xref: /openbmc/qemu/linux-user/mmap.c (revision da3c22c7)
1 /*
2  *  mmap support for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include <sys/shm.h>
21 #include "trace.h"
22 #include "exec/log.h"
23 #include "qemu.h"
24 #include "user-internals.h"
25 #include "user-mmap.h"
26 #include "target_mman.h"
27 #include "qemu/interval-tree.h"
28 
29 static pthread_mutex_t mmap_mutex = PTHREAD_MUTEX_INITIALIZER;
30 static __thread int mmap_lock_count;
31 
32 void mmap_lock(void)
33 {
34     if (mmap_lock_count++ == 0) {
35         pthread_mutex_lock(&mmap_mutex);
36     }
37 }
38 
39 void mmap_unlock(void)
40 {
41     assert(mmap_lock_count > 0);
42     if (--mmap_lock_count == 0) {
43         pthread_mutex_unlock(&mmap_mutex);
44     }
45 }
46 
47 bool have_mmap_lock(void)
48 {
49     return mmap_lock_count > 0 ? true : false;
50 }
51 
52 /* Grab lock to make sure things are in a consistent state after fork().  */
53 void mmap_fork_start(void)
54 {
55     if (mmap_lock_count)
56         abort();
57     pthread_mutex_lock(&mmap_mutex);
58 }
59 
60 void mmap_fork_end(int child)
61 {
62     if (child) {
63         pthread_mutex_init(&mmap_mutex, NULL);
64     } else {
65         pthread_mutex_unlock(&mmap_mutex);
66     }
67 }
68 
69 /* Protected by mmap_lock. */
70 static IntervalTreeRoot shm_regions;
71 
72 static void shm_region_add(abi_ptr start, abi_ptr last)
73 {
74     IntervalTreeNode *i = g_new0(IntervalTreeNode, 1);
75 
76     i->start = start;
77     i->last = last;
78     interval_tree_insert(i, &shm_regions);
79 }
80 
81 static abi_ptr shm_region_find(abi_ptr start)
82 {
83     IntervalTreeNode *i;
84 
85     for (i = interval_tree_iter_first(&shm_regions, start, start); i;
86          i = interval_tree_iter_next(i, start, start)) {
87         if (i->start == start) {
88             return i->last;
89         }
90     }
91     return 0;
92 }
93 
94 static void shm_region_rm_complete(abi_ptr start, abi_ptr last)
95 {
96     IntervalTreeNode *i, *n;
97 
98     for (i = interval_tree_iter_first(&shm_regions, start, last); i; i = n) {
99         n = interval_tree_iter_next(i, start, last);
100         if (i->start >= start && i->last <= last) {
101             interval_tree_remove(i, &shm_regions);
102             g_free(i);
103         }
104     }
105 }
106 
107 /*
108  * Validate target prot bitmask.
109  * Return the prot bitmask for the host in *HOST_PROT.
110  * Return 0 if the target prot bitmask is invalid, otherwise
111  * the internal qemu page_flags (which will include PAGE_VALID).
112  */
113 static int validate_prot_to_pageflags(int prot)
114 {
115     int valid = PROT_READ | PROT_WRITE | PROT_EXEC | TARGET_PROT_SEM;
116     int page_flags = (prot & PAGE_BITS) | PAGE_VALID;
117 
118 #ifdef TARGET_AARCH64
119     {
120         ARMCPU *cpu = ARM_CPU(thread_cpu);
121 
122         /*
123          * The PROT_BTI bit is only accepted if the cpu supports the feature.
124          * Since this is the unusual case, don't bother checking unless
125          * the bit has been requested.  If set and valid, record the bit
126          * within QEMU's page_flags.
127          */
128         if ((prot & TARGET_PROT_BTI) && cpu_isar_feature(aa64_bti, cpu)) {
129             valid |= TARGET_PROT_BTI;
130             page_flags |= PAGE_BTI;
131         }
132         /* Similarly for the PROT_MTE bit. */
133         if ((prot & TARGET_PROT_MTE) && cpu_isar_feature(aa64_mte, cpu)) {
134             valid |= TARGET_PROT_MTE;
135             page_flags |= PAGE_MTE;
136         }
137     }
138 #elif defined(TARGET_HPPA)
139     valid |= PROT_GROWSDOWN | PROT_GROWSUP;
140 #endif
141 
142     return prot & ~valid ? 0 : page_flags;
143 }
144 
145 /*
146  * For the host, we need not pass anything except read/write/exec.
147  * While PROT_SEM is allowed by all hosts, it is also ignored, so
148  * don't bother transforming guest bit to host bit.  Any other
149  * target-specific prot bits will not be understood by the host
150  * and will need to be encoded into page_flags for qemu emulation.
151  *
152  * Pages that are executable by the guest will never be executed
153  * by the host, but the host will need to be able to read them.
