xref: /openbmc/qemu/linux-user/ppc/signal.c (revision 2cc0e2e8)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "target_signal.h"
22 #include "signal-common.h"
23 #include "linux-user/trace.h"
24 
25 /* Size of dummy stack frame allocated when calling signal handler.
26    See arch/powerpc/include/asm/ptrace.h.  */
27 #if defined(TARGET_PPC64)
28 #define SIGNAL_FRAMESIZE 128
29 #else
30 #define SIGNAL_FRAMESIZE 64
31 #endif
32 
33 /* See arch/powerpc/include/asm/ucontext.h.  Only used for 32-bit PPC;
34    on 64-bit PPC, sigcontext and mcontext are one and the same.  */
35 struct target_mcontext {
36     target_ulong mc_gregs[48];
37     /* Includes fpscr.  */
38     uint64_t mc_fregs[33];
39 #if defined(TARGET_PPC64)
40     /* Pointer to the vector regs */
41     target_ulong v_regs;
42 #else
43     target_ulong mc_pad[2];
44 #endif
45     /* We need to handle Altivec and SPE at the same time, which no
46        kernel needs to do.  Fortunately, the kernel defines this bit to
47        be Altivec-register-large all the time, rather than trying to
48        twiddle it based on the specific platform.  */
49     union {
50         /* SPE vector registers.  One extra for SPEFSCR.  */
51         uint32_t spe[33];
52         /* Altivec vector registers.  The packing of VSCR and VRSAVE
53            varies depending on whether we're PPC64 or not: PPC64 splits
54            them apart; PPC32 stuffs them together.
55            We also need to account for the VSX registers on PPC64
56         */
57 #if defined(TARGET_PPC64)
58 #define QEMU_NVRREG (34 + 16)
59         /* On ppc64, this mcontext structure is naturally *unaligned*,
60          * or rather it is aligned on a 8 bytes boundary but not on
61          * a 16 bytes one. This pad fixes it up. This is also why the
62          * vector regs are referenced by the v_regs pointer above so
63          * any amount of padding can be added here
64          */
65         target_ulong pad;
66 #else
67         /* On ppc32, we are already aligned to 16 bytes */
68 #define QEMU_NVRREG 33
69 #endif
70         /* We cannot use ppc_avr_t here as we do *not* want the implied
71          * 16-bytes alignment that would result from it. This would have
72          * the effect of making the whole struct target_mcontext aligned
73          * which breaks the layout of struct target_ucontext on ppc64.
74          */
75         uint64_t altivec[QEMU_NVRREG][2];
76 #undef QEMU_NVRREG
77     } mc_vregs;
78 };
79 
80 /* See arch/powerpc/include/asm/sigcontext.h.  */
81 struct target_sigcontext {
82     target_ulong _unused[4];
83     int32_t signal;
84 #if defined(TARGET_PPC64)
85     int32_t pad0;
86 #endif
87     target_ulong handler;
88     target_ulong oldmask;
89     target_ulong regs;      /* struct pt_regs __user * */
90 #if defined(TARGET_PPC64)
91     struct target_mcontext mcontext;
92 #endif
93 };
94 
95 /* Indices for target_mcontext.mc_gregs, below.
