1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu-version.h" 21 #include <sys/syscall.h> 22 #include <sys/resource.h> 23 24 #include "qapi/error.h" 25 #include "qemu.h" 26 #include "qemu/path.h" 27 #include "qemu/config-file.h" 28 #include "qemu/cutils.h" 29 #include "qemu/help_option.h" 30 #include "cpu.h" 31 #include "exec/exec-all.h" 32 #include "tcg.h" 33 #include "qemu/timer.h" 34 #include "qemu/envlist.h" 35 #include "elf.h" 36 #include "exec/log.h" 37 #include "trace/control.h" 38 #include "target_elf.h" 39 40 char *exec_path; 41 42 int singlestep; 43 static const char *filename; 44 static const char *argv0; 45 static int gdbstub_port; 46 static envlist_t *envlist; 47 static const char *cpu_model; 48 unsigned long mmap_min_addr; 49 unsigned long guest_base; 50 int have_guest_base; 51 52 #define EXCP_DUMP(env, fmt, ...) \ 53 do { \ 54 CPUState *cs = ENV_GET_CPU(env); \ 55 fprintf(stderr, fmt , ## __VA_ARGS__); \ 56 cpu_dump_state(cs, stderr, fprintf, 0); \ 57 if (qemu_log_separate()) { \ 58 qemu_log(fmt, ## __VA_ARGS__); \ 59 log_cpu_state(cs, 0); \ 60 } \ 61 } while (0) 62 63 /* 64 * When running 32-on-64 we should make sure we can fit all of the possible 65 * guest address space into a contiguous chunk of virtual host memory. 66 * 67 * This way we will never overlap with our own libraries or binaries or stack 68 * or anything else that QEMU maps. 69 * 70 * Many cpus reserve the high bit (or more than one for some 64-bit cpus) 71 * of the address for the kernel. Some cpus rely on this and user space 72 * uses the high bit(s) for pointer tagging and the like. For them, we 73 * must preserve the expected address space. 74 */ 75 #ifndef MAX_RESERVED_VA 76 # if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS 77 # if TARGET_VIRT_ADDR_SPACE_BITS == 32 && \ 78 (TARGET_LONG_BITS == 32 || defined(TARGET_ABI32)) 79 /* There are a number of places where we assign reserved_va to a variable 80 of type abi_ulong and expect it to fit. Avoid the last page. */ 81 # define MAX_RESERVED_VA (0xfffffffful & TARGET_PAGE_MASK) 82 # else 83 # define MAX_RESERVED_VA (1ul << TARGET_VIRT_ADDR_SPACE_BITS) 84 # endif 85 # else 86 # define MAX_RESERVED_VA 0 87 # endif 88 #endif 89 90 /* That said, reserving *too* much vm space via mmap can run into problems 91 with rlimits, oom due to page table creation, etc. We will still try it, 92 if directed by the command-line option, but not by default. */ 93 #if HOST_LONG_BITS == 64 && TARGET_VIRT_ADDR_SPACE_BITS <= 32 94 unsigned long reserved_va = MAX_RESERVED_VA; 95 #else 96 unsigned long reserved_va; 97 #endif 98 99 static void usage(int exitcode); 100 101 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 102 const char *qemu_uname_release; 103 104 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 105 we allocate a bigger stack. Need a better solution, for example 106 by remapping the process stack directly at the right place */ 107 unsigned long guest_stack_size = 8 * 1024 * 1024UL; 108 109 void gemu_log(const char *fmt, ...) 110 { 111 va_list ap; 112 113 va_start(ap, fmt); 114 vfprintf(stderr, fmt, ap); 115 va_end(ap); 116 } 117 118 #if defined(TARGET_I386) 119 int cpu_get_pic_interrupt(CPUX86State *env) 120 { 121 return -1; 122 } 123 #endif 124 125 /***********************************************************/ 126 /* Helper routines for implementing atomic operations. */ 127 128 /* Make sure everything is in a consistent state for calling fork(). */ 129 void fork_start(void) 130 { 131 start_exclusive(); 132 mmap_fork_start(); 133 qemu_mutex_lock(&tb_ctx.tb_lock); 134 cpu_list_lock(); 135 } 136 137 void fork_end(int child) 138 { 139 mmap_fork_end(child); 140 if (child) { 141 CPUState *cpu, *next_cpu; 142 /* Child processes created by fork() only have a single thread. 143 Discard information about the parent threads. */ 144 CPU_FOREACH_SAFE(cpu, next_cpu) { 145 if (cpu != thread_cpu) { 146 QTAILQ_REMOVE(&cpus, cpu, node); 147 } 148 } 149 qemu_mutex_init(&tb_ctx.tb_lock); 150 qemu_init_cpu_list(); 151 gdbserver_fork(thread_cpu); 152 /* qemu_init_cpu_list() takes care of reinitializing the 153 * exclusive state, so we don't need to end_exclusive() here. 154 */ 155 } else { 156 qemu_mutex_unlock(&tb_ctx.tb_lock); 157 cpu_list_unlock(); 158 end_exclusive(); 159 } 160 } 161 162 #ifdef TARGET_I386 163 /***********************************************************/ 164 /* CPUX86 core interface */ 165 166 uint64_t cpu_get_tsc(CPUX86State *env) 167 { 168 return cpu_get_host_ticks(); 169 } 170 171 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 172 int flags) 173 { 174 unsigned int e1, e2; 175 uint32_t *p; 176 e1 = (addr << 16) | (limit & 0xffff); 177 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 178 e2 |= flags; 179 p = ptr; 180 p[0] = tswap32(e1); 181 p[1] = tswap32(e2); 182 } 183 184 static uint64_t *idt_table; 185 #ifdef TARGET_X86_64 186 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 187 uint64_t addr, unsigned int sel) 188 { 189 uint32_t *p, e1, e2; 190 e1 = (addr & 0xffff) | (sel << 16); 191 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 192 p = ptr; 193 p[0] = tswap32(e1); 194 p[1] = tswap32(e2); 195 p[2] = tswap32(addr >> 32); 196 p[3] = 0; 197 } 198 /* only dpl matters as we do only user space emulation */ 199 static void set_idt(int n, unsigned int dpl) 200 { 201 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 202 } 203 #else 204 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 205 uint32_t addr, unsigned int sel) 206 { 207 uint32_t *p, e1, e2; 208 e1 = (addr & 0xffff) | (sel << 16); 209 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 210 p = ptr; 211 p[0] = tswap32(e1); 212 p[1] = tswap32(e2); 213 } 214 215 /* only dpl matters as we do only user space emulation */ 216 static void set_idt(int n, unsigned int dpl) 217 { 218 set_gate(idt_table + n, 0, dpl, 0, 0); 219 } 220 #endif 221 222 void cpu_loop(CPUX86State *env) 223 { 224 CPUState *cs = CPU(x86_env_get_cpu(env)); 225 int trapnr; 226 abi_ulong pc; 227 abi_ulong ret; 228 target_siginfo_t info; 229 230 for(;;) { 231 cpu_exec_start(cs); 232 trapnr = cpu_exec(cs); 233 cpu_exec_end(cs); 234 process_queued_cpu_work(cs); 235 236 switch(trapnr) { 237 case 0x80: 238 /* linux syscall from int $0x80 */ 239 ret = do_syscall(env, 240 env->regs[R_EAX], 241 env->regs[R_EBX], 242 env->regs[R_ECX], 243 env->regs[R_EDX], 244 env->regs[R_ESI], 245 env->regs[R_EDI], 246 env->regs[R_EBP], 247 0, 0); 248 if (ret == -TARGET_ERESTARTSYS) { 249 env->eip -= 2; 250 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 251 env->regs[R_EAX] = ret; 252 } 253 break; 254 #ifndef TARGET_ABI32 255 case EXCP_SYSCALL: 256 /* linux syscall from syscall instruction */ 257 ret = do_syscall(env, 258 env->regs[R_EAX], 259 env->regs[R_EDI], 260 env->regs[R_ESI], 261 env->regs[R_EDX], 262 env->regs[10], 263 env->regs[8], 264 env->regs[9], 265 0, 0); 266 if (ret == -TARGET_ERESTARTSYS) { 267 env->eip -= 2; 268 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 269 env->regs[R_EAX] = ret; 270 } 271 break; 272 #endif 273 case EXCP0B_NOSEG: 274 case EXCP0C_STACK: 275 info.si_signo = TARGET_SIGBUS; 276 info.si_errno = 0; 277 info.si_code = TARGET_SI_KERNEL; 278 info._sifields._sigfault._addr = 0; 279 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 280 break; 281 case EXCP0D_GPF: 282 /* XXX: potential problem if ABI32 */ 283 #ifndef TARGET_X86_64 284 if (env->eflags & VM_MASK) { 285 handle_vm86_fault(env); 286 } else 287 #endif 288 { 289 info.si_signo = TARGET_SIGSEGV; 290 info.si_errno = 0; 291 info.si_code = TARGET_SI_KERNEL; 292 info._sifields._sigfault._addr = 0; 293 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 294 } 295 break; 296 case EXCP0E_PAGE: 297 info.si_signo = TARGET_SIGSEGV; 298 info.si_errno = 0; 299 if (!