154  */
155 static int target_to_host_prot(int prot)
156 {
157     return (prot & (PROT_READ | PROT_WRITE)) |
158            (prot & PROT_EXEC ? PROT_READ : 0);
159 }
160 
161 /* NOTE: all the constants are the HOST ones, but addresses are target. */
162 int target_mprotect(abi_ulong start, abi_ulong len, int target_prot)
163 {
164     abi_ulong starts[3];
165     abi_ulong lens[3];
166     int prots[3];
167     abi_ulong host_start, host_last, last;
168     int prot1, ret, page_flags, nranges;
169 
170     trace_target_mprotect(start, len, target_prot);
171 
172     if ((start & ~TARGET_PAGE_MASK) != 0) {
173         return -TARGET_EINVAL;
174     }
175     page_flags = validate_prot_to_pageflags(target_prot);
176     if (!page_flags) {
177         return -TARGET_EINVAL;
178     }
179     if (len == 0) {
180         return 0;
181     }
182     len = TARGET_PAGE_ALIGN(len);
183     if (!guest_range_valid_untagged(start, len)) {
184         return -TARGET_ENOMEM;
185     }
186 
187     last = start + len - 1;
188     host_start = start & qemu_host_page_mask;
189     host_last = HOST_PAGE_ALIGN(last) - 1;
190     nranges = 0;
191 
192     mmap_lock();
193 
194     if (host_last - host_start < qemu_host_page_size) {
195         /* Single host page contains all guest pages: sum the prot. */
196         prot1 = target_prot;
197         for (abi_ulong a = host_start; a < start; a += TARGET_PAGE_SIZE) {
198             prot1 |= page_get_flags(a);
199         }
200         for (abi_ulong a = last; a < host_last; a += TARGET_PAGE_SIZE) {
201             prot1 |= page_get_flags(a + 1);
202         }
203         starts[nranges] = host_start;
204         lens[nranges] = qemu_host_page_size;
205         prots[nranges] = prot1;
206         nranges++;
207     } else {
208         if (host_start < start) {
209             /* Host page contains more than one guest page: sum the prot. */
210             prot1 = target_prot;
211             for (abi_ulong a = host_start; a < start; a += TARGET_PAGE_SIZE) {
212                 prot1 |= page_get_flags(a);
213             }
214             /* If the resulting sum differs, create a new range. */
215             if (prot1 != target_prot) {
216                 starts[nranges] = host_start;
217                 lens[nranges] = qemu_host_page_size;
218                 prots[nranges] = prot1;
219                 nranges++;
220                 host_start += qemu_host_page_size;
221             }
222         }
223 
224         if (last < host_last) {
225             /* Host page contains more than one guest page: sum the prot. */
226             prot1 = target_prot;
227             for (abi_ulong a = last; a < host_last; a += TARGET_PAGE_SIZE) {
228                 prot1 |= page_get_flags(a + 1);
229             }
230             /* If the resulting sum differs, create a new range. */
231             if (prot1 != target_prot) {
232                 host_last -= qemu_host_page_size;
233                 starts[nranges] = host_last + 1;
234                 lens[nranges] = qemu_host_page_size;
235                 prots[nranges] = prot1;
236                 nranges++;
237             }
238         }
239 
240         /* Create a range for the middle, if any remains. */
241         if (host_start < host_last) {
242             starts[nranges] = host_start;
243             lens[nranges] = host_last - host_start + 1;
244             prots[nranges] = target_prot;
245             nranges++;
246         }
247     }
248 
249     for (int i = 0; i < nranges; ++i) {
250         ret = mprotect(g2h_untagged(starts[i]), lens[i],
251                        target_to_host_prot(prots[i]));
252         if (ret != 0) {
253             goto error;
254         }
255     }
256 
257     page_set_flags(start, last, page_flags);
258     ret = 0;
259 
260  error:
261     mmap_unlock();
262     return ret;
263 }
264 
265 /* map an incomplete host page */
266 static bool mmap_frag(abi_ulong real_start, abi_ulong start, abi_ulong last,
267                       int prot, int flags, int fd, off_t offset)
268 {
269     abi_ulong real_last;
270     void *host_start;
271     int prot_old, prot_new;
272     int host_prot_old, host_prot_new;
273 
274     if (!(flags & MAP_ANONYMOUS)
275         && (flags & MAP_TYPE) == MAP_SHARED
276         && (prot & PROT_WRITE)) {
277         /*
278          * msync() won't work with the partial page, so we return an
279          * error if write is possible while it is a shared mapping.
280          */
281         errno = EINVAL;
282         return false;
283     }
284 
285     real_last = real_start + qemu_host_page_size - 1;
286     host_start = g2h_untagged(real_start);
287 
288     /* Get the protection of the target pages outside the mapping. */
289     prot_old = 0;
290     for (abi_ulong a = real_start; a < start; a += TARGET_PAGE_SIZE) {
291         prot_old |= page_get_flags(a);
292     }
293     for (abi_ulong a = real_last; a > last; a -= TARGET_PAGE_SIZE) {
294         prot_old |= page_get_flags(a);
295     }
296 
297     if (prot_old == 0) {
298         /*
299          * Since !(prot_old & PAGE_VALID), there were no guest pages
300          * outside of the fragment we need to map.  Allocate a new host
301          * page to cover, discarding whatever else may have been present.