96    See arch/powerpc/include/asm/ptrace.h for details.  */
97 enum {
98     TARGET_PT_R0 = 0,
99     TARGET_PT_R1 = 1,
100     TARGET_PT_R2 = 2,
101     TARGET_PT_R3 = 3,
102     TARGET_PT_R4 = 4,
103     TARGET_PT_R5 = 5,
104     TARGET_PT_R6 = 6,
105     TARGET_PT_R7 = 7,
106     TARGET_PT_R8 = 8,
107     TARGET_PT_R9 = 9,
108     TARGET_PT_R10 = 10,
109     TARGET_PT_R11 = 11,
110     TARGET_PT_R12 = 12,
111     TARGET_PT_R13 = 13,
112     TARGET_PT_R14 = 14,
113     TARGET_PT_R15 = 15,
114     TARGET_PT_R16 = 16,
115     TARGET_PT_R17 = 17,
116     TARGET_PT_R18 = 18,
117     TARGET_PT_R19 = 19,
118     TARGET_PT_R20 = 20,
119     TARGET_PT_R21 = 21,
120     TARGET_PT_R22 = 22,
121     TARGET_PT_R23 = 23,
122     TARGET_PT_R24 = 24,
123     TARGET_PT_R25 = 25,
124     TARGET_PT_R26 = 26,
125     TARGET_PT_R27 = 27,
126     TARGET_PT_R28 = 28,
127     TARGET_PT_R29 = 29,
128     TARGET_PT_R30 = 30,
129     TARGET_PT_R31 = 31,
130     TARGET_PT_NIP = 32,
131     TARGET_PT_MSR = 33,
132     TARGET_PT_ORIG_R3 = 34,
133     TARGET_PT_CTR = 35,
134     TARGET_PT_LNK = 36,
135     TARGET_PT_XER = 37,
136     TARGET_PT_CCR = 38,
137     /* Yes, there are two registers with #39.  One is 64-bit only.  */
138     TARGET_PT_MQ = 39,
139     TARGET_PT_SOFTE = 39,
140     TARGET_PT_TRAP = 40,
141     TARGET_PT_DAR = 41,
142     TARGET_PT_DSISR = 42,
143     TARGET_PT_RESULT = 43,
144     TARGET_PT_REGS_COUNT = 44
145 };
146 
147 
148 struct target_ucontext {
149     target_ulong tuc_flags;
150     target_ulong tuc_link;    /* ucontext_t __user * */
151     struct target_sigaltstack tuc_stack;
152 #if !defined(TARGET_PPC64)
153     int32_t tuc_pad[7];
154     target_ulong tuc_regs;    /* struct mcontext __user *
155                                 points to uc_mcontext field */
156 #endif
157     target_sigset_t tuc_sigmask;
158 #if defined(TARGET_PPC64)
159     target_sigset_t unused[15]; /* Allow for uc_sigmask growth */
160     struct target_sigcontext tuc_sigcontext;
161 #else
162     int32_t tuc_maskext[30];
163     int32_t tuc_pad2[3];
164     struct target_mcontext tuc_mcontext;
165 #endif
166 };
167 
168 /* See arch/powerpc/kernel/signal_32.c.  */
169 struct target_sigframe {
170     struct target_sigcontext sctx;
171     struct target_mcontext mctx;
172     int32_t abigap[56];
173 };
174 
175 #if defined(TARGET_PPC64)
176 
177 #define TARGET_TRAMP_SIZE 6
178 
179 struct target_rt_sigframe {
180     /* sys_rt_sigreturn requires the ucontext be the first field */
181     struct target_ucontext uc;
182     target_ulong  _unused[2];
183     uint32_t trampoline[TARGET_TRAMP_SIZE];
184     target_ulong pinfo; /* struct siginfo __user * */
185     target_ulong puc; /* void __user * */
186     struct target_siginfo info;
187     /* 64 bit ABI allows for 288 bytes below sp before decrementing it. */
188     char abigap[288];
189 } __attribute__((aligned(16)));
190 
191 #else
192 
193 struct target_rt_sigframe {
194     struct target_siginfo info;
195     struct target_ucontext uc;
196     int32_t abigap[56];
197 };
198 
199 #endif
200 
201 #if defined(TARGET_PPC64)
202 
203 struct target_func_ptr {
204     target_ulong entry;
205     target_ulong toc;
206 };
207 
208 #endif
209 
210 /* We use the mc_pad field for the signal return trampoline.  */
211 #define tramp mc_pad
212 
213 /* See arch/powerpc/kernel/signal.c.  */
214 static target_ulong get_sigframe(struct target_sigaction *ka,
215                                  CPUPPCState *env,
216                                  int frame_size)
217 {
218     target_ulong oldsp;
219 
220     oldsp = target_sigsp(get_sp_from_cpustate(env), ka);
221 
222     return (oldsp - frame_size) & ~0xFUL;
223 }
224 
225 #if ((defined(TARGET_WORDS_BIGENDIAN) && defined(HOST_WORDS_BIGENDIAN)) || \
226      (!defined(HOST_WORDS_BIGENDIAN) && !defined(TARGET_WORDS_BIGENDIAN)))
227 #define PPC_VEC_HI      0
228 #define PPC_VEC_LO      1
229 #else
230 #define PPC_VEC_HI      1