(env->error_code & 1)) 300 info.si_code = TARGET_SEGV_MAPERR; 301 else 302 info.si_code = TARGET_SEGV_ACCERR; 303 info._sifields._sigfault._addr = env->cr[2]; 304 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 305 break; 306 case EXCP00_DIVZ: 307 #ifndef TARGET_X86_64 308 if (env->eflags & VM_MASK) { 309 handle_vm86_trap(env, trapnr); 310 } else 311 #endif 312 { 313 /* division by zero */ 314 info.si_signo = TARGET_SIGFPE; 315 info.si_errno = 0; 316 info.si_code = TARGET_FPE_INTDIV; 317 info._sifields._sigfault._addr = env->eip; 318 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 319 } 320 break; 321 case EXCP01_DB: 322 case EXCP03_INT3: 323 #ifndef TARGET_X86_64 324 if (env->eflags & VM_MASK) { 325 handle_vm86_trap(env, trapnr); 326 } else 327 #endif 328 { 329 info.si_signo = TARGET_SIGTRAP; 330 info.si_errno = 0; 331 if (trapnr == EXCP01_DB) { 332 info.si_code = TARGET_TRAP_BRKPT; 333 info._sifields._sigfault._addr = env->eip; 334 } else { 335 info.si_code = TARGET_SI_KERNEL; 336 info._sifields._sigfault._addr = 0; 337 } 338 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 339 } 340 break; 341 case EXCP04_INTO: 342 case EXCP05_BOUND: 343 #ifndef TARGET_X86_64 344 if (env->eflags & VM_MASK) { 345 handle_vm86_trap(env, trapnr); 346 } else 347 #endif 348 { 349 info.si_signo = TARGET_SIGSEGV; 350 info.si_errno = 0; 351 info.si_code = TARGET_SI_KERNEL; 352 info._sifields._sigfault._addr = 0; 353 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 354 } 355 break; 356 case EXCP06_ILLOP: 357 info.si_signo = TARGET_SIGILL; 358 info.si_errno = 0; 359 info.si_code = TARGET_ILL_ILLOPN; 360 info._sifields._sigfault._addr = env->eip; 361 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 362 break; 363 case EXCP_INTERRUPT: 364 /* just indicate that signals should be handled asap */ 365 break; 366 case EXCP_DEBUG: 367 { 368 int sig; 369 370 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 371 if (sig) 372 { 373 info.si_signo = sig; 374 info.si_errno = 0; 375 info.si_code = TARGET_TRAP_BRKPT; 376 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 377 } 378 } 379 break; 380 case EXCP_ATOMIC: 381 cpu_exec_step_atomic(cs); 382 break; 383 default: 384 pc = env->segs[R_CS].base + env->eip; 385 EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 386 (long)pc, trapnr); 387 abort(); 388 } 389 process_pending_signals(env); 390 } 391 } 392 #endif 393 394 #ifdef TARGET_ARM 395 396 #define get_user_code_u32(x, gaddr, env) \ 397 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 398 if (!__r && bswap_code(arm_sctlr_b(env))) { \ 399 (x) = bswap32(x); \ 400 } \ 401 __r; \ 402 }) 403 404 #define get_user_code_u16(x, gaddr, env) \ 405 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 406 if (!__r && bswap_code(arm_sctlr_b(env))) { \ 407 (x) = bswap16(x); \ 408 } \ 409 __r; \ 410 }) 411 412 #define get_user_data_u32(x, gaddr, env) \ 413 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 414 if (!__r && arm_cpu_bswap_data(env)) { \ 415 (x) = bswap32(x); \ 416 } \ 417 __r; \ 418 }) 419 420 #define get_user_data_u16(x, gaddr, env) \ 421 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 422 if (!__r && arm_cpu_bswap_data(env)) { \ 423 (x) = bswap16(x); \ 424 } \ 425 __r; \ 426 }) 427 428 #define put_user_data_u32(x, gaddr, env) \ 429 ({ typeof(x) __x = (x); \ 430 if (arm_cpu_bswap_data(env)) { \ 431 __x = bswap32(__x); \ 432 } \ 433 put_user_u32(__x, (gaddr)); \ 434 }) 435 436 #define put_user_data_u16(x, gaddr, env) \ 437 ({ typeof(x) __x = (x); \ 438 if (arm_cpu_bswap_data(env)) { \ 439 __x = bswap16(__x); \ 440 } \ 441 put_user_u16(__x, (gaddr)); \ 442 }) 443 444 #ifdef TARGET_ABI32 445 /* Commpage handling -- there is no commpage for AArch64 */ 446 447 /* 448 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt 449 * Input: 450 * r0 = pointer to oldval 451 * r1 = pointer to newval 452 * r2 = pointer to target value 453 * 454 * Output: 455 * r0 = 0 if *ptr was changed, non-0 if no exchange happened 456 * C set if *ptr was changed, clear if no exchange happened 457 * 458 * Note segv's in kernel helpers are a bit tricky, we can set the 459 * data address sensibly but the PC address is just the entry point. 460 */ 461 static void arm_kernel_cmpxchg64_helper(CPUARMState *env) 462 { 463 uint64_t oldval, newval, val; 464 uint32_t addr, cpsr; 465 target_siginfo_t info; 466 467 /* Based on the 32 bit code in do_kernel_trap */ 468 469 /* XXX: This only works between threads, not between processes. 470 It's probably possible to implement this with native host 471 operations. However things like ldrex/strex are much harder so 472 there's not much point trying. */ 473 start_exclusive(); 474 cpsr = cpsr_read(env); 475 addr = env->regs[2]; 476 477 if (get_user_u64(oldval, env->regs[0])) { 478 env->exception.vaddress = env->regs[0]; 479 goto segv; 480 }; 481 482 if (get_user_u64(newval, env->regs[1])) { 483 env->exception.vaddress = env->regs[1]; 484 goto segv; 485 }; 486 487 if (get_user_u64(val, addr)) { 488 env->exception.vaddress = addr; 489 goto segv; 490 } 491 492 if (val == oldval) { 493 val = newval; 494 495 if (put_user_u64(val, addr)) { 496 env->exception.vaddress = addr; 497 goto segv; 498 }; 499 500 env->regs[0] = 0; 501 cpsr |= CPSR_C; 502 } else { 503 env->regs[0] = -1; 504 cpsr &= ~CPSR_C; 505 } 506 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr); 507 end_exclusive(); 508 return; 509 510 segv: 511 end_exclusive(); 512 /* We get the PC of the entry address - which is as good as anything, 513 on a real kernel what you get depends on which mode it uses. */ 514 info.si_signo = TARGET_SIGSEGV; 515 info.si_errno = 0; 516 /* XXX: check env->error_code */ 517 info.si_code = TARGET_SEGV_MAPERR; 518 info._sifields._sigfault._addr = env->exception.vaddress; 519 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 520 } 521 522 /* Handle a jump to the kernel code page. */ 523 static int 524 do_kernel_trap(CPUARMState *env) 525 { 526 uint32_t addr; 527 uint32_t cpsr; 528 uint32_t val; 529 530 switch (env->regs[15]) { 531 case 0xffff0fa0: /* __kernel_memory_barrier */ 532 /* ??? No-op. Will need to do better for SMP. */ 533 break; 534 case 0xffff0fc0: /* __kernel_cmpxchg */ 535 /* XXX: This only works between threads, not between processes. 536 It's probably possible to implement this with native host 537 operations. However things like ldrex/strex are much harder so 538 there's not much point trying. */ 539 start_exclusive(); 540 cpsr = cpsr_read(env); 541 addr = env->regs[2]; 542 /* FIXME: This should SEGV if the access fails. */ 543 if (get_user_u32(val, addr)) 544 val = ~env->regs[0]; 545 if (val == env->regs[0]) { 546 val = env->regs[1]; 547 /* FIXME: Check for segfaults. */ 548 put_user_u32(val, addr); 549 env->regs[0] = 0; 550 cpsr |= CPSR_C; 551 } else { 552 env->regs[0] = -1; 553 cpsr &= ~CPSR_C; 554 } 555 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr); 556 end_exclusive(); 557 break; 558 case 0xffff0fe0: /* __kernel_get_tls */ 559 env->regs[0] = cpu_get_tls(env); 560 break; 561 case 0xffff0f60: /* __kernel_cmpxchg64 */ 562 arm_kernel_cmpxchg64_helper(env); 563 break; 564 565 default: 566 return 1; 567 } 568 /* Jump back to the caller. */ 569 addr = env->regs[14]; 570 if (addr & 1) { 571 env->thumb = 1; 572 addr &= ~1; 573 } 574 env->regs[15] = addr; 575 576 return 0; 577 } 578 579 void cpu_loop(CPUARMState *env) 580 { 581 CPUState *cs = CPU(arm_env_get_cpu(env)); 582 int trapnr; 583 unsigned int n, insn; 584 target_siginfo_t info; 585 uint32_t addr; 586 abi_ulong ret; 587 588 for(;;) { 589 cpu_exec_start(cs); 590 trapnr = cpu_exec(cs); 591 cpu_exec_end(cs); 592 process_queued_cpu_work(cs); 593 594 switch(trapnr) { 595 case EXCP_UDEF: 596 case EXCP_NOCP: 597 case EXCP_INVSTATE: 598 { 599 TaskState *ts = cs->opaque; 600 uint32_t opcode; 601 int rc; 602 603 /* we handle the FPU emulation here, as Linux */ 604 /* we get the opcode */ 605 /* FIXME - what to do if get_user() fails? */ 606 get_user_code_u32(opcode, env->regs[15], env); 607 608 rc = EmulateAll(opcode, &ts->fpa, env); 609 if (rc == 0) { /* illegal instruction */ 610 info.si_signo = TARGET_SIGILL; 611 info.si_errno = 0; 612 info.si_code = TARGET_ILL_ILLOPN; 613 info._sifields._sigfault._addr = env->regs[15]; 614 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 615 } else if (rc < 0) { /* FP exception */ 616 int arm_fpe=0; 617 618 /* translate softfloat flags to FPSR flags */ 619 if (-rc & float_flag_invalid) 620 arm_fpe |= BIT_IOC; 621 if (-rc & float_flag_divbyzero) 622 arm_fpe |= BIT_DZC; 623 if (-rc & float_flag_overflow) 624 arm_fpe |= BIT_OFC; 625 if (-rc & float_flag_underflow) 626 arm_fpe |= BIT_UFC; 627 if (-rc & float_flag_inexact) 628 arm_fpe |= BIT_IXC; 629 630 FPSR fpsr = ts->fpa.fpsr; 631 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); 632 633 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ 634 info.si_signo = TARGET_SIGFPE; 635 info.si_errno = 0; 636 637 /* ordered by priority, least first */ 638 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; 639 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; 640 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; 641 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; 642 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; 643 644 info._sifields._sigfault._addr = env->regs[15]; 645 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 646 } else { 647 env->regs[15] += 4; 648 } 649 650 /* accumulate unenabled exceptions */ 651 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) 652 fpsr |= BIT_IXC; 653 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) 654 fpsr |= BIT_UFC; 655 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) 656 fpsr |= BIT_OFC; 657 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) 658 fpsr |= BIT_DZC; 659 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) 660 fpsr |= BIT_IOC; 661 ts->fpa.fpsr=fpsr; 662 } else { /* everything OK */ 663 /* increment PC */ 664 env->regs[15] += 4; 665 } 666 } 667 break; 668 case EXCP_SWI: 669 case EXCP_BKPT: 670 { 671 env->eabi = 1; 672 /* system call */ 673 if (trapnr == EXCP_BKPT) { 674 if (env->thumb) { 675 /* FIXME - what to do if get_user() fails? */ 676 get_user_code_u16(insn, env->regs[15], env); 677 n = insn & 0xff; 678 env->regs[15] += 2; 679 } else { 680 /* FIXME - what to do if get_user() fails? */ 681 get_user_code_u32(insn, env->regs[15], env); 682 n = (insn & 0xf) | ((insn >> 4) & 0xff0); 683 env->regs[15] += 4; 684 } 685 } else { 686 if (env->thumb) { 687 /* FIXME - what to do if get_user() fails? */ 688 get_user_code_u16(insn, env->regs[15] - 2, env); 689 n = insn & 0xff; 690 } else { 691 /* FIXME - what to do if get_user() fails? */ 692 get_user_code_u32(insn, env->regs[15] - 4, env); 693 n = insn & 0xffffff; 694 } 695 } 696 697 if (n == ARM_NR_cacheflush) { 698 /* nop */ 699 } else if (n == ARM_NR_semihosting 700 || n == ARM_NR_thumb_semihosting) { 701 env->regs[0] = do_arm_semihosting (env); 702 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) { 703 /* linux syscall */ 704 if (env->thumb || n == 0) { 705 n = env->regs[7]; 706 } else { 707 n -= ARM_SYSCALL_BASE; 708 env->eabi = 0; 709 } 710 if ( n > ARM_NR_BASE) { 711 switch (n) { 712 case ARM_NR_cacheflush: 713 /* nop */ 714 break; 715 case ARM_NR_set_tls: 716 cpu_set_tls(env, env->regs[0]); 717 env->regs[0] = 0; 718 break; 719 case ARM_NR_breakpoint: 720 env->regs[15] -= env->thumb ? 2 : 4; 721 goto excp_debug; 722 default: 723 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", 724 n); 725 env->regs[0] = -TARGET_ENOSYS; 726 break; 727 } 728 } else { 729 ret = do_syscall(env, 730 n, 731 env->regs[0], 732 env->regs[1], 733 env->regs[2], 734 env->regs[3], 735 env->regs[4], 736 env->regs[5], 737 0, 0); 738 if (ret == -TARGET_ERESTARTSYS) { 739 env->regs[15] -= env->thumb ? 2 : 4; 740 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 741 env->regs[0] = ret; 742 } 743 } 744 } else { 745 goto error; 746 } 747 } 748 break; 749 case EXCP_SEMIHOST: 750 env->regs[0] = do_arm_semihosting(env); 751 break; 752 case EXCP_INTERRUPT: 753 /* just indicate that signals should be handled asap */ 754 break; 755 case EXCP_PREFETCH_ABORT: 756 case EXCP_DATA_ABORT: 757 addr = env->exception.vaddress; 758 { 759 info.si_signo = TARGET_SIGSEGV; 760 info.si_errno = 0; 761 /* XXX: check env->error_code */ 762 info.si_code = TARGET_SEGV_MAPERR; 763 info._sifields._sigfault._addr = addr; 764 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 765 } 766 break; 767 case EXCP_DEBUG: 768 excp_debug: 769 { 770 int sig; 771 772 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 773 if (sig) 774 { 775 info.si_signo = sig; 776 info.si_errno = 0; 777 info.si_code = TARGET_TRAP_BRKPT; 778 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 779 } 780 } 781 break; 782 case EXCP_KERNEL_TRAP: 783 if (do_kernel_trap(env)) 784 goto error; 785 break; 786 case EXCP_YIELD: 787 /* nothing to do here for user-mode, just resume guest code */ 788 break; 789 case EXCP_ATOMIC: 790 cpu_exec_step_atomic(cs); 791 break; 792 default: 793 error: 794 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 795 abort(); 796 } 797 process_pending_signals(env); 798 } 799 } 800 801 #else 802 803 /* AArch64 main loop */ 804 void cpu_loop(CPUARMState *env) 805 { 806 CPUState *cs = CPU(arm_env_get_cpu(env)); 807 int trapnr, sig; 808 abi_long ret; 809 target_siginfo_t info; 810 811 for (;;) { 812 cpu_exec_start(cs); 813 trapnr = cpu_exec(cs); 814 cpu_exec_end(cs); 815 process_queued_cpu_work(cs); 816 817 switch (trapnr) { 818 case EXCP_SWI: 819 ret = do_syscall(env, 820 env->xregs[8], 821 env->xregs[0], 822 env->xregs[1], 823 env->xregs[2], 824 env->xregs[3], 825 env->xregs[4], 826 env->xregs[5], 827 0, 0); 828 if (ret == -TARGET_ERESTARTSYS) { 829 env->pc -= 4; 830 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 831 env->xregs[0] = ret; 832 } 833 break; 834 case EXCP_INTERRUPT: 835 /* just indicate that signals should be handled asap */ 836 break; 837 case EXCP_UDEF: 838 info.si_signo = TARGET_SIGILL; 839 info.si_errno = 0; 840 info.si_code = TARGET_ILL_ILLOPN; 841 info._sifields._sigfault._addr = env->pc; 842 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 843 break; 844 case EXCP_PREFETCH_ABORT: 845 case EXCP_DATA_ABORT: 846 info.si_signo = TARGET_SIGSEGV; 847 info.si_errno = 0; 848 /* XXX: check env->error_code */ 849 info.si_code = TARGET_SEGV_MAPERR; 850 info._sifields._sigfault._addr = env->exception.vaddress; 851 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 852 break; 853 case EXCP_DEBUG: 854 case EXCP_BKPT: 855 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 856 if (sig) { 857 info.si_signo = sig; 858 info.si_errno = 0; 859 info.si_code = TARGET_TRAP_BRKPT; 860 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 861 } 862 break; 863 case EXCP_SEMIHOST: 864 env->xregs[0] = do_arm_semihosting(env); 865 break; 866 case EXCP_YIELD: 867 /* nothing to do here for user-mode, just resume guest code */ 868 break; 869 case EXCP_ATOMIC: 870 cpu_exec_step_atomic(cs); 871 break; 872 default: 873 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 874 abort(); 875 } 876 process_pending_signals(env); 877 /* Exception return on AArch64 always clears the exclusive monitor, 878 * so any return to running guest code implies this. 879 */ 880 env->exclusive_addr = -1; 881 } 882 } 883 #endif /* ndef TARGET_ABI32 */ 884 885 #endif 886 887 #ifdef TARGET_UNICORE32 888 889 void cpu_loop(CPUUniCore32State *env) 890 { 891 CPUState *cs = CPU(uc32_env_get_cpu(env)); 892 int trapnr; 893 unsigned int n, insn; 894 target_siginfo_t info; 895 896 for (;;) { 897 cpu_exec_start(cs); 898 trapnr = cpu_exec(cs); 899 cpu_exec_end(cs); 900 process_queued_cpu_work(cs); 901 902 switch (trapnr) { 903 case UC32_EXCP_PRIV: 904 { 905 /* system call */ 906 get_user_u32(insn, env->regs[31] - 4); 907 n = insn & 0xffffff; 908 909 if (n >= UC32_SYSCALL_BASE) { 910 /* linux syscall */ 911 n -= UC32_SYSCALL_BASE; 912 if (n == UC32_SYSCALL_NR_set_tls) { 913 cpu_set_tls(env, env->regs[0]); 914 env->regs[0] = 0; 915 } else { 916 abi_long ret = do_syscall(env, 917 n, 918 env->regs[0], 919 env->regs[1], 920 env->regs[2], 921 env->regs[3], 922 env->regs[4], 923 env->regs[5], 924 0, 0); 925 if (ret == -TARGET_ERESTARTSYS) { 926 env->regs[31] -= 4; 927 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 928 env->regs[0] = ret; 929 } 930 } 931 } else { 932 goto error; 933 } 934 } 935 break; 936 case UC32_EXCP_DTRAP: 937 case UC32_EXCP_ITRAP: 938 info.si_signo = TARGET_SIGSEGV; 939 info.si_errno = 0; 940 /* XXX: check env->error_code */ 941 info.si_code = TARGET_SEGV_MAPERR; 942 info._sifields._sigfault._addr = env->cp0.c4_faultaddr; 943 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 944 break; 945 case EXCP_INTERRUPT: 946 /* just indicate that signals should be handled asap */ 947 break; 948 case EXCP_DEBUG: 949 { 950 int sig; 951 952 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 953 if (sig) { 954 info.si_signo = sig; 955 info.si_errno = 0; 956 info.si_code = TARGET_TRAP_BRKPT; 957 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 958 } 959 } 960 break; 961 case EXCP_ATOMIC: 962 cpu_exec_step_atomic(cs); 963 break; 964 default: 965 goto error; 966 } 967 process_pending_signals(env); 968 } 969 970 error: 971 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 972 abort(); 973 } 974 #endif 975 976 #ifdef TARGET_SPARC 977 #define SPARC64_STACK_BIAS 2047 978 979 //#define DEBUG_WIN 980 981 /* WARNING: dealing with register windows _is_ complicated. More info 982 can be found at http://www.sics.se/~psm/sparcstack.html */ 983 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 984 { 985 index = (index + cwp * 16) % (16 * env->nwindows); 986 /* wrap handling : if cwp is on the last window, then we use the 987 registers 'after' the end */ 988 if (index < 8 && env->cwp == env->nwindows - 1) 989 index += 16 * env->nwindows; 990 return index; 991 } 992 993 /* save the register window 'cwp1' */ 994 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 995 { 996 unsigned int i; 997 abi_ulong sp_ptr; 998 999 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1000 #ifdef TARGET_SPARC64 1001 if (sp_ptr & 3) 1002 sp_ptr += SPARC64_STACK_BIAS; 1003 #endif 1004 #if defined(DEBUG_WIN) 1005 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 1006 sp_ptr, cwp1); 1007 #endif 1008 for(i = 0; i < 16; i++) { 1009 /* FIXME - what to do if put_user() fails? */ 1010 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1011 sp_ptr += sizeof(abi_ulong); 1012 } 1013 } 1014 1015 static void save_window(CPUSPARCState *env) 1016 { 1017 #ifndef TARGET_SPARC64 1018 unsigned int new_wim; 1019 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 1020 ((1LL << env->nwindows) - 1); 1021 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1022 env->wim = new_wim; 1023 #else 1024 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1025 env->cansave++; 1026 env->canrestore--; 1027 #endif 1028 } 1029 1030 static void restore_window(CPUSPARCState *env) 1031 { 1032 #ifndef TARGET_SPARC64 1033 unsigned int new_wim; 1034 #endif 1035 unsigned int i, cwp1; 1036 abi_ulong sp_ptr; 1037 1038 #ifndef TARGET_SPARC64 1039 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 1040 ((1LL << env->nwindows) - 1); 1041 #endif 1042 1043 /* restore the invalid window */ 1044 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1045 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1046 #ifdef TARGET_SPARC64 1047 if (sp_ptr & 3) 1048 sp_ptr += SPARC64_STACK_BIAS; 1049 #endif 1050 #if defined(DEBUG_WIN) 1051 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 1052 sp_ptr, cwp1); 1053 #endif 1054 for(i = 0; i < 16; i++) { 1055 /* FIXME - what to do if get_user() fails? */ 1056 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1057 sp_ptr += sizeof(abi_ulong); 1058 } 1059 #ifdef TARGET_SPARC64 1060 env->canrestore++; 1061 if (env->cleanwin < env->nwindows - 1) 1062 env->cleanwin++; 1063 env->cansave--; 1064 #else 1065 env->wim = new_wim; 1066 #endif 1067 } 1068 1069 static void flush_windows(CPUSPARCState *env) 1070 { 1071 int offset, cwp1; 1072 1073 offset = 1; 1074 for(;;) { 1075 /* if restore would invoke restore_window(), then we can stop */ 1076 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 1077 #ifndef TARGET_SPARC64 1078 if (env->wim & (1 << cwp1)) 1079 break; 1080 #else 1081 if (env->canrestore == 0) 1082 break; 1083 env->cansave++; 1084 env->canrestore--; 1085 #endif 1086 save_window_offset(env, cwp1); 1087 offset++; 1088 } 1089 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1090 #ifndef TARGET_SPARC64 1091 /* set wim so that restore will reload the registers */ 1092 env->wim = 1 << cwp1; 1093 #endif 1094 #if defined(DEBUG_WIN) 1095 printf("flush_windows: nb=%d\n", offset - 1); 1096 #endif 1097 } 1098 1099 void cpu_loop (CPUSPARCState *env) 1100 { 1101 CPUState *cs = CPU(sparc_env_get_cpu(env)); 1102 int trapnr; 1103 abi_long ret; 1104 target_siginfo_t info; 1105 1106 while (1) { 1107 cpu_exec_start(cs); 1108 trapnr = cpu_exec(cs); 1109 cpu_exec_end(cs); 1110 process_queued_cpu_work(cs); 1111 1112 /* Compute PSR before exposing state. */ 1113 if (env->cc_op != CC_OP_FLAGS) { 1114 cpu_get_psr(env); 1115 } 1116 1117 switch (trapnr) { 1118 #ifndef TARGET_SPARC64 1119 case 0x88: 1120 case 0x90: 1121 #else 1122 case 0x110: 1123 case 0x16d: 1124 #endif 1125 ret = do_syscall (env, env->gregs[1], 1126 env->regwptr[0], env->regwptr[1], 1127 env->regwptr[2], env->regwptr[3], 1128 env->regwptr[4], env->regwptr[5], 1129 0, 0); 1130 if (ret == -TARGET_ERESTARTSYS || ret == -TARGET_QEMU_ESIGRETURN) { 1131 break; 1132 } 1133 if ((abi_ulong)ret >= (abi_ulong)(-515)) { 1134 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1135 env->xcc |= PSR_CARRY; 1136 #else 1137 env->psr |= PSR_CARRY; 1138 #endif 1139 ret = -ret; 1140 } else { 1141 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1142 env->xcc &= ~PSR_CARRY; 1143 #else 1144 env->psr &= ~PSR_CARRY; 1145 #endif 1146 } 1147 env->regwptr[0] = ret; 1148 /* next instruction */ 1149 env->pc = env->npc; 1150 env->npc = env->npc + 4; 1151 break; 1152 case 0x83: /* flush windows */ 1153 #ifdef TARGET_ABI32 1154 case 0x103: 1155 #endif 1156 flush_windows(env); 1157 /* next instruction */ 1158 env->pc = env->npc; 1159 env->npc = env->npc + 4; 1160 break; 1161 #ifndef TARGET_SPARC64 1162 case TT_WIN_OVF: /* window overflow */ 1163 save_window(env); 1164 break; 1165 case TT_WIN_UNF: /* window underflow */ 1166 restore_window(env); 1167 break; 1168 case TT_TFAULT: 1169 case TT_DFAULT: 1170 { 1171 info.si_signo = TARGET_SIGSEGV; 1172 info.si_errno = 0; 1173 /* XXX: check env->error_code */ 1174 info.si_code = TARGET_SEGV_MAPERR; 1175 info._sifields._sigfault._addr = env->mmuregs[4]; 1176 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1177 } 1178 break; 1179 #else 1180 case TT_SPILL: /* window overflow */ 1181 save_window(env); 1182 break; 1183 case TT_FILL: /* window underflow */ 1184 restore_window(env); 1185 break; 1186 case TT_TFAULT: 1187 case TT_DFAULT: 1188 { 1189 info.si_signo = TARGET_SIGSEGV; 1190 info.si_errno = 0; 1191 /* XXX: check env->error_code */ 1192 info.si_code = TARGET_SEGV_MAPERR; 1193 if (trapnr == TT_DFAULT) 1194 info._sifields._sigfault._addr = env->dmmu.mmuregs[4]; 1195 else 1196 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; 1197 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1198 } 1199 break; 1200 #ifndef TARGET_ABI32 1201 case 0x16e: 1202 flush_windows(env); 1203 sparc64_get_context(env); 1204 break; 1205 case 0x16f: 1206 flush_windows(env); 1207 sparc64_set_context(env); 1208 break; 1209 #endif 1210 #endif 1211 case EXCP_INTERRUPT: 1212 /* just indicate that signals should be handled asap */ 1213 break; 1214 case TT_ILL_INSN: 1215 { 1216 info.si_signo = TARGET_SIGILL; 1217 info.si_errno = 0; 1218 info.si_code = TARGET_ILL_ILLOPC; 1219 info._sifields._sigfault._addr = env->pc; 1220 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1221 } 1222 break; 1223 case EXCP_DEBUG: 1224 { 1225 int sig; 1226 1227 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1228 if (sig) 1229 { 1230 info.si_signo = sig; 1231 info.si_errno = 0; 1232 info.si_code = TARGET_TRAP_BRKPT; 1233 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1234 } 1235 } 1236 break; 1237 case EXCP_ATOMIC: 1238 cpu_exec_step_atomic(cs); 1239 break; 1240 default: 1241 printf ("Unhandled trap: 0x%x\n", trapnr); 1242 cpu_dump_state(cs, stderr, fprintf, 0); 1243 exit(EXIT_FAILURE); 1244 } 1245 process_pending_signals (env); 1246 } 1247 } 1248 1249 #endif 1250 1251 #ifdef TARGET_PPC 1252 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env) 1253 { 1254 return cpu_get_host_ticks(); 1255 } 1256 1257 uint64_t cpu_ppc_load_tbl(CPUPPCState *env) 1258 { 1259 return cpu_ppc_get_tb(env); 1260 } 1261 1262 uint32_t cpu_ppc_load_tbu(CPUPPCState *env) 1263 { 1264 return cpu_ppc_get_tb(env) >> 32; 1265 } 1266 1267 uint64_t cpu_ppc_load_atbl(CPUPPCState *env) 1268 { 1269 return cpu_ppc_get_tb(env); 1270 } 1271 1272 uint32_t cpu_ppc_load_atbu(CPUPPCState *env) 1273 { 1274 return cpu_ppc_get_tb(env) >> 32; 1275 } 1276 1277 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env) 1278 __attribute__ (( alias ("cpu_ppc_load_tbu") )); 1279 1280 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env) 1281 { 1282 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1283 } 1284 1285 /* XXX: to be fixed */ 1286 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1287 { 1288 return -1; 1289 } 1290 1291 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1292 { 1293 return -1; 1294 } 1295 1296 static int do_store_exclusive(CPUPPCState *env) 1297 { 1298 target_ulong addr; 1299 target_ulong page_addr; 1300 target_ulong val, val2 __attribute__((unused)) = 0; 1301 int flags; 1302 int segv = 0; 1303 1304 addr = env->reserve_ea; 1305 page_addr = addr & TARGET_PAGE_MASK; 1306 start_exclusive(); 1307 mmap_lock(); 1308 flags = page_get_flags(page_addr); 1309 if ((flags & PAGE_READ) == 0) { 1310 segv = 1; 1311 } else { 1312 int reg = env->reserve_info & 0x1f; 1313 int size = env->reserve_info >> 5; 1314 int stored = 0; 1315 1316 if (addr == env->reserve_addr) { 1317 switch (size) { 1318 case 1: segv = get_user_u8(val, addr); break; 1319 case 2: segv = get_user_u16(val, addr); break; 1320 case 4: segv = get_user_u32(val, addr); break; 1321 #if defined(TARGET_PPC64) 1322 case 8: segv = get_user_u64(val, addr); break; 1323 case 16: { 1324 segv = get_user_u64(val, addr); 1325 if (!segv) { 1326 segv = get_user_u64(val2, addr + 8); 1327 } 1328 break; 1329 } 1330 #endif 1331 default: abort(); 1332 } 1333 if (!segv && val == env->reserve_val) { 1334 val = env->gpr[reg]; 1335 switch (size) { 1336 case 1: segv = put_user_u8(val, addr); break; 1337 case 2: segv = put_user_u16(val, addr); break; 1338 case 4: segv = put_user_u32(val, addr); break; 1339 #if defined(TARGET_PPC64) 1340 case 8: segv = put_user_u64(val, addr); break; 1341 case 16: { 1342 if (val2 == env->reserve_val2) { 1343 if (msr_le) { 1344 val2 = val; 1345 val = env->gpr[reg+1]; 1346 } else { 1347 val2 = env->gpr[reg+1]; 1348 } 1349 segv = put_user_u64(val, addr); 1350 if (!segv) { 1351 segv = put_user_u64(val2, addr + 8); 1352 } 1353 } 1354 break; 1355 } 1356 #endif 1357 default: abort(); 1358 } 1359 if (!segv) { 1360 stored = 1; 1361 } 1362 } 1363 } 1364 env->crf[0] = (stored << 1) | xer_so; 1365 env->reserve_addr = (target_ulong)-1; 1366 } 1367 if (!segv) { 1368 env->nip += 4; 1369 } 1370 mmap_unlock(); 1371 end_exclusive(); 1372 return segv; 1373 } 1374 1375 void cpu_loop(CPUPPCState *env) 1376 { 1377 CPUState *cs = CPU(ppc_env_get_cpu(env)); 1378 target_siginfo_t info; 1379 int trapnr; 1380 target_ulong ret; 1381 1382 for(;;) { 1383 cpu_exec_start(cs); 1384 trapnr = cpu_exec(cs); 1385 cpu_exec_end(cs); 1386 process_queued_cpu_work(cs); 1387 1388 switch(trapnr) { 1389 case POWERPC_EXCP_NONE: 1390 /* Just go on */ 1391 break; 1392 case POWERPC_EXCP_CRITICAL: /* Critical input */ 1393 cpu_abort(cs, "Critical interrupt while in user mode. " 1394 "Aborting\n"); 1395 break; 1396 case POWERPC_EXCP_MCHECK: /* Machine check exception */ 1397 cpu_abort(cs, "Machine check exception while in user mode. " 1398 "Aborting\n"); 1399 break; 1400 case POWERPC_EXCP_DSI: /* Data storage exception */ 1401 /* XXX: check this. Seems bugged */ 1402 switch (env->error_code & 0xFF000000) { 1403 case 0x40000000: 1404 case 0x42000000: 1405 info.si_signo = TARGET_SIGSEGV; 1406 info.si_errno = 0; 1407 info.si_code = TARGET_SEGV_MAPERR; 1408 break; 1409 case 0x04000000: 1410 info.si_signo = TARGET_SIGILL; 1411 info.si_errno = 0; 1412 info.si_code = TARGET_ILL_ILLADR; 1413 break; 1414 case 0x08000000: 1415 info.si_signo = TARGET_SIGSEGV; 1416 info.si_errno = 0; 1417 info.si_code = TARGET_SEGV_ACCERR; 1418 break; 1419 default: 1420 /* Let's send a regular segfault... */ 1421 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1422 env->error_code); 1423 info.si_signo = TARGET_SIGSEGV; 1424 info.si_errno = 0; 1425 info.si_code = TARGET_SEGV_MAPERR; 1426 break; 1427 } 1428 info._sifields._sigfault._addr = env->spr[SPR_DAR]; 1429 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1430 break; 1431 case POWERPC_EXCP_ISI: /* Instruction storage exception */ 1432 /* XXX: check this */ 1433 switch (env->error_code & 0xFF000000) { 1434 case 0x40000000: 1435 info.si_signo = TARGET_SIGSEGV; 1436 info.si_errno = 0; 1437 info.si_code = TARGET_SEGV_MAPERR; 1438 break; 1439 case 0x10000000: 1440 case 0x08000000: 1441 info.si_signo = TARGET_SIGSEGV; 1442 info.si_errno = 0; 1443 info.si_code = TARGET_SEGV_ACCERR; 1444 break; 1445 default: 1446 /* Let's send a regular segfault... */ 1447 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1448 env->error_code); 1449 info.si_signo = TARGET_SIGSEGV; 1450 info.si_errno = 0; 1451 info.si_code = TARGET_SEGV_MAPERR; 1452 break; 1453 } 1454 info._sifields._sigfault._addr = env->nip - 4; 1455 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1456 break; 1457 case POWERPC_EXCP_EXTERNAL: /* External input */ 1458 cpu_abort(cs, "External interrupt while in user mode. " 1459 "Aborting\n"); 1460 break; 1461 case POWERPC_EXCP_ALIGN: /* Alignment exception */ 1462 /* XXX: check this */ 1463 info.si_signo = TARGET_SIGBUS; 1464 info.si_errno = 0; 1465 info.si_code = TARGET_BUS_ADRALN; 1466 info._sifields._sigfault._addr = env->nip; 1467 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1468 break; 1469 case POWERPC_EXCP_PROGRAM: /* Program exception */ 1470 case POWERPC_EXCP_HV_EMU: /* HV emulation */ 1471 /* XXX: check this */ 1472 switch (env->error_code & ~0xF) { 1473 case POWERPC_EXCP_FP: 1474 info.si_signo = TARGET_SIGFPE; 1475 info.si_errno = 0; 1476 switch (env->error_code & 0xF) { 1477 case POWERPC_EXCP_FP_OX: 1478 info.si_code = TARGET_FPE_FLTOVF; 1479 break; 1480 case POWERPC_EXCP_FP_UX: 1481 info.si_code = TARGET_FPE_FLTUND; 1482 break; 1483 case POWERPC_EXCP_FP_ZX: 1484 case POWERPC_EXCP_FP_VXZDZ: 1485 info.si_code = TARGET_FPE_FLTDIV; 1486 break; 