302          */
303         void *p = mmap(host_start, qemu_host_page_size,
304                        target_to_host_prot(prot),
305                        flags | MAP_ANONYMOUS, -1, 0);
306         if (p != host_start) {
307             if (p != MAP_FAILED) {
308                 munmap(p, qemu_host_page_size);
309                 errno = EEXIST;
310             }
311             return false;
312         }
313         prot_old = prot;
314     }
315     prot_new = prot | prot_old;
316 
317     host_prot_old = target_to_host_prot(prot_old);
318     host_prot_new = target_to_host_prot(prot_new);
319 
320     /* Adjust protection to be able to write. */
321     if (!(host_prot_old & PROT_WRITE)) {
322         host_prot_old |= PROT_WRITE;
323         mprotect(host_start, qemu_host_page_size, host_prot_old);
324     }
325 
326     /* Read or zero the new guest pages. */
327     if (flags & MAP_ANONYMOUS) {
328         memset(g2h_untagged(start), 0, last - start + 1);
329     } else {
330         if (pread(fd, g2h_untagged(start), last - start + 1, offset) == -1) {
331             return false;
332         }
333     }
334 
335     /* Put final protection */
336     if (host_prot_new != host_prot_old) {
337         mprotect(host_start, qemu_host_page_size, host_prot_new);
338     }
339     return true;
340 }
341 
342 abi_ulong task_unmapped_base;
343 abi_ulong elf_et_dyn_base;
344 abi_ulong mmap_next_start;
345 
346 /*
347  * Subroutine of mmap_find_vma, used when we have pre-allocated
348  * a chunk of guest address space.
349  */
350 static abi_ulong mmap_find_vma_reserved(abi_ulong start, abi_ulong size,
351                                         abi_ulong align)
352 {
353     target_ulong ret;
354 
355     ret = page_find_range_empty(start, reserved_va, size, align);
356     if (ret == -1 && start > mmap_min_addr) {
357         /* Restart at the beginning of the address space. */
358         ret = page_find_range_empty(mmap_min_addr, start - 1, size, align);
359     }
360 
361     return ret;
362 }
363 
364 /*
365  * Find and reserve a free memory area of size 'size'. The search
366  * starts at 'start'.
367  * It must be called with mmap_lock() held.
368  * Return -1 if error.
369  */
370 abi_ulong mmap_find_vma(abi_ulong start, abi_ulong size, abi_ulong align)
371 {
372     void *ptr, *prev;
373     abi_ulong addr;
374     int wrapped, repeat;
375 
376     align = MAX(align, qemu_host_page_size);
377 
378     /* If 'start' == 0, then a default start address is used. */
379     if (start == 0) {
380         start = mmap_next_start;
381     } else {
382         start &= qemu_host_page_mask;
383     }
384     start = ROUND_UP(start, align);
385 
386     size = HOST_PAGE_ALIGN(size);
387 
388     if (reserved_va) {
389         return mmap_find_vma_reserved(start, size, align);
390     }
391 
392     addr = start;
393     wrapped = repeat = 0;
394     prev = 0;
395 
396     for (;; prev = ptr) {
397         /*
398          * Reserve needed memory area to avoid a race.
399          * It should be discarded using:
400          *  - mmap() with MAP_FIXED flag
401          *  - mremap() with MREMAP_FIXED flag
402          *  - shmat() with SHM_REMAP flag
403          */
404         ptr = mmap(g2h_untagged(addr), size, PROT_NONE,
405                    MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
406 
407         /* ENOMEM, if host address space has no memory */
408         if (ptr == MAP_FAILED) {
409             return (abi_ulong)-1;
410         }
411 
412         /*
413          * Count the number of sequential returns of the same address.
414          * This is used to modify the search algorithm below.
415          */
416         repeat = (ptr == prev ? repeat + 1 : 0);
417 
418         if (h2g_valid(ptr + size - 1)) {
419             addr = h2g(ptr);
420 
421             if ((addr & (align - 1)) == 0) {
422                 /* Success.  */
423                 if (start == mmap_next_start && addr >= task_unmapped_base) {
424                     mmap_next_start = addr + size;
425                 }
426                 return addr;
427             }
428 
429             /* The address is not properly aligned for the target.  */
430             switch (repeat) {
431             case 0:
432                 /*
433                  * Assume the result that the kernel gave us is the
434                  * first with enough free space, so start again at the
435                  * next higher target page.
436                  */
437                 addr = ROUND_UP(addr, align);
438                 break;
439             case 1:
440                 /*
441                  * Sometimes the kernel decides to perform the allocation
442                  * at the top end of memory instead.