231 #define PPC_VEC_LO      0
232 #endif
233 
234 
235 static void save_user_regs(CPUPPCState *env, struct target_mcontext *frame)
236 {
237     target_ulong msr = env->msr;
238     int i;
239     target_ulong ccr = 0;
240 
241     /* In general, the kernel attempts to be intelligent about what it
242        needs to save for Altivec/FP/SPE registers.  We don't care that
243        much, so we just go ahead and save everything.  */
244 
245     /* Save general registers.  */
246     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
247         __put_user(env->gpr[i], &frame->mc_gregs[i]);
248     }
249     __put_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]);
250     __put_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]);
251     __put_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]);
252     __put_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]);
253 
254     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
255         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
256     }
257     __put_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]);
258 
259     /* Save Altivec registers if necessary.  */
260     if (env->insns_flags & PPC_ALTIVEC) {
261         uint32_t *vrsave;
262         for (i = 0; i < ARRAY_SIZE(env->avr); i++) {
263             ppc_avr_t *avr = &env->avr[i];
264             ppc_avr_t *vreg = (ppc_avr_t *)&frame->mc_vregs.altivec[i];
265 
266             __put_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]);
267             __put_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]);
268         }
269         /* Set MSR_VR in the saved MSR value to indicate that
270            frame->mc_vregs contains valid data.  */
271         msr |= MSR_VR;
272 #if defined(TARGET_PPC64)
273         vrsave = (uint32_t *)&frame->mc_vregs.altivec[33];
274         /* 64-bit needs to put a pointer to the vectors in the frame */
275         __put_user(h2g(frame->mc_vregs.altivec), &frame->v_regs);
276 #else
277         vrsave = (uint32_t *)&frame->mc_vregs.altivec[32];
278 #endif
279         __put_user((uint32_t)env->spr[SPR_VRSAVE], vrsave);
280     }
281 
282     /* Save VSX second halves */
283     if (env->insns_flags2 & PPC2_VSX) {
284         uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34];
285         for (i = 0; i < ARRAY_SIZE(env->vsr); i++) {
286             __put_user(env->vsr[i], &vsregs[i]);
287         }
288     }
289 
290     /* Save floating point registers.  */
291     if (env->insns_flags & PPC_FLOAT) {
292         for (i = 0; i < ARRAY_SIZE(env->fpr); i++) {
293             __put_user(env->fpr[i], &frame->mc_fregs[i]);
294         }
295         __put_user((uint64_t) env->fpscr, &frame->mc_fregs[32]);
296     }
297 
298     /* Save SPE registers.  The kernel only saves the high half.  */
299     if (env->insns_flags & PPC_SPE) {
300 #if defined(TARGET_PPC64)
301         for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
302             __put_user(env->gpr[i] >> 32, &frame->mc_vregs.spe[i]);
303         }
304 #else
305         for (i = 0; i < ARRAY_SIZE(env->gprh); i++) {
306             __put_user(env->gprh[i], &frame->mc_vregs.spe[i]);
307         }
308 #endif
309         /* Set MSR_SPE in the saved MSR value to indicate that
310            frame->mc_vregs contains valid data.  */
311         msr |= MSR_SPE;
312         __put_user(env->spe_fscr, &frame->mc_vregs.spe[32]);
313     }
314 
315     /* Store MSR.  */
316     __put_user(msr, &frame->mc_gregs[TARGET_PT_MSR]);
317 }
318 
319 static void encode_trampoline(int sigret, uint32_t *tramp)
320 {
321     /* Set up the sigreturn trampoline: li r0,sigret; sc.  */
322     if (sigret) {
323         __put_user(0x38000000 | sigret, &tramp[0]);
324         __put_user(0x44000002, &tramp[1]);
325     }
326 }
327 
328 static void restore_user_regs(CPUPPCState *env,
329                               struct target_mcontext *frame, int sig)
330 {
331     target_ulong save_r2 = 0;