1487 case POWERPC_EXCP_FP_XX: 1488 info.si_code = TARGET_FPE_FLTRES; 1489 break; 1490 case POWERPC_EXCP_FP_VXSOFT: 1491 info.si_code = TARGET_FPE_FLTINV; 1492 break; 1493 case POWERPC_EXCP_FP_VXSNAN: 1494 case POWERPC_EXCP_FP_VXISI: 1495 case POWERPC_EXCP_FP_VXIDI: 1496 case POWERPC_EXCP_FP_VXIMZ: 1497 case POWERPC_EXCP_FP_VXVC: 1498 case POWERPC_EXCP_FP_VXSQRT: 1499 case POWERPC_EXCP_FP_VXCVI: 1500 info.si_code = TARGET_FPE_FLTSUB; 1501 break; 1502 default: 1503 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", 1504 env->error_code); 1505 break; 1506 } 1507 break; 1508 case POWERPC_EXCP_INVAL: 1509 info.si_signo = TARGET_SIGILL; 1510 info.si_errno = 0; 1511 switch (env->error_code & 0xF) { 1512 case POWERPC_EXCP_INVAL_INVAL: 1513 info.si_code = TARGET_ILL_ILLOPC; 1514 break; 1515 case POWERPC_EXCP_INVAL_LSWX: 1516 info.si_code = TARGET_ILL_ILLOPN; 1517 break; 1518 case POWERPC_EXCP_INVAL_SPR: 1519 info.si_code = TARGET_ILL_PRVREG; 1520 break; 1521 case POWERPC_EXCP_INVAL_FP: 1522 info.si_code = TARGET_ILL_COPROC; 1523 break; 1524 default: 1525 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", 1526 env->error_code & 0xF); 1527 info.si_code = TARGET_ILL_ILLADR; 1528 break; 1529 } 1530 break; 1531 case POWERPC_EXCP_PRIV: 1532 info.si_signo = TARGET_SIGILL; 1533 info.si_errno = 0; 1534 switch (env->error_code & 0xF) { 1535 case POWERPC_EXCP_PRIV_OPC: 1536 info.si_code = TARGET_ILL_PRVOPC; 1537 break; 1538 case POWERPC_EXCP_PRIV_REG: 1539 info.si_code = TARGET_ILL_PRVREG; 1540 break; 1541 default: 1542 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", 1543 env->error_code & 0xF); 1544 info.si_code = TARGET_ILL_PRVOPC; 1545 break; 1546 } 1547 break; 1548 case POWERPC_EXCP_TRAP: 1549 cpu_abort(cs, "Tried to call a TRAP\n"); 1550 break; 1551 default: 1552 /* Should not happen ! */ 1553 cpu_abort(cs, "Unknown program exception (%02x)\n", 1554 env->error_code); 1555 break; 1556 } 1557 info._sifields._sigfault._addr = env->nip; 1558 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1559 break; 1560 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ 1561 info.si_signo = TARGET_SIGILL; 1562 info.si_errno = 0; 1563 info.si_code = TARGET_ILL_COPROC; 1564 info._sifields._sigfault._addr = env->nip; 1565 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1566 break; 1567 case POWERPC_EXCP_SYSCALL: /* System call exception */ 1568 cpu_abort(cs, "Syscall exception while in user mode. " 1569 "Aborting\n"); 1570 break; 1571 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ 1572 info.si_signo = TARGET_SIGILL; 1573 info.si_errno = 0; 1574 info.si_code = TARGET_ILL_COPROC; 1575 info._sifields._sigfault._addr = env->nip; 1576 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1577 break; 1578 case POWERPC_EXCP_DECR: /* Decrementer exception */ 1579 cpu_abort(cs, "Decrementer interrupt while in user mode. " 1580 "Aborting\n"); 1581 break; 1582 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ 1583 cpu_abort(cs, "Fix interval timer interrupt while in user mode. " 1584 "Aborting\n"); 1585 break; 1586 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ 1587 cpu_abort(cs, "Watchdog timer interrupt while in user mode. " 1588 "Aborting\n"); 1589 break; 1590 case POWERPC_EXCP_DTLB: /* Data TLB error */ 1591 cpu_abort(cs, "Data TLB exception while in user mode. " 1592 "Aborting\n"); 1593 break; 1594 case POWERPC_EXCP_ITLB: /* Instruction TLB error */ 1595 cpu_abort(cs, "Instruction TLB exception while in user mode. " 1596 "Aborting\n"); 1597 break; 1598 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ 1599 info.si_signo = TARGET_SIGILL; 1600 info.si_errno = 0; 1601 info.si_code = TARGET_ILL_COPROC; 1602 info._sifields._sigfault._addr = env->nip; 1603 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1604 break; 1605 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ 1606 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n"); 1607 break; 1608 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ 1609 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n"); 1610 break; 1611 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ 1612 cpu_abort(cs, "Performance monitor exception not handled\n"); 1613 break; 1614 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ 1615 cpu_abort(cs, "Doorbell interrupt while in user mode. " 1616 "Aborting\n"); 1617 break; 1618 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ 1619 cpu_abort(cs, "Doorbell critical interrupt while in user mode. " 1620 "Aborting\n"); 1621 break; 1622 case POWERPC_EXCP_RESET: /* System reset exception */ 1623 cpu_abort(cs, "Reset interrupt while in user mode. " 1624 "Aborting\n"); 1625 break; 1626 case POWERPC_EXCP_DSEG: /* Data segment exception */ 1627 cpu_abort(cs, "Data segment exception while in user mode. " 1628 "Aborting\n"); 1629 break; 1630 case POWERPC_EXCP_ISEG: /* Instruction segment exception */ 1631 cpu_abort(cs, "Instruction segment exception " 1632 "while in user mode. Aborting\n"); 1633 break; 1634 /* PowerPC 64 with hypervisor mode support */ 1635 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ 1636 cpu_abort(cs, "Hypervisor decrementer interrupt " 1637 "while in user mode. Aborting\n"); 1638 break; 1639 case POWERPC_EXCP_TRACE: /* Trace exception */ 1640 /* Nothing to do: 1641 * we use this exception to emulate step-by-step execution mode. 1642 */ 1643 break; 1644 /* PowerPC 64 with hypervisor mode support */ 1645 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ 1646 cpu_abort(cs, "Hypervisor data storage exception " 1647 "while in user mode. Aborting\n"); 1648 break; 1649 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ 1650 cpu_abort(cs, "Hypervisor instruction storage exception " 1651 "while in user mode. Aborting\n"); 1652 break; 1653 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ 1654 cpu_abort(cs, "Hypervisor data segment exception " 1655 "while in user mode. Aborting\n"); 1656 break; 1657 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ 1658 cpu_abort(cs, "Hypervisor instruction segment exception " 1659 "while in user mode. Aborting\n"); 1660 break; 1661 case POWERPC_EXCP_VPU: /* Vector unavailable exception */ 1662 info.si_signo = TARGET_SIGILL; 1663 info.si_errno = 0; 1664 info.si_code = TARGET_ILL_COPROC; 1665 info._sifields._sigfault._addr = env->nip; 1666 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1667 break; 1668 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ 1669 cpu_abort(cs, "Programmable interval timer interrupt " 1670 "while in user mode. Aborting\n"); 1671 break; 1672 case POWERPC_EXCP_IO: /* IO error exception */ 1673 cpu_abort(cs, "IO error exception while in user mode. " 1674 "Aborting\n"); 1675 break; 1676 case POWERPC_EXCP_RUNM: /* Run mode exception */ 1677 cpu_abort(cs, "Run mode exception while in user mode. " 1678 "Aborting\n"); 1679 break; 1680 case POWERPC_EXCP_EMUL: /* Emulation trap exception */ 1681 cpu_abort(cs, "Emulation trap exception not handled\n"); 1682 break; 1683 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ 1684 cpu_abort(cs, "Instruction fetch TLB exception " 1685 "while in user-mode. Aborting"); 1686 break; 1687 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ 1688 cpu_abort(cs, "Data load TLB exception while in user-mode. " 1689 "Aborting"); 1690 break; 1691 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ 1692 cpu_abort(cs, "Data store TLB exception while in user-mode. " 1693 "Aborting"); 1694 break; 1695 case POWERPC_EXCP_FPA: /* Floating-point assist exception */ 1696 cpu_abort(cs, "Floating-point assist exception not handled\n"); 1697 break; 1698 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ 1699 cpu_abort(cs, "Instruction address breakpoint exception " 1700 "not handled\n"); 1701 break; 1702 case