443                  */
444                 addr &= -align;
445                 break;
446             case 2:
447                 /* Start over at low memory.  */
448                 addr = 0;
449                 break;
450             default:
451                 /* Fail.  This unaligned block must the last.  */
452                 addr = -1;
453                 break;
454             }
455         } else {
456             /*
457              * Since the result the kernel gave didn't fit, start
458              * again at low memory.  If any repetition, fail.
459              */
460             addr = (repeat ? -1 : 0);
461         }
462 
463         /* Unmap and try again.  */
464         munmap(ptr, size);
465 
466         /* ENOMEM if we checked the whole of the target address space.  */
467         if (addr == (abi_ulong)-1) {
468             return (abi_ulong)-1;
469         } else if (addr == 0) {
470             if (wrapped) {
471                 return (abi_ulong)-1;
472             }
473             wrapped = 1;
474             /*
475              * Don't actually use 0 when wrapping, instead indicate
476              * that we'd truly like an allocation in low memory.
477              */
478             addr = (mmap_min_addr > TARGET_PAGE_SIZE
479                      ? TARGET_PAGE_ALIGN(mmap_min_addr)
480                      : TARGET_PAGE_SIZE);
481         } else if (wrapped && addr >= start) {
482             return (abi_ulong)-1;
483         }
484     }
485 }
486 
487 /* NOTE: all the constants are the HOST ones */
488 abi_long target_mmap(abi_ulong start, abi_ulong len, int target_prot,
489                      int flags, int fd, off_t offset)
490 {
491     abi_ulong ret, last, real_start, real_last, retaddr, host_len;
492     abi_ulong passthrough_start = -1, passthrough_last = 0;
493     int page_flags;
494     off_t host_offset;
495 
496     mmap_lock();
497     trace_target_mmap(start, len, target_prot, flags, fd, offset);
498 
499     if (!len) {
500         errno = EINVAL;
501         goto fail;
502     }
503 
504     page_flags = validate_prot_to_pageflags(target_prot);
505     if (!page_flags) {
506         errno = EINVAL;
507         goto fail;
508     }
509 
510     /* Also check for overflows... */
511     len = TARGET_PAGE_ALIGN(len);
512     if (!len) {
513         errno = ENOMEM;
514         goto fail;
515     }
516 
517     if (offset & ~TARGET_PAGE_MASK) {
518         errno = EINVAL;
519         goto fail;
520     }
521 
522     /*
523      * If we're mapping shared memory, ensure we generate code for parallel
524      * execution and flush old translations.  This will work up to the level
525      * supported by the host -- anything that requires EXCP_ATOMIC will not
526      * be atomic with respect to an external process.
527      */
528     if (flags & MAP_SHARED) {
529         CPUState *cpu = thread_cpu;
530         if (!(cpu->tcg_cflags & CF_PARALLEL)) {
531             cpu->tcg_cflags |= CF_PARALLEL;
532             tb_flush(cpu);
533         }
534     }
535 
536     real_start = start & qemu_host_page_mask;
537     host_offset = offset & qemu_host_page_mask;
538 
539     /*
540      * If the user is asking for the kernel to find a location, do that
541      * before we truncate the length for mapping files below.
542      */
543     if (!(flags & (MAP_FIXED | MAP_FIXED_NOREPLACE))) {
544         host_len = len + offset - host_offset;
545         host_len = HOST_PAGE_ALIGN(host_len);
546         start = mmap_find_vma(real_start, host_len, TARGET_PAGE_SIZE);
547         if (start == (abi_ulong)-1) {
548             errno = ENOMEM;
549             goto fail;
550         }
551     }
552 
553     /*
554      * When mapping files into a memory area larger than the file, accesses
555      * to pages beyond the file size will cause a SIGBUS.
556      *
557      * For example, if mmaping a file of 100 bytes on a host with 4K pages
558      * emulating a target with 8K pages, the target expects to be able to
559      * access the first 8K. But the host will trap us on any access beyond
560      * 4K.
561      *
562      * When emulating a target with a larger page-size than the hosts, we
563      * may need to truncate file maps at EOF and add extra anonymous pages
564      * up to the targets page boundary.
565      */
566     if ((qemu_real_host_page_size() < qemu_host_page_size) &&
567         !(flags & MAP_ANONYMOUS)) {
568         struct stat sb;
569 
570         if (fstat(fd, &sb) == -1) {
571             goto fail;
572         }
573 
574         /* Are we trying to create a map beyond EOF?.  */
575         if (offset + len > sb.st_size) {
576             /*
577              * If so, truncate the file map at eof aligned with
578              * the hosts real pagesize. Additional anonymous maps
579              * will be created beyond EOF.