332     target_ulong msr;
333     target_ulong ccr;
334 
335     int i;
336 
337     if (!sig) {
338         save_r2 = env->gpr[2];
339     }
340 
341     /* Restore general registers.  */
342     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
343         __get_user(env->gpr[i], &frame->mc_gregs[i]);
344     }
345     __get_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]);
346     __get_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]);
347     __get_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]);
348     __get_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]);
349     __get_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]);
350 
351     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
352         env->crf[i] = (ccr >> (32 - ((i + 1) * 4))) & 0xf;
353     }
354 
355     if (!sig) {
356         env->gpr[2] = save_r2;
357     }
358     /* Restore MSR.  */
359     __get_user(msr, &frame->mc_gregs[TARGET_PT_MSR]);
360 
361     /* If doing signal return, restore the previous little-endian mode.  */
362     if (sig)
363         env->msr = (env->msr & ~(1ull << MSR_LE)) | (msr & (1ull << MSR_LE));
364 
365     /* Restore Altivec registers if necessary.  */
366     if (env->insns_flags & PPC_ALTIVEC) {
367         ppc_avr_t *v_regs;
368         uint32_t *vrsave;
369 #if defined(TARGET_PPC64)
370         uint64_t v_addr;
371         /* 64-bit needs to recover the pointer to the vectors from the frame */
372         __get_user(v_addr, &frame->v_regs);
373         v_regs = g2h(v_addr);
374 #else
375         v_regs = (ppc_avr_t *)frame->mc_vregs.altivec;
376 #endif
377         for (i = 0; i < ARRAY_SIZE(env->avr); i++) {
378             ppc_avr_t *avr = &env->avr[i];
379             ppc_avr_t *vreg = &v_regs[i];
380 
381             __get_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]);
382             __get_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]);
383         }
384         /* Set MSR_VEC in the saved MSR value to indicate that
385            frame->mc_vregs contains valid data.  */
386 #if defined(TARGET_PPC64)
387         vrsave = (uint32_t *)&v_regs[33];
388 #else
389         vrsave = (uint32_t *)&v_regs[32];
390 #endif
391         __get_user(env->spr[SPR_VRSAVE], vrsave);
392     }
393 
394     /* Restore VSX second halves */
395     if (env->insns_flags2 & PPC2_VSX) {
396         uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34];
397         for (i = 0; i < ARRAY_SIZE(env->vsr); i++) {
398             __get_user(env->vsr[i], &vsregs[i]);
399         }
400     }
401 
402     /* Restore floating point registers.  */
403     if (env->insns_flags & PPC_FLOAT) {
404         uint64_t fpscr;
405         for (i = 0; i < ARRAY_SIZE(env->fpr); i++) {
406             __get_user(env->fpr[i], &frame->mc_fregs[i]);
407         }
408         __get_user(fpscr, &frame->mc_fregs[32]);
409         env->fpscr = (uint32_t) fpscr;
410     }
411 
412     /* Save SPE registers.  The kernel only saves the high half.  */
413     if (env->insns_flags & PPC_SPE) {
414 #if defined(TARGET_PPC64)
415         for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
416             uint32_t hi;
417 
418             __get_user(hi, &frame->mc_vregs.spe[i]);
419             env->gpr[i] = ((uint64_t)hi << 32) | ((uint32_t) env->gpr[i]);
420         }
421 #else
422         for (i = 0; i < ARRAY_SIZE(env->gprh); i++) {
423             __get_user(env->gprh[i], &frame->mc_vregs.spe[i]);
424         }
425 #endif
426         __get_user(env->spe_fscr, &frame->mc_vregs.spe[32]);
427     }
428 }
429 
430 #if !defined(TARGET_PPC64)
431 void setup_frame(int sig, struct target_sigaction *ka,
432                  target_sigset_t *set, CPUPPCState *env)
433 {
434     struct target_sigframe *frame;
435     struct target_sigcontext *sc;
436     target_ulong frame_addr, newsp;
437     int err = 0;
438 
439     frame_addr = get_sigframe(ka, env, sizeof(*frame));
440     trace_user_setup_frame(env, frame_addr);