POWERPC_EXCP_SMI: /* System management interrupt */ 1703 cpu_abort(cs, "System management interrupt while in user mode. " 1704 "Aborting\n"); 1705 break; 1706 case POWERPC_EXCP_THERM: /* Thermal interrupt */ 1707 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. " 1708 "Aborting\n"); 1709 break; 1710 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ 1711 cpu_abort(cs, "Performance monitor exception not handled\n"); 1712 break; 1713 case POWERPC_EXCP_VPUA: /* Vector assist exception */ 1714 cpu_abort(cs, "Vector assist exception not handled\n"); 1715 break; 1716 case POWERPC_EXCP_SOFTP: /* Soft patch exception */ 1717 cpu_abort(cs, "Soft patch exception not handled\n"); 1718 break; 1719 case POWERPC_EXCP_MAINT: /* Maintenance exception */ 1720 cpu_abort(cs, "Maintenance exception while in user mode. " 1721 "Aborting\n"); 1722 break; 1723 case POWERPC_EXCP_STOP: /* stop translation */ 1724 /* We did invalidate the instruction cache. Go on */ 1725 break; 1726 case POWERPC_EXCP_BRANCH: /* branch instruction: */ 1727 /* We just stopped because of a branch. Go on */ 1728 break; 1729 case POWERPC_EXCP_SYSCALL_USER: 1730 /* system call in user-mode emulation */ 1731 /* WARNING: 1732 * PPC ABI uses overflow flag in cr0 to signal an error 1733 * in syscalls. 1734 */ 1735 env->crf[0] &= ~0x1; 1736 env->nip += 4; 1737 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], 1738 env->gpr[5], env->gpr[6], env->gpr[7], 1739 env->gpr[8], 0, 0); 1740 if (ret == -TARGET_ERESTARTSYS) { 1741 env->nip -= 4; 1742 break; 1743 } 1744 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) { 1745 /* Returning from a successful sigreturn syscall. 1746 Avoid corrupting register state. */ 1747 break; 1748 } 1749 if (ret > (target_ulong)(-515)) { 1750 env->crf[0] |= 0x1; 1751 ret = -ret; 1752 } 1753 env->gpr[3] = ret; 1754 break; 1755 case POWERPC_EXCP_STCX: 1756 if (do_store_exclusive(env)) { 1757 info.si_signo = TARGET_SIGSEGV; 1758 info.si_errno = 0; 1759 info.si_code = TARGET_SEGV_MAPERR; 1760 info._sifields._sigfault._addr = env->nip; 1761 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1762 } 1763 break; 1764 case EXCP_DEBUG: 1765 { 1766 int sig; 1767 1768 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1769 if (sig) { 1770 info.si_signo = sig; 1771 info.si_errno = 0; 1772 info.si_code = TARGET_TRAP_BRKPT; 1773 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1774 } 1775 } 1776 break; 1777 case EXCP_INTERRUPT: 1778 /* just indicate that signals should be handled asap */ 1779 break; 1780 case EXCP_ATOMIC: 1781 cpu_exec_step_atomic(cs); 1782 break; 1783 default: 1784 cpu_abort(cs, "Unknown exception 0x%x. Aborting\n", trapnr); 1785 break; 1786 } 1787 process_pending_signals(env); 1788 } 1789 } 1790 #endif 1791 1792 #ifdef TARGET_MIPS 1793 1794 # ifdef TARGET_ABI_MIPSO32 1795 # define MIPS_SYS(name, args) args, 1796 static const uint8_t mips_syscall_args[] = { 1797 MIPS_SYS(sys_syscall , 8) /* 4000 */ 1798 MIPS_SYS(sys_exit , 1) 1799 MIPS_SYS(sys_fork , 0) 1800 MIPS_SYS(sys_read , 3) 1801 MIPS_SYS(sys_write , 3) 1802 MIPS_SYS(sys_open , 3) /* 4005 */ 1803 MIPS_SYS(sys_close , 1) 1804 MIPS_SYS(sys_waitpid , 3) 1805 MIPS_SYS(sys_creat , 2) 1806 MIPS_SYS(sys_link , 2) 1807 MIPS_SYS(sys_unlink , 1) /* 4010 */ 1808 MIPS_SYS(sys_execve , 0) 1809 MIPS_SYS(sys_chdir , 1) 1810 MIPS_SYS(sys_time , 1) 1811 MIPS_SYS(sys_mknod , 3) 1812 MIPS_SYS(sys_chmod , 2) /* 4015 */ 1813 MIPS_SYS(sys_lchown , 3) 1814 MIPS_SYS(sys_ni_syscall , 0) 1815 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ 1816 MIPS_SYS(sys_lseek , 3) 1817 MIPS_SYS(sys_getpid , 0) /* 4020 */ 1818 MIPS_SYS(sys_mount , 5) 1819 MIPS_SYS(sys_umount , 1) 1820 MIPS_SYS(sys_setuid , 1) 1821 MIPS_SYS(sys_getuid , 0) 1822 MIPS_SYS(sys_stime , 1) /* 4025 */ 1823 MIPS_SYS(sys_ptrace , 4) 1824 MIPS_SYS(sys_alarm , 1) 1825 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ 1826 MIPS_SYS(sys_pause , 0) 1827 MIPS_SYS(sys_utime , 2) /* 4030 */ 1828 MIPS_SYS(sys_ni_syscall , 0) 1829 MIPS_SYS(sys_ni_syscall , 0) 1830 MIPS_SYS(sys_access , 2) 1831 MIPS_SYS(sys_nice , 1) 1832 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ 1833 MIPS_SYS(sys_sync , 0) 1834 MIPS_SYS(sys_kill , 2) 1835 MIPS_SYS(sys_rename , 2) 1836 MIPS_SYS(sys_mkdir , 2) 1837 MIPS_SYS(sys_rmdir , 1) /* 4040 */ 1838 MIPS_SYS(sys_dup , 1) 1839 MIPS_SYS(sys_pipe , 0) 1840 MIPS_SYS(sys_times , 1) 1841 MIPS_SYS(sys_ni_syscall , 0) 1842 MIPS_SYS(sys_brk , 1) /* 4045 */ 1843 MIPS_SYS(sys_setgid , 1) 1844 MIPS_SYS(sys_getgid , 0) 1845 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ 1846 MIPS_SYS(sys_geteuid , 0) 1847 MIPS_SYS(sys_getegid , 0) /* 4050 */ 1848 MIPS_SYS(sys_acct , 0) 1849 MIPS_SYS(sys_umount2 , 2) 1850 MIPS_SYS(sys_ni_syscall , 0) 1851 MIPS_SYS(sys_ioctl , 3) 1852 MIPS_SYS(sys_fcntl , 3) /* 4055 */ 1853 MIPS_SYS(sys_ni_syscall , 2) 1854 MIPS_SYS(sys_setpgid , 2) 1855 MIPS_SYS(sys_ni_syscall , 0) 1856 MIPS_SYS(sys_olduname , 1) 1857 MIPS_SYS(sys_umask , 1) /* 4060 */ 1858 MIPS_SYS(sys_chroot , 1) 1859 MIPS_SYS(sys_ustat , 2) 1860 MIPS_SYS(sys_dup2 , 2) 1861 MIPS_SYS(sys_getppid , 0) 1862 MIPS_SYS(sys_getpgrp , 0) /* 4065 */ 1863 MIPS_SYS(sys_setsid , 0) 1864 MIPS_SYS(sys_sigaction , 3) 1865 MIPS_SYS(sys_sgetmask , 0) 1866 MIPS_SYS(sys_ssetmask , 1) 1867 MIPS_SYS(sys_setreuid , 2) /* 4070 */ 1868 MIPS_SYS(sys_setregid , 2) 1869 MIPS_SYS(sys_sigsuspend , 0) 1870 MIPS_SYS(sys_sigpending , 1) 1871 MIPS_SYS(sys_sethostname , 2) 1872 MIPS_SYS(sys_setrlimit , 2) /* 4075 */ 1873 MIPS_SYS(sys_getrlimit , 2) 1874 MIPS_SYS(sys_getrusage , 2) 1875 MIPS_SYS(sys_gettimeofday, 2) 1876 MIPS_SYS(sys_settimeofday, 2) 1877 MIPS_SYS(sys_getgroups , 2) /* 4080 */ 1878 MIPS_SYS(sys_setgroups , 2) 1879 MIPS_SYS(sys_ni_syscall , 0) /* old_select */ 1880 MIPS_SYS(sys_symlink , 2) 1881 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ 1882 MIPS_SYS(sys_readlink , 3) /* 4085 */ 1883 MIPS_SYS(sys_uselib , 1) 1884 MIPS_SYS(sys_swapon , 2) 1885 MIPS_SYS(sys_reboot , 3) 1886 MIPS_SYS(old_readdir , 3) 1887 MIPS_SYS(old_mmap , 6) /* 4090 */ 1888 MIPS_SYS(sys_munmap , 2) 1889 MIPS_SYS(sys_truncate , 2) 1890 MIPS_SYS(sys_ftruncate , 2) 1891 MIPS_SYS(sys_fchmod , 2) 1892 MIPS_SYS(sys_fchown , 3) /* 4095 */ 1893 MIPS_SYS(sys_getpriority , 2) 1894 MIPS_SYS(sys_setpriority , 3) 1895 MIPS_SYS(sys_ni_syscall , 0) 1896 MIPS_SYS(sys_statfs , 2) 1897 MIPS_SYS(sys_fstatfs , 2) /* 4100 */ 1898 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ 1899 MIPS_SYS(sys_socketcall , 2) 1900 MIPS_SYS(sys_syslog , 3) 1901 MIPS_SYS(sys_setitimer , 3) 1902 MIPS_SYS(sys_getitimer , 2) /* 4105 */ 1903 MIPS_SYS(sys_newstat , 2) 1904 MIPS_SYS(sys_newlstat , 2) 1905 MIPS_SYS(sys_newfstat , 2) 1906 MIPS_SYS(sys_uname , 1) 1907 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ 1908 MIPS_SYS(sys_vhangup , 0) 1909 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ 1910 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ 1911 MIPS_SYS(sys_wait4 , 4) 1912 MIPS_SYS(sys_swapoff , 1) /* 4115 */ 1913 MIPS_SYS(sys_sysinfo , 1) 1914 MIPS_SYS(sys_ipc , 6) 1915 MIPS_SYS(sys_fsync , 1) 1916 MIPS_SYS(sys_sigreturn , 0) 1917 MIPS_SYS(sys_clone , 6) /* 4120 */ 1918 MIPS_SYS(sys_setdomainname, 2) 1919 MIPS_SYS(sys_newuname , 1) 1920 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ 1921 MIPS_SYS(sys_adjtimex , 1) 1922 MIPS_SYS(sys_mprotect , 3) /* 4125 */ 1923 MIPS_SYS(sys_sigprocmask , 3) 1924 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ 1925 MIPS_SYS(sys_init_module , 5) 1926 MIPS_SYS(sys_delete_module, 1) 1927 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ 1928 MIPS_SYS(sys_quotactl , 0) 1929 MIPS_SYS(sys_getpgid , 1) 1930 MIPS_SYS(sys_fchdir , 1) 1931 MIPS_SYS(sys_bdflush , 2) 1932 MIPS_SYS(sys_sysfs , 3) /* 4135 */ 1933 MIPS_SYS(sys_personality , 1) 