580              */
581             len = REAL_HOST_PAGE_ALIGN(sb.st_size - offset);
582         }
583     }
584 
585     if (!(flags & (MAP_FIXED | MAP_FIXED_NOREPLACE))) {
586         uintptr_t host_start;
587         int host_prot;
588         void *p;
589 
590         host_len = len + offset - host_offset;
591         host_len = HOST_PAGE_ALIGN(host_len);
592         host_prot = target_to_host_prot(target_prot);
593 
594         /*
595          * Note: we prefer to control the mapping address. It is
596          * especially important if qemu_host_page_size >
597          * qemu_real_host_page_size.
598          */
599         p = mmap(g2h_untagged(start), host_len, host_prot,
600                  flags | MAP_FIXED | MAP_ANONYMOUS, -1, 0);
601         if (p == MAP_FAILED) {
602             goto fail;
603         }
604         /* update start so that it points to the file position at 'offset' */
605         host_start = (uintptr_t)p;
606         if (!(flags & MAP_ANONYMOUS)) {
607             p = mmap(g2h_untagged(start), len, host_prot,
608                      flags | MAP_FIXED, fd, host_offset);
609             if (p == MAP_FAILED) {
610                 munmap(g2h_untagged(start), host_len);
611                 goto fail;
612             }
613             host_start += offset - host_offset;
614         }
615         start = h2g(host_start);
616         last = start + len - 1;
617         passthrough_start = start;
618         passthrough_last = last;
619     } else {
620         if (start & ~TARGET_PAGE_MASK) {
621             errno = EINVAL;
622             goto fail;
623         }
624         last = start + len - 1;
625         real_last = HOST_PAGE_ALIGN(last) - 1;
626 
627         /*
628          * Test if requested memory area fits target address space
629          * It can fail only on 64-bit host with 32-bit target.
630          * On any other target/host host mmap() handles this error correctly.
631          */
632         if (last < start || !guest_range_valid_untagged(start, len)) {
633             errno = ENOMEM;
634             goto fail;
635         }
636 
637         if (flags & MAP_FIXED_NOREPLACE) {
638             /* Validate that the chosen range is empty. */
639             if (!page_check_range_empty(start, last)) {
640                 errno = EEXIST;
641                 goto fail;
642             }
643 
644             /*
645              * With reserved_va, the entire address space is mmaped in the
646              * host to ensure it isn't accidentally used for something else.
647              * We have just checked that the guest address is not mapped
648              * within the guest, but need to replace the host reservation.
649              *
650              * Without reserved_va, despite the guest address check above,
651              * keep MAP_FIXED_NOREPLACE so that the guest does not overwrite
652              * any host address mappings.
653              */
654             if (reserved_va) {
655                 flags = (flags & ~MAP_FIXED_NOREPLACE) | MAP_FIXED;
656             }
657         }
658 
659         /*
660          * worst case: we cannot map the file because the offset is not
661          * aligned, so we read it
662          */
663         if (!(flags & MAP_ANONYMOUS) &&
664             (offset & ~qemu_host_page_mask) != (start & ~qemu_host_page_mask)) {
665             /*
666              * msync() won't work here, so we return an error if write is
667              * possible while it is a shared mapping
668              */
669             if ((flags & MAP_TYPE) == MAP_SHARED
670                 && (target_prot & PROT_WRITE)) {
671                 errno = EINVAL;
672                 goto fail;
673             }
674             retaddr = target_mmap(start, len, target_prot | PROT_WRITE,
675                                   (flags & (MAP_FIXED | MAP_FIXED_NOREPLACE))
676                                   | MAP_PRIVATE | MAP_ANONYMOUS,
677                                   -1, 0);
678             if (retaddr == -1) {
679                 goto fail;
680             }
681             if (pread(fd, g2h_untagged(start), len, offset) == -1) {
682                 goto fail;
683             }
684             if (!(target_prot & PROT_WRITE)) {
685                 ret = target_mprotect(start, len, target_prot);
686                 assert(ret == 0);
687             }
688             goto the_end;
689         }
690 
691         /* handle the start of the mapping */
692         if (start > real_start) {
693             if (real_last == real_start + qemu_host_page_size - 1) {
694                 /* one single host page */
695                 if (!mmap_frag(real_start, start, last,
696                                target_prot, flags, fd, offset)) {
697                     goto fail;
698                 }
699                 goto the_end1;
700             }
701             if (!mmap_frag(real_start, start,
702                            real_start + qemu_host_page_size - 1,
703                            target_prot, flags, fd, offset)) {
704                 goto fail;
705             }
706             real_start += qemu_host_page_size;
707         }
708         /* handle the end of the mapping */
709         if (last < real_last) {
710             abi_ulong real_page = real_last - qemu_host_page_size + 1;
711             if (!mmap_frag(real_page, real_page, last,
712                            target_prot, flags, fd,
713                            offset + real_page - start)) {
714                 goto fail;
715             }
716             real_last -= qemu_host_page_size;
717         }
718 
719         /* map the middle (easier) */
720         if (real_start < real_last) {