441     if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1))
442         goto sigsegv;
443     sc = &frame->sctx;
444 
445     __put_user(ka->_sa_handler, &sc->handler);
446     __put_user(set->sig[0], &sc->oldmask);
447     __put_user(set->sig[1], &sc->_unused[3]);
448     __put_user(h2g(&frame->mctx), &sc->regs);
449     __put_user(sig, &sc->signal);
450 
451     /* Save user regs.  */
452     save_user_regs(env, &frame->mctx);
453 
454     /* Construct the trampoline code on the stack. */
455     encode_trampoline(TARGET_NR_sigreturn, (uint32_t *)&frame->mctx.tramp);
456 
457     /* The kernel checks for the presence of a VDSO here.  We don't
458        emulate a vdso, so use a sigreturn system call.  */
459     env->lr = (target_ulong) h2g(frame->mctx.tramp);
460 
461     /* Turn off all fp exceptions.  */
462     env->fpscr = 0;
463 
464     /* Create a stack frame for the caller of the handler.  */
465     newsp = frame_addr - SIGNAL_FRAMESIZE;
466     err |= put_user(env->gpr[1], newsp, target_ulong);
467 
468     if (err)
469         goto sigsegv;
470 
471     /* Set up registers for signal handler.  */
472     env->gpr[1] = newsp;
473     env->gpr[3] = sig;
474     env->gpr[4] = frame_addr + offsetof(struct target_sigframe, sctx);
475 
476     env->nip = (target_ulong) ka->_sa_handler;
477 
478     /* Signal handlers are entered in big-endian mode.  */
479     env->msr &= ~(1ull << MSR_LE);
480 
481     unlock_user_struct(frame, frame_addr, 1);
482     return;
483 
484 sigsegv:
485     unlock_user_struct(frame, frame_addr, 1);
486     force_sigsegv(sig);
487 }
488 #endif /* !defined(TARGET_PPC64) */
489 
490 void setup_rt_frame(int sig, struct target_sigaction *ka,
491                     target_siginfo_t *info,
492                     target_sigset_t *set, CPUPPCState *env)
493 {
494     struct target_rt_sigframe *rt_sf;
495     uint32_t *trampptr = 0;
496     struct target_mcontext *mctx = 0;
497     target_ulong rt_sf_addr, newsp = 0;
498     int i, err = 0;
499 #if defined(TARGET_PPC64)
500     struct target_sigcontext *sc = 0;
501     struct image_info *image = ((TaskState *)thread_cpu->opaque)->info;
502 #endif
503 
504     rt_sf_addr = get_sigframe(ka, env, sizeof(*rt_sf));
505     if (!lock_user_struct(VERIFY_WRITE, rt_sf, rt_sf_addr, 1))
506         goto sigsegv;
507 
508     tswap_siginfo(&rt_sf->info, info);
509 
510     __put_user(0, &rt_sf->uc.tuc_flags);
511     __put_user(0, &rt_sf->uc.tuc_link);
512     target_save_altstack(&rt_sf->uc.tuc_stack, env);
513 #if !defined(TARGET_PPC64)
514     __put_user(h2g (&rt_sf->uc.tuc_mcontext),
515                &rt_sf->uc.tuc_regs);
516 #endif
517     for(i = 0; i < TARGET_NSIG_WORDS; i++) {
518         __put_user(set->sig[i], &rt_sf->uc.tuc_sigmask.sig[i]);
519     }
520 
521 #if defined(TARGET_PPC64)
522     mctx = &rt_sf->uc.tuc_sigcontext.mcontext;
523     trampptr = &rt_sf->trampoline[0];
524 
525     sc = &rt_sf->uc.tuc_sigcontext;
526     __put_user(h2g(mctx), &sc->regs);
527     __put_user(sig, &sc->signal);
528 #else
529     mctx = &rt_sf->uc.tuc_mcontext;
530     trampptr = (uint32_t *)&rt_sf->uc.tuc_mcontext.tramp;
531 #endif
532 
533     save_user_regs(env, mctx);
534     encode_trampoline(TARGET_NR_rt_sigreturn, trampptr);
535 
536     /* The kernel checks for the presence of a VDSO here.  We don't
537        emulate a vdso, so use a sigreturn system call.  */
538     env->lr = (target_ulong) h2g(trampptr);
539 
540     /* Turn off all fp exceptions.  */
541     env->fpscr = 0;
542 
543     /* Create a stack frame for the caller of the handler.  */
544     newsp = rt_sf_addr - (SIGNAL_FRAMESIZE + 16);
545     err |= put_user(env->gpr[1], newsp, target_ulong);
546 
547     if (err)
548         goto sigsegv;
549 
550     /* Set up registers for signal handler.  */
551     env->gpr[1] = newsp;
552     env->gpr[3] = (target_ulong) sig;
553     env->gpr[4] = (target_ulong) h2g(&rt_sf->info);
