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]); 248 249 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 250 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 251 } 252 __put_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]); 253 254 /* Save Altivec registers if necessary. */ 255 if (env->insns_flags & PPC_ALTIVEC) { 256 uint32_t *vrsave; 257 for (i = 0; i < 32; i++) { 258 ppc_avr_t *avr = cpu_avr_ptr(env, i); 259 ppc_avr_t *vreg = (ppc_avr_t *)&frame->mc_vregs.altivec[i]; 260 261 __put_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]); 262 __put_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]); 263 } 264 #if defined(TARGET_PPC64) 265 vrsave = (uint32_t *)&frame->mc_vregs.altivec[33]; 266 /* 64-bit needs to put a pointer to the vectors in the frame */ 267 __put_user(h2g(frame->mc_vregs.altivec), &frame->v_regs); 268 #else 269 vrsave = (uint32_t *)&frame->mc_vregs.altivec[32]; 270 #endif 271 __put_user((uint32_t)env->spr[SPR_VRSAVE], vrsave); 272 } 273 274 #if defined(TARGET_PPC64) 275 /* Save VSX second halves */ 276 if (env->insns_flags2 & PPC2_VSX) { 277 uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34]; 278 for (i = 0; i < 32; i++) { 279 uint64_t *vsrl = cpu_vsrl_ptr(env, i); 280 __put_user(*vsrl, &vsregs[i]); 281 } 282 } 283 #endif 284 285 /* Save floating point registers. */ 286 if (env->insns_flags & PPC_FLOAT) { 287 for (i = 0; i < 32; i++) { 288 uint64_t *fpr = cpu_fpr_ptr(env, i); 289 __put_user(*fpr, &frame->mc_fregs[i]); 290 } 291 __put_user((uint64_t) env->fpscr, &frame->mc_fregs[32]); 292 } 293 294 #if !defined(TARGET_PPC64) 295 /* Save SPE registers. The kernel only saves the high half. */ 296 if (env->insns_flags & PPC_SPE) { 297 for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { 298 __put_user(env->gprh[i], &frame->mc_vregs.spe[i]); 299 } 300 __put_user(env->spe_fscr, &frame->mc_vregs.spe[32]); 301 } 302 #endif 303 304 /* Store MSR. */ 305 __put_user(msr, &frame->mc_gregs[TARGET_PT_MSR]); 306 } 307 308 static void encode_trampoline(int sigret, uint32_t *tramp) 309 { 310 /* Set up the sigreturn trampoline: li r0,sigret; sc. */ 311 if (sigret) { 312 __put_user(0x38000000 | sigret, &tramp[0]); 313 __put_user(0x44000002, &tramp[1]); 314 } 315 } 316 317 static void restore_user_regs(CPUPPCState *env, 318 struct target_mcontext *frame, int sig) 319 { 320 target_ulong save_r2 = 0; 321 target_ulong msr; 322 target_ulong ccr; 323 324 int i; 325 326 if (!sig) { 327 save_r2 = env->gpr[2]; 328 } 329 330 /* Restore general registers. */ 331 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 332 __get_user(env->gpr[i], &frame->mc_gregs[i]); 333 } 334 __get_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]); 335 __get_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]); 336 __get_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]); 337 __get_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]); 338 __get_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]); 339 340 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 341 env->crf[i] = (ccr >> (32 - ((i + 1) * 4))) & 0xf; 342 } 343 344 if (!sig) { 345 env->gpr[2] = save_r2; 346 } 347 /* Restore MSR. */ 348 __get_user(msr, &frame->mc_gregs[TARGET_PT_MSR]); 349 350 /* If doing signal return, restore the previous little-endian mode. */ 351 if (sig) { 352 ppc_store_msr(env, ((env->msr & ~(1ull << MSR_LE)) | 353 (msr & (1ull << MSR_LE)))); 354 } 355 356 /* Restore Altivec registers if necessary. */ 357 if (env->insns_flags & PPC_ALTIVEC) { 358 ppc_avr_t *v_regs; 359 uint32_t *vrsave; 360 #if defined(TARGET_PPC64) 361 uint64_t