721             void *p, *want_p;
722             off_t offset1;
723             size_t len1;
724 
725             if (flags & MAP_ANONYMOUS) {
726                 offset1 = 0;
727             } else {
728                 offset1 = offset + real_start - start;
729             }
730             len1 = real_last - real_start + 1;
731             want_p = g2h_untagged(real_start);
732 
733             p = mmap(want_p, len1, target_to_host_prot(target_prot),
734                      flags, fd, offset1);
735             if (p != want_p) {
736                 if (p != MAP_FAILED) {
737                     munmap(p, len1);
738                     errno = EEXIST;
739                 }
740                 goto fail;
741             }
742             passthrough_start = real_start;
743             passthrough_last = real_last;
744         }
745     }
746  the_end1:
747     if (flags & MAP_ANONYMOUS) {
748         page_flags |= PAGE_ANON;
749     }
750     page_flags |= PAGE_RESET;
751     if (passthrough_start > passthrough_last) {
752         page_set_flags(start, last, page_flags);
753     } else {
754         if (start < passthrough_start) {
755             page_set_flags(start, passthrough_start - 1, page_flags);
756         }
757         page_set_flags(passthrough_start, passthrough_last,
758                        page_flags | PAGE_PASSTHROUGH);
759         if (passthrough_last < last) {
760             page_set_flags(passthrough_last + 1, last, page_flags);
761         }
762     }
763     shm_region_rm_complete(start, last);
764  the_end:
765     trace_target_mmap_complete(start);
766     if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
767         FILE *f = qemu_log_trylock();
768         if (f) {
769             fprintf(f, "page layout changed following mmap\n");
770             page_dump(f);
771             qemu_log_unlock(f);
772         }
773     }
774     mmap_unlock();
775     return start;
776 fail:
777     mmap_unlock();
778     return -1;
779 }
780 
781 static void mmap_reserve_or_unmap(abi_ulong start, abi_ulong len)
782 {
783     abi_ulong real_start;
784     abi_ulong real_last;
785     abi_ulong real_len;
786     abi_ulong last;
787     abi_ulong a;
788     void *host_start;
789     int prot;
790 
791     last = start + len - 1;
792     real_start = start & qemu_host_page_mask;
793     real_last = HOST_PAGE_ALIGN(last) - 1;
794 
795     /*
796      * If guest pages remain on the first or last host pages,
797      * adjust the deallocation to retain those guest pages.
798      * The single page special case is required for the last page,
799      * lest real_start overflow to zero.
800      */
801     if (real_last - real_start < qemu_host_page_size) {
802         prot = 0;
803         for (a = real_start; a < start; a += TARGET_PAGE_SIZE) {
804             prot |= page_get_flags(a);
805         }
806         for (a = last; a < real_last; a += TARGET_PAGE_SIZE) {
807             prot |= page_get_flags(a + 1);
808         }
809         if (prot != 0) {
810             return;
811         }
812     } else {
813         for (prot = 0, a = real_start; a < start; a += TARGET_PAGE_SIZE) {
814             prot |= page_get_flags(a);
815         }
816         if (prot != 0) {
817             real_start += qemu_host_page_size;
818         }
819 
820         for (prot = 0, a = last; a < real_last; a += TARGET_PAGE_SIZE) {
821             prot |= page_get_flags(a + 1);
822         }
823         if (prot != 0) {
824             real_last -= qemu_host_page_size;
825         }
826 
827         if (real_last < real_start) {
828             return;
829         }
830     }
831 
832     real_len = real_last - real_start + 1;
833     host_start = g2h_untagged(real_start);
834 
835     if (reserved_va) {
836         void *ptr = mmap(host_start, real_len, PROT_NONE,
837                          MAP_FIXED | MAP_ANONYMOUS
838                          | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
839         assert(ptr == host_start);
840     } else {
841         int ret = munmap(host_start, real_len);
842         assert(ret == 0);
843     }
844 }
845 
846 int target_munmap(abi_ulong start, abi_ulong len)
847 {
848     trace_target_munmap(start, len);
849 
850     if (start & ~TARGET_PAGE_MASK) {
851         return -TARGET_EINVAL;
852     }
853     len = TARGET_PAGE_ALIGN(len);
854     if (len == 0 || !guest_range_valid_untagged(start, len)) {
855         return -TARGET_EINVAL;
856     }
857 
858     mmap_lock();
859     mmap_reserve_or_unmap(start, len);
860     page_set_flags(start, start + len - 1, 0);
861     shm_region_rm_complete(start, start + len - 1);
862     mmap_unlock();
863 
864     return 0;
865 }
866 
867 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
868                        abi_ulong new_size, unsigned long flags,
869                        abi_ulong new_addr)
870 {
871     int prot;
872     void *host_addr;
873 
874     if (!guest_range_valid_untagged(old_addr, old_size) ||
875         ((flags & MREMAP_FIXED) &&
876          !guest_range_valid_untagged(new_addr, new_size)) ||
877         ((flags & MREMAP_MAYMOVE) == 0 &&
878          !guest_range_valid_untagged(old_addr, new_size))) {
879         errno = ENOMEM;
880         return -1;
881     }
882 
883     mmap_lock();
884 
885     if (flags & MREMAP_FIXED) {
886         host_addr = mremap(g2h_untagged(old_addr), old_size, new_size,
887                            flags, g2h_untagged(new_addr));
888 
889         if (reserved_va && host_addr != MAP_FAILED) {
890             /*
891              * If new and old addresses overlap then the above mremap will
892              * already have failed with EINVAL.