554     env->gpr[5] = (target_ulong) h2g(&rt_sf->uc);
555     env->gpr[6] = (target_ulong) h2g(rt_sf);
556 
557 #if defined(TARGET_PPC64)
558     if (get_ppc64_abi(image) < 2) {
559         /* ELFv1 PPC64 function pointers are pointers to OPD entries. */
560         struct target_func_ptr *handler =
561             (struct target_func_ptr *)g2h(ka->_sa_handler);
562         env->nip = tswapl(handler->entry);
563         env->gpr[2] = tswapl(handler->toc);
564     } else {
565         /* ELFv2 PPC64 function pointers are entry points, but R12
566          * must also be set */
567         env->nip = tswapl((target_ulong) ka->_sa_handler);
568         env->gpr[12] = env->nip;
569     }
570 #else
571     env->nip = (target_ulong) ka->_sa_handler;
572 #endif
573 
574     /* Signal handlers are entered in big-endian mode.  */
575     env->msr &= ~(1ull << MSR_LE);
576 
577     unlock_user_struct(rt_sf, rt_sf_addr, 1);
578     return;
579 
580 sigsegv:
581     unlock_user_struct(rt_sf, rt_sf_addr, 1);
582     force_sigsegv(sig);
583 
584 }
585 
586 #if !defined(TARGET_PPC64)
587 long do_sigreturn(CPUPPCState *env)
588 {
589     struct target_sigcontext *sc = NULL;
590     struct target_mcontext *sr = NULL;
591     target_ulong sr_addr = 0, sc_addr;
592     sigset_t blocked;
593     target_sigset_t set;
594 
595     sc_addr = env->gpr[1] + SIGNAL_FRAMESIZE;
596     if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1))
597         goto sigsegv;
598 
599 #if defined(TARGET_PPC64)
600     set.sig[0] = sc->oldmask + ((uint64_t)(sc->_unused[3]) << 32);
601 #else
602     __get_user(set.sig[0], &sc->oldmask);
603     __get_user(set.sig[1], &sc->_unused[3]);
604 #endif
605     target_to_host_sigset_internal(&blocked, &set);
606     set_sigmask(&blocked);
607 
608     __get_user(sr_addr, &sc->regs);
609     if (!lock_user_struct(VERIFY_READ, sr, sr_addr, 1))
610         goto sigsegv;
611     restore_user_regs(env, sr, 1);
612 
613     unlock_user_struct(sr, sr_addr, 1);
614     unlock_user_struct(sc, sc_addr, 1);
615     return -TARGET_QEMU_ESIGRETURN;
616 
617 sigsegv:
618     unlock_user_struct(sr, sr_addr, 1);
619     unlock_user_struct(sc, sc_addr, 1);
620     force_sig(TARGET_SIGSEGV);
621     return -TARGET_QEMU_ESIGRETURN;
622 }
623 #endif /* !defined(TARGET_PPC64) */
624 
625 /* See arch/powerpc/kernel/signal_32.c.  */
626 static int do_setcontext(struct target_ucontext *ucp, CPUPPCState *env, int sig)
627 {
628     struct target_mcontext *mcp;
629     target_ulong mcp_addr;
630     sigset_t blocked;
631     target_sigset_t set;
632 
633     if (copy_from_user(&set, h2g(ucp) + offsetof(struct target_ucontext, tuc_sigmask),
634                        sizeof (set)))
635         return 1;
636 
637 #if defined(TARGET_PPC64)
638     mcp_addr = h2g(ucp) +
639         offsetof(struct target_ucontext, tuc_sigcontext.mcontext);
640 #else
641     __get_user(mcp_addr, &ucp->tuc_regs);
642 #endif
643 
644     if (!lock_user_struct(VERIFY_READ, mcp, mcp_addr, 1))
645         return 1;
646 
647     target_to_host_sigset_internal(&blocked, &set);
648     set_sigmask(&blocked);
649     restore_user_regs(env, mcp, sig);
650 
651     unlock_user_struct(mcp, mcp_addr, 1);
652     return 0;
653 }
654 
655 long do_rt_sigreturn(CPUPPCState *env)
656 {
657     struct target_rt_sigframe *rt_sf = NULL;
658     target_ulong rt_sf_addr;
659 
660     rt_sf_addr = env->gpr[1] + SIGNAL_FRAMESIZE + 16;
661     if (!lock_user_struct(VERIFY_READ, rt_sf, rt_sf_addr, 1))
662         goto sigsegv;
663 
664     if (do_setcontext(&rt_sf->uc, env, 1))
665         goto sigsegv;
666 
667     do_sigaltstack(rt_sf_addr
668                    + offsetof(struct target_rt_sigframe, uc.tuc_stack),
669                    0, env->gpr[1]);
670 
671     unlock_user_struct(rt_sf, rt_sf_addr, 1);
672     return -TARGET_QEMU_ESIGRETURN;
673 
674 sigsegv:
675     unlock_user_struct(rt_sf, rt_sf_addr, 1);
676     force_sig(TARGET_SIGSEGV);
677     return -TARGET_QEMU_ESIGRETURN;
678 }
679