v_addr; 362 /* 64-bit needs to recover the pointer to the vectors from the frame */ 363 __get_user(v_addr, &frame->v_regs); 364 v_regs = g2h(env_cpu(env), v_addr); 365 #else 366 v_regs = (ppc_avr_t *)frame->mc_vregs.altivec; 367 #endif 368 for (i = 0; i < 32; i++) { 369 ppc_avr_t *avr = cpu_avr_ptr(env, i); 370 ppc_avr_t *vreg = &v_regs[i]; 371 372 __get_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]); 373 __get_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]); 374 } 375 #if defined(TARGET_PPC64) 376 vrsave = (uint32_t *)&v_regs[33]; 377 #else 378 vrsave = (uint32_t *)&v_regs[32]; 379 #endif 380 __get_user(env->spr[SPR_VRSAVE], vrsave); 381 } 382 383 #if defined(TARGET_PPC64) 384 /* Restore VSX second halves */ 385 if (env->insns_flags2 & PPC2_VSX) { 386 uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34]; 387 for (i = 0; i < 32; i++) { 388 uint64_t *vsrl = cpu_vsrl_ptr(env, i); 389 __get_user(*vsrl, &vsregs[i]); 390 } 391 } 392 #endif 393 394 /* Restore floating point registers. */ 395 if (env->insns_flags & PPC_FLOAT) { 396 uint64_t fpscr; 397 for (i = 0; i < 32; i++) { 398 uint64_t *fpr = cpu_fpr_ptr(env, i); 399 __get_user(*fpr, &frame->mc_fregs[i]); 400 } 401 __get_user(fpscr, &frame->mc_fregs[32]); 402 env->fpscr = (uint32_t) fpscr; 403 } 404 405 #if !defined(TARGET_PPC64) 406 /* Save SPE registers. The kernel only saves the high half. */ 407 if (env->insns_flags & PPC_SPE) { 408 for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { 409 __get_user(env->gprh[i], &frame->mc_vregs.spe[i]); 410 } 411 __get_user(env->spe_fscr, &frame->mc_vregs.spe[32]); 412 } 413 #endif 414 } 415 416 #if !defined(TARGET_PPC64) 417 void setup_frame(int sig, struct target_sigaction *ka, 418 target_sigset_t *set, CPUPPCState *env) 419 { 420 struct target_sigframe *frame; 421 struct target_sigcontext *sc; 422 target_ulong frame_addr, newsp; 423 int err = 0; 424 425 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 426 trace_user_setup_frame(env, frame_addr); 427 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) 428 goto sigsegv; 429 sc = &frame->sctx; 430 431 __put_user(ka->_sa_handler, &sc->handler); 432 __put_user(set->sig[0], &sc->oldmask); 433 __put_user(set->sig[1], &sc->_unused[3]); 434 __put_user(h2g(&frame->mctx), &sc->regs); 435 __put_user(sig, &sc->signal); 436 437 /* Save user regs. */ 438 save_user_regs(env, &frame->mctx); 439 440 /* Construct the trampoline code on the stack. */ 441 encode_trampoline(TARGET_NR_sigreturn, (uint32_t *)&frame->mctx.tramp); 442 443 /* The kernel checks for the presence of a VDSO here. We don't 444 emulate a vdso, so use a sigreturn system call. */ 445 env->lr = (target_ulong) h2g(frame->mctx.tramp); 446 447 /* Turn off all fp exceptions. */ 448 env->fpscr = 0; 449 450 /* Create a stack frame for the caller of the handler. */ 451 newsp = frame_addr - SIGNAL_FRAMESIZE; 452 err |= put_user(env->gpr[1], newsp, target_ulong); 453 454 if (err) 455 goto sigsegv; 456 457 /* Set up registers for signal handler. */ 458 env->gpr[1] = newsp; 459 env->gpr[3] = sig; 460 env->gpr[4] = frame_addr + offsetof(struct target_sigframe, sctx); 461 462 env->nip = (target_ulong) ka->_sa_handler; 463 464 /* Signal handlers are entered in big-endian mode. */ 465 ppc_store_msr(env, env->msr & ~(1ull << MSR_LE)); 466 467 unlock_user_struct(frame, frame_addr, 1); 468 return; 469 470 sigsegv: 471 unlock_user_struct(frame, frame_addr, 1); 472 force_sigsegv(sig); 473 } 474 #endif /* !defined(TARGET_PPC64) */ 475 476 void setup_rt_frame(int sig, struct target_sigaction *ka, 477 target_siginfo_t *info, 478 target_sigset_t *set, CPUPPCState *env) 479 { 480 struct target_rt_sigframe *rt_sf; 481 uint32_t *trampptr = 0; 482 struct target_mcontext *mctx = 0; 483 target_ulong rt_sf_addr, newsp = 0; 484 int i, err = 0; 485 #if defined(TARGET_PPC64) 486 struct target_sigcontext *sc = 0; 487 #if !defined(TARGET_ABI32) 488 struct image_info *image = ((TaskState *)thread_cpu->opaque)->info; 489 #endif 490 #endif 491 492 rt_sf_addr = get_sigframe(ka, env, sizeof(*rt_sf)); 493 if (!lock_user_struct(VERIFY_WRITE, rt_sf, rt_sf_addr, 1)) 494 goto sigsegv; 495 496 tswap_siginfo(&rt_sf->info, info); 497 498 __put_user(0, &rt_sf->uc.tuc_flags); 499 __put_user(0, &rt_sf->uc.tuc_link); 500 target_save_altstack(&rt_sf->uc.tuc_stack, env); 501 #if !defined(TARGET_PPC64) 502 __put_user(h2g (&rt_sf->uc.tuc_mcontext), 503 &rt_sf->uc.tuc_regs); 504 #endif 505 for(i = 0; i < TARGET_NSIG_WORDS; i++) { 506 __put_user(set->sig[i], &rt_sf->uc.tuc_sigmask.sig[i]); 507 } 508 509 #if defined(TARGET_PPC64) 510 mctx = &rt_sf->uc.tuc_sigcontext.mcontext; 511 trampptr = &rt_sf->trampoline[0]; 512 513 sc = &rt_sf->uc.tuc_sigcontext; 514 __put_user(h2g(mctx), &sc->regs); 515 __put_user(sig, &sc->signal); 516 #else 517 mctx = &rt_sf->uc.tuc_mcontext; 518 trampptr = (uint32_t *)&rt_sf->uc.tuc_mcontext.tramp; 519 #endif 520 521 save_user_regs(env, mctx); 522 encode_trampoline(TARGET_NR_rt_sigreturn, trampptr); 523 524 /* The kernel checks for the presence of a VDSO here. We don't 525 emulate a vdso, so use a sigreturn system call. */ 526 env->lr = (target_ulong) h2g(trampptr); 527 528 /* Turn off all fp exceptions. */ 529 env->fpscr = 0; 530 531 /* Create a stack frame for the caller of the handler. */ 532 newsp = rt_sf_addr - (SIGNAL_FRAMESIZE + 16); 533 err |= put_user(env->gpr[1], newsp, target_ulong); 534 535 if (err) 536 goto sigsegv; 537 538 /* Set up registers for signal handler. */ 539 env->gpr[1] = newsp; 540 env->gpr[3] = (target_ulong) sig; 541 env->gpr[4] = (target_ulong) h2g(&rt_sf->info); 542 env->gpr[5] = (target_ulong) h2g(&rt_sf->uc); 543 env->gpr[6] = (target_ulong) h2g(rt_sf); 544 545 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 546 if (get_ppc64_abi(image) < 2) { 547 /* ELFv1 PPC64 function pointers are pointers to OPD entries. */ 548 struct target_func_ptr *handler = 549 (struct target_func_ptr *)g2h(env_cpu(env), ka->_sa_handler); 550 env->nip = tswapl(handler->entry); 551 env->gpr[2] = tswapl(handler->toc); 552 } else { 553 /* ELFv2 PPC64 function pointers are entry points. R12 must also be set. */ 554 env->gpr[12] = env->nip = ka->_sa_handler; 555 } 556 #else 557 env->nip = (target_ulong) ka->_sa_handler; 558 #endif 559 560 #ifdef TARGET_WORDS_BIGENDIAN 561 /* Signal handlers are entered in big-endian mode. */ 562 ppc_store_msr(env, env->msr & ~(1ull << MSR_LE)); 563 #else 564 /* Signal handlers are entered in little-endian mode. */ 565 ppc_store_msr(env, env->msr | (1ull << MSR_LE)); 566 #endif 567 568 unlock_user_struct(rt_sf, rt_sf_addr, 1); 569 return; 570 571 sigsegv: 572 unlock_user_struct(rt_sf, rt_sf_addr, 1); 573 force_sigsegv(sig); 574 575 } 576 577 #if !defined(TARGET_PPC64) || defined(TARGET_ABI32) 578 long do_sigreturn(CPUPPCState *env) 579 { 580 struct target_sigcontext *sc = NULL; 581 struct target_mcontext *sr = NULL; 582 target_ulong sr_addr = 0, sc_addr; 583 sigset_t blocked; 584 target_sigset_t set; 585 586 sc_addr = env->gpr[1] + SIGNAL_FRAMESIZE; 587 if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) 588 goto sigsegv; 589 590 #if defined(TARGET_PPC64) 591 set.sig[0] = sc->oldmask + ((uint64_t)(sc->_unused[3]) << 32); 592 #else 593 __get_user(set.sig[0], &sc->oldmask); 