893              */
894             mmap_reserve_or_unmap(old_addr, old_size);
895         }
896     } else if (flags & MREMAP_MAYMOVE) {
897         abi_ulong mmap_start;
898 
899         mmap_start = mmap_find_vma(0, new_size, TARGET_PAGE_SIZE);
900 
901         if (mmap_start == -1) {
902             errno = ENOMEM;
903             host_addr = MAP_FAILED;
904         } else {
905             host_addr = mremap(g2h_untagged(old_addr), old_size, new_size,
906                                flags | MREMAP_FIXED,
907                                g2h_untagged(mmap_start));
908             if (reserved_va) {
909                 mmap_reserve_or_unmap(old_addr, old_size);
910             }
911         }
912     } else {
913         int prot = 0;
914         if (reserved_va && old_size < new_size) {
915             abi_ulong addr;
916             for (addr = old_addr + old_size;
917                  addr < old_addr + new_size;
918                  addr++) {
919                 prot |= page_get_flags(addr);
920             }
921         }
922         if (prot == 0) {
923             host_addr = mremap(g2h_untagged(old_addr),
924                                old_size, new_size, flags);
925 
926             if (host_addr != MAP_FAILED) {
927                 /* Check if address fits target address space */
928                 if (!guest_range_valid_untagged(h2g(host_addr), new_size)) {
929                     /* Revert mremap() changes */
930                     host_addr = mremap(g2h_untagged(old_addr),
931                                        new_size, old_size, flags);
932                     errno = ENOMEM;
933                     host_addr = MAP_FAILED;
934                 } else if (reserved_va && old_size > new_size) {
935                     mmap_reserve_or_unmap(old_addr + old_size,
936                                           old_size - new_size);
937                 }
938             }
939         } else {
940             errno = ENOMEM;
941             host_addr = MAP_FAILED;
942         }
943     }
944 
945     if (host_addr == MAP_FAILED) {
946         new_addr = -1;
947     } else {
948         new_addr = h2g(host_addr);
949         prot = page_get_flags(old_addr);
950         page_set_flags(old_addr, old_addr + old_size - 1, 0);
951         shm_region_rm_complete(old_addr, old_addr + old_size - 1);
952         page_set_flags(new_addr, new_addr + new_size - 1,
953                        prot | PAGE_VALID | PAGE_RESET);
954         shm_region_rm_complete(new_addr, new_addr + new_size - 1);
955     }
956     mmap_unlock();
957     return new_addr;
958 }
959 
960 abi_long target_madvise(abi_ulong start, abi_ulong len_in, int advice)
961 {
962     abi_ulong len;
963     int ret = 0;
964 
965     if (start & ~TARGET_PAGE_MASK) {
966         return -TARGET_EINVAL;
967     }
968     if (len_in == 0) {
969         return 0;
970     }
971     len = TARGET_PAGE_ALIGN(len_in);
972     if (len == 0 || !guest_range_valid_untagged(start, len)) {
973         return -TARGET_EINVAL;
974     }
975 
976     /* Translate for some architectures which have different MADV_xxx values */
977     switch (advice) {
978     case TARGET_MADV_DONTNEED:      /* alpha */
979         advice = MADV_DONTNEED;
980         break;
981     case TARGET_MADV_WIPEONFORK:    /* parisc */
982         advice = MADV_WIPEONFORK;
983         break;
984     case TARGET_MADV_KEEPONFORK:    /* parisc */
985         advice = MADV_KEEPONFORK;
986         break;
987     /* we do not care about the other MADV_xxx values yet */
988     }
989 
990     /*
991      * Most advice values are hints, so ignoring and returning success is ok.
992      *
993      * However, some advice values such as MADV_DONTNEED, MADV_WIPEONFORK and
994      * MADV_KEEPONFORK are not hints and need to be emulated.
995      *
996      * A straight passthrough for those may not be safe because qemu sometimes
997      * turns private file-backed mappings into anonymous mappings.
998      * If all guest pages have PAGE_PASSTHROUGH set, mappings have the
999      * same semantics for the host as for the guest.
1000      *
1001      * We pass through MADV_WIPEONFORK and MADV_KEEPONFORK if possible and
1002      * return failure if not.
1003      *
1004      * MADV_DONTNEED is passed through as well, if possible.
1005      * If passthrough isn't possible, we nevertheless (wrongly!) return
1006      * success, which is broken but some userspace programs fail to work
1007      * otherwise. Completely implementing such emulation is quite complicated
1008      * though.