594 __get_user(set.sig[1], &sc->_unused[3]); 595 #endif 596 target_to_host_sigset_internal(&blocked, &set); 597 set_sigmask(&blocked); 598 599 __get_user(sr_addr, &sc->regs); 600 if (!lock_user_struct(VERIFY_READ, sr, sr_addr, 1)) 601 goto sigsegv; 602 restore_user_regs(env, sr, 1); 603 604 unlock_user_struct(sr, sr_addr, 1); 605 unlock_user_struct(sc, sc_addr, 1); 606 return -TARGET_QEMU_ESIGRETURN; 607 608 sigsegv: 609 unlock_user_struct(sr, sr_addr, 1); 610 unlock_user_struct(sc, sc_addr, 1); 611 force_sig(TARGET_SIGSEGV); 612 return -TARGET_QEMU_ESIGRETURN; 613 } 614 #endif /* !defined(TARGET_PPC64) */ 615 616 /* See arch/powerpc/kernel/signal_32.c. */ 617 static int do_setcontext(struct target_ucontext *ucp, CPUPPCState *env, int sig) 618 { 619 struct target_mcontext *mcp; 620 target_ulong mcp_addr; 621 sigset_t blocked; 622 target_sigset_t set; 623 624 if (copy_from_user(&set, h2g(ucp) + offsetof(struct target_ucontext, tuc_sigmask), 625 sizeof (set))) 626 return 1; 627 628 #if defined(TARGET_PPC64) 629 mcp_addr = h2g(ucp) + 630 offsetof(struct target_ucontext, tuc_sigcontext.mcontext); 631 #else 632 __get_user(mcp_addr, &ucp->tuc_regs); 633 #endif 634 635 if (!lock_user_struct(VERIFY_READ, mcp, mcp_addr, 1)) 636 return 1; 637 638 target_to_host_sigset_internal(&blocked, &set); 639 set_sigmask(&blocked); 640 restore_user_regs(env, mcp, sig); 641 642 unlock_user_struct(mcp, mcp_addr, 1); 643 return 0; 644 } 645 646 long do_rt_sigreturn(CPUPPCState *env) 647 { 648 struct target_rt_sigframe *rt_sf = NULL; 649 target_ulong rt_sf_addr; 650 651 rt_sf_addr = env->gpr[1] + SIGNAL_FRAMESIZE + 16; 652 if (!lock_user_struct(VERIFY_READ, rt_sf, rt_sf_addr, 1)) 653 goto sigsegv; 654 655 if (do_setcontext(&rt_sf->uc, env, 1)) 656 goto sigsegv; 657 658 do_sigaltstack(rt_sf_addr 659 + offsetof(struct target_rt_sigframe, uc.tuc_stack), 660 0, env->gpr[1]); 661 662 unlock_user_struct(rt_sf, rt_sf_addr, 1); 663 return -TARGET_QEMU_ESIGRETURN; 664 665 sigsegv: 666 unlock_user_struct(rt_sf, rt_sf_addr, 1); 667 force_sig(TARGET_SIGSEGV); 668 return -TARGET_QEMU_ESIGRETURN; 669 } 670 671 /* This syscall implements {get,set,swap}context for userland. */ 672 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx, 673 abi_ulong unew_ctx, abi_long ctx_size) 674 { 675 struct target_ucontext *uctx; 676 struct target_mcontext *mctx; 677 678 /* For ppc32, ctx_size is "reserved for future use". 679 * For ppc64, we do not yet support the VSX extension. 680 */ 681 if (ctx_size < sizeof(struct target_ucontext)) { 682 return -TARGET_EINVAL; 683 } 684 685 if (uold_ctx) { 686 TaskState *ts = (TaskState *)thread_cpu->opaque; 687 688 if (!lock_user_struct(VERIFY_WRITE, uctx, uold_ctx, 1)) { 689 return -TARGET_EFAULT; 690 } 691 692 #ifdef TARGET_PPC64 693 mctx = &uctx->tuc_sigcontext.mcontext; 694 #else 695 /* ??? The kernel aligns the pointer down here into padding, but 696 * in setup_rt_frame we don't. Be self-compatible for now. 697 */ 698 mctx = &uctx->tuc_mcontext; 699 __put_user(h2g(mctx), &uctx->tuc_regs); 700 #endif 701 702 save_user_regs(env, mctx); 703 host_to_target_sigset(&uctx->tuc_sigmask, &ts->signal_mask); 704 705 unlock_user_struct(uctx, uold_ctx, 1); 706 } 707 708 if (unew_ctx) { 709 int err; 710 711 if (!lock_user_struct(VERIFY_READ, uctx, unew_ctx, 1)) { 712 return -TARGET_EFAULT; 713 } 714 err = do_setcontext(uctx, env, 0); 715 unlock_user_struct(uctx, unew_ctx, 1); 716 717 if (err) { 718 /* We cannot return to a partially updated context. */ 719 force_sig(TARGET_SIGSEGV); 720 } 721 return -TARGET_QEMU_ESIGRETURN; 722 } 723 724 return 0; 725 } 726