1009      */
1010     mmap_lock();
1011     switch (advice) {
1012     case MADV_WIPEONFORK:
1013     case MADV_KEEPONFORK:
1014         ret = -EINVAL;
1015         /* fall through */
1016     case MADV_DONTNEED:
1017         if (page_check_range(start, len, PAGE_PASSTHROUGH)) {
1018             ret = get_errno(madvise(g2h_untagged(start), len, advice));
1019             if ((advice == MADV_DONTNEED) && (ret == 0)) {
1020                 page_reset_target_data(start, start + len - 1);
1021             }
1022         }
1023     }
1024     mmap_unlock();
1025 
1026     return ret;
1027 }
1028 
1029 #ifndef TARGET_FORCE_SHMLBA
1030 /*
1031  * For most architectures, SHMLBA is the same as the page size;
1032  * some architectures have larger values, in which case they should
1033  * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
1034  * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
1035  * and defining its own value for SHMLBA.
1036  *
1037  * The kernel also permits SHMLBA to be set by the architecture to a
1038  * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
1039  * this means that addresses are rounded to the large size if
1040  * SHM_RND is set but addresses not aligned to that size are not rejected
1041  * as long as they are at least page-aligned. Since the only architecture
1042  * which uses this is ia64 this code doesn't provide for that oddity.
1043  */
1044 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
1045 {
1046     return TARGET_PAGE_SIZE;
1047 }
1048 #endif
1049 
1050 abi_ulong target_shmat(CPUArchState *cpu_env, int shmid,
1051                        abi_ulong shmaddr, int shmflg)
1052 {
1053     CPUState *cpu = env_cpu(cpu_env);
1054     abi_ulong raddr;
1055     struct shmid_ds shm_info;
1056     int ret;
1057     abi_ulong shmlba;
1058 
1059     /* shmat pointers are always untagged */
1060 
1061     /* find out the length of the shared memory segment */
1062     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
1063     if (is_error(ret)) {
1064         /* can't get length, bail out */
1065         return ret;
1066     }
1067 
1068     shmlba = target_shmlba(cpu_env);
1069 
1070     if (shmaddr & (shmlba - 1)) {
1071         if (shmflg & SHM_RND) {
1072             shmaddr &= ~(shmlba - 1);
1073         } else {
1074             return -TARGET_EINVAL;
1075         }
1076     }
1077     if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) {
1078         return -TARGET_EINVAL;
1079     }
1080 
1081     WITH_MMAP_LOCK_GUARD() {
1082         void *host_raddr;
1083         abi_ulong last;
1084 
1085         if (shmaddr) {
1086             host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg);
1087         } else {
1088             abi_ulong mmap_start;
1089 
1090             /* In order to use the host shmat, we need to honor host SHMLBA.  */
1091             mmap_start = mmap_find_vma(0, shm_info.shm_segsz,
1092                                        MAX(SHMLBA, shmlba));
1093 
1094             if (mmap_start == -1) {
1095                 return -TARGET_ENOMEM;
1096             }
1097             host_raddr = shmat(shmid, g2h_untagged(mmap_start),
1098                                shmflg | SHM_REMAP);
1099         }
1100 
1101         if (host_raddr == (void *)-1) {
1102             return get_errno(-1);
1103         }
1104         raddr = h2g(host_raddr);
1105         last = raddr + shm_info.shm_segsz - 1;
1106 
1107         page_set_flags(raddr, last,
1108                        PAGE_VALID | PAGE_RESET | PAGE_READ |
1109                        (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE));
1110 
1111         shm_region_rm_complete(raddr, last);
1112         shm_region_add(raddr, last);
1113     }
1114 
1115     /*
1116      * We're mapping shared memory, so ensure we generate code for parallel
1117      * execution and flush old translations.  This will work up to the level
1118      * supported by the host -- anything that requires EXCP_ATOMIC will not
1119      * be atomic with respect to an external process.
1120      */
1121     if (!(cpu->tcg_cflags & CF_PARALLEL)) {
1122         cpu->tcg_cflags |= CF_PARALLEL;
1123         tb_flush(cpu);
1124     }
1125 
1126     return raddr;
1127 }
1128 
1129 abi_long target_shmdt(abi_ulong shmaddr)
1130 {
1131     abi_long rv;
1132 
1133     /* shmdt pointers are always untagged */
1134 
1135     WITH_MMAP_LOCK_GUARD() {
1136         abi_ulong last = shm_region_find(shmaddr);
1137         if (last == 0) {
1138             return -TARGET_EINVAL;
1139         }
1140 
1141         rv = get_errno(shmdt(g2h_untagged(shmaddr)));
1142         if (rv == 0) {
1143             abi_ulong size = last - shmaddr + 1;
1144 
1145             page_set_flags(shmaddr, last, 0);
1146             shm_region_rm_complete(shmaddr, last);
1147             mmap_reserve_or_unmap(shmaddr, size);
1148         }
1149     }
1150     return rv;
1151 }
1152