1934 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ 1935 MIPS_SYS(sys_setfsuid , 1) 1936 MIPS_SYS(sys_setfsgid , 1) 1937 MIPS_SYS(sys_llseek , 5) /* 4140 */ 1938 MIPS_SYS(sys_getdents , 3) 1939 MIPS_SYS(sys_select , 5) 1940 MIPS_SYS(sys_flock , 2) 1941 MIPS_SYS(sys_msync , 3) 1942 MIPS_SYS(sys_readv , 3) /* 4145 */ 1943 MIPS_SYS(sys_writev , 3) 1944 MIPS_SYS(sys_cacheflush , 3) 1945 MIPS_SYS(sys_cachectl , 3) 1946 MIPS_SYS(sys_sysmips , 4) 1947 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ 1948 MIPS_SYS(sys_getsid , 1) 1949 MIPS_SYS(sys_fdatasync , 0) 1950 MIPS_SYS(sys_sysctl , 1) 1951 MIPS_SYS(sys_mlock , 2) 1952 MIPS_SYS(sys_munlock , 2) /* 4155 */ 1953 MIPS_SYS(sys_mlockall , 1) 1954 MIPS_SYS(sys_munlockall , 0) 1955 MIPS_SYS(sys_sched_setparam, 2) 1956 MIPS_SYS(sys_sched_getparam, 2) 1957 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ 1958 MIPS_SYS(sys_sched_getscheduler, 1) 1959 MIPS_SYS(sys_sched_yield , 0) 1960 MIPS_SYS(sys_sched_get_priority_max, 1) 1961 MIPS_SYS(sys_sched_get_priority_min, 1) 1962 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ 1963 MIPS_SYS(sys_nanosleep, 2) 1964 MIPS_SYS(sys_mremap , 5) 1965 MIPS_SYS(sys_accept , 3) 1966 MIPS_SYS(sys_bind , 3) 1967 MIPS_SYS(sys_connect , 3) /* 4170 */ 1968 MIPS_SYS(sys_getpeername , 3) 1969 MIPS_SYS(sys_getsockname , 3) 1970 MIPS_SYS(sys_getsockopt , 5) 1971 MIPS_SYS(sys_listen , 2) 1972 MIPS_SYS(sys_recv , 4) /* 4175 */ 1973 MIPS_SYS(sys_recvfrom , 6) 1974 MIPS_SYS(sys_recvmsg , 3) 1975 MIPS_SYS(sys_send , 4) 1976 MIPS_SYS(sys_sendmsg , 3) 1977 MIPS_SYS(sys_sendto , 6) /* 4180 */ 1978 MIPS_SYS(sys_setsockopt , 5) 1979 MIPS_SYS(sys_shutdown , 2) 1980 MIPS_SYS(sys_socket , 3) 1981 MIPS_SYS(sys_socketpair , 4) 1982 MIPS_SYS(sys_setresuid , 3) /* 4185 */ 1983 MIPS_SYS(sys_getresuid , 3) 1984 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ 1985 MIPS_SYS(sys_poll , 3) 1986 MIPS_SYS(sys_nfsservctl , 3) 1987 MIPS_SYS(sys_setresgid , 3) /* 4190 */ 1988 MIPS_SYS(sys_getresgid , 3) 1989 MIPS_SYS(sys_prctl , 5) 1990 MIPS_SYS(sys_rt_sigreturn, 0) 1991 MIPS_SYS(sys_rt_sigaction, 4) 1992 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ 1993 MIPS_SYS(sys_rt_sigpending, 2) 1994 MIPS_SYS(sys_rt_sigtimedwait, 4) 1995 MIPS_SYS(sys_rt_sigqueueinfo, 3) 1996 MIPS_SYS(sys_rt_sigsuspend, 0) 1997 MIPS_SYS(sys_pread64 , 6) /* 4200 */ 1998 MIPS_SYS(sys_pwrite64 , 6) 1999 MIPS_SYS(sys_chown , 3) 2000 MIPS_SYS(sys_getcwd , 2) 2001 MIPS_SYS(sys_capget , 2) 2002 MIPS_SYS(sys_capset , 2) /* 4205 */ 2003 MIPS_SYS(sys_sigaltstack , 2) 2004 MIPS_SYS(sys_sendfile , 4) 2005 MIPS_SYS(sys_ni_syscall , 0) 2006 MIPS_SYS(sys_ni_syscall , 0) 2007 MIPS_SYS(sys_mmap2 , 6) /* 4210 */ 2008 MIPS_SYS(sys_truncate64 , 4) 2009 MIPS_SYS(sys_ftruncate64 , 4) 2010 MIPS_SYS(sys_stat64 , 2) 2011 MIPS_SYS(sys_lstat64 , 2) 2012 MIPS_SYS(sys_fstat64 , 2) /* 4215 */ 2013 MIPS_SYS(sys_pivot_root , 2) 2014 MIPS_SYS(sys_mincore , 3) 2015 MIPS_SYS(sys_madvise , 3) 2016 MIPS_SYS(sys_getdents64 , 3) 2017 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ 2018 MIPS_SYS(sys_ni_syscall , 0) 2019 MIPS_SYS(sys_gettid , 0) 2020 MIPS_SYS(sys_readahead , 5) 2021 MIPS_SYS(sys_setxattr , 5) 2022 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ 2023 MIPS_SYS(sys_fsetxattr , 5) 2024 MIPS_SYS(sys_getxattr , 4) 2025 MIPS_SYS(sys_lgetxattr , 4) 2026 MIPS_SYS(sys_fgetxattr , 4) 2027 MIPS_SYS(sys_listxattr , 3) /* 4230 */ 2028 MIPS_SYS(sys_llistxattr , 3) 2029 MIPS_SYS(sys_flistxattr , 3) 2030 MIPS_SYS(sys_removexattr , 2) 2031 MIPS_SYS(sys_lremovexattr, 2) 2032 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ 2033 MIPS_SYS(sys_tkill , 2) 2034 MIPS_SYS(sys_sendfile64 , 5) 2035 MIPS_SYS(sys_futex , 6) 2036 MIPS_SYS(sys_sched_setaffinity, 3) 2037 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ 2038 MIPS_SYS(sys_io_setup , 2) 2039 MIPS_SYS(sys_io_destroy , 1) 2040 MIPS_SYS(sys_io_getevents, 5) 2041 MIPS_SYS(sys_io_submit , 3) 2042 MIPS_SYS(sys_io_cancel , 3) /* 4245 */ 2043 MIPS_SYS(sys_exit_group , 1) 2044 MIPS_SYS(sys_lookup_dcookie, 3) 2045 MIPS_SYS(sys_epoll_create, 1) 2046 MIPS_SYS(sys_epoll_ctl , 4) 2047 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ 2048 MIPS_SYS(sys_remap_file_pages, 5) 2049 MIPS_SYS(sys_set_tid_address, 1) 2050 MIPS_SYS(sys_restart_syscall, 0) 2051 MIPS_SYS(sys_fadvise64_64, 7) 2052 MIPS_SYS(sys_statfs64 , 3) /* 4255 */ 2053 MIPS_SYS(sys_fstatfs64 , 2) 2054 MIPS_SYS(sys_timer_create, 3) 2055 MIPS_SYS(sys_timer_settime, 4) 2056 MIPS_SYS(sys_timer_gettime, 2) 2057 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ 2058 MIPS_SYS(sys_timer_delete, 1) 2059 MIPS_SYS(sys_clock_settime, 2) 2060 MIPS_SYS(sys_clock_gettime, 2) 2061 MIPS_SYS(sys_clock_getres, 2) 2062 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ 2063 MIPS_SYS(sys_tgkill , 3) 2064 MIPS_SYS(sys_utimes , 2) 2065 MIPS_SYS(sys_mbind , 4) 2066 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ 2067 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ 2068 MIPS_SYS(sys_mq_open , 4) 2069 MIPS_SYS(sys_mq_unlink , 1) 2070 MIPS_SYS(sys_mq_timedsend, 5) 2071 MIPS_SYS(sys_mq_timedreceive, 5) 2072 MIPS_SYS(sys_mq_notify , 2) /* 4275 */ 2073 MIPS_SYS(sys_mq_getsetattr, 3) 2074 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ 2075 MIPS_SYS(sys_waitid , 4) 2076 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ 2077 MIPS_SYS(sys_add_key , 5) 2078 MIPS_SYS(sys_request_key, 4) 2079 MIPS_SYS(sys_keyctl , 5) 2080 MIPS_SYS(sys_set_thread_area, 1) 2081 MIPS_SYS(sys_inotify_init, 0) 2082 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ 2083 MIPS_SYS(sys_inotify_rm_watch, 2) 2084 MIPS_SYS(sys_migrate_pages, 4) 2085 MIPS_SYS(sys_openat, 4) 2086 MIPS_SYS(sys_mkdirat, 3) 2087 MIPS_SYS(sys_mknodat, 4) /* 4290 */ 2088 MIPS_SYS(sys_fchownat, 5) 2089 MIPS_SYS(sys_futimesat, 3) 2090 MIPS_SYS(sys_fstatat64, 4) 2091 MIPS_SYS(sys_unlinkat, 3) 2092 MIPS_SYS(sys_renameat, 4) /* 4295 */ 2093 MIPS_SYS(sys_linkat, 5) 2094 MIPS_SYS(sys_symlinkat, 3) 2095 MIPS_SYS(sys_readlinkat, 4) 2096 MIPS_SYS(sys_fchmodat, 3) 2097 MIPS_SYS(sys_faccessat, 3) /* 4300 */ 2098 MIPS_SYS(sys_pselect6, 6) 2099 MIPS_SYS(sys_ppoll, 5) 2100 MIPS_SYS(sys_unshare, 1) 2101 MIPS_SYS(sys_splice, 6) 2102 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ 2103 MIPS_SYS(sys_tee, 4) 2104 MIPS_SYS(sys_vmsplice, 4) 2105 MIPS_SYS(sys_move_pages, 6) 2106 MIPS_SYS(sys_set_robust_list, 2) 2107 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ 2108 MIPS_SYS(sys_kexec_load, 4) 2109 MIPS_SYS(sys_getcpu, 3) 2110 MIPS_SYS(sys_epoll_pwait, 6) 2111 MIPS_SYS(sys_ioprio_set, 3) 2112 MIPS_SYS(sys_ioprio_get, 2) 2113 MIPS_SYS(sys_utimensat, 4) 2114 MIPS_SYS(sys_signalfd, 3) 2115 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */ 2116 MIPS_SYS(sys_eventfd, 1) 2117 MIPS_SYS(sys_fallocate, 6) /* 4320 */ 2118 MIPS_SYS(sys_timerfd_create, 2) 2119 MIPS_SYS(sys_timerfd_gettime, 2) 2120 MIPS_SYS(sys_timerfd_settime, 4) 2121 MIPS_SYS(sys_signalfd4, 4) 2122 MIPS_SYS(sys_eventfd2, 2) /* 4325 */ 2123 MIPS_SYS(sys_epoll_create1, 1) 2124 MIPS_SYS(sys_dup3, 3) 2125 MIPS_SYS(sys_pipe2, 2) 2126 MIPS_SYS(sys_inotify_init1, 1) 2127 MIPS_SYS(sys_preadv, 5) /* 4330 */ 2128 MIPS_SYS(sys_pwritev, 5) 2129 MIPS_SYS(sys_rt_tgsigqueueinfo, 4) 2130 MIPS_SYS(sys_perf_event_open, 5) 2131 MIPS_SYS(sys_accept4, 4) 2132 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */ 2133 MIPS_SYS(sys_fanotify_init, 2) 2134 MIPS_SYS(sys_fanotify_mark, 6) 2135 MIPS_SYS(sys_prlimit64, 4) 2136 MIPS_SYS(sys_name_to_handle_at, 5) 2137 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */ 2138 MIPS_SYS(sys_clock_adjtime, 2) 2139 MIPS_SYS(sys_syncfs, 1) 2140 MIPS_SYS(sys_sendmmsg, 4) 2141 MIPS_SYS(sys_setns, 2) 2142 MIPS_SYS(sys_process_vm_readv, 6) /* 345 */ 2143 MIPS_SYS(sys_process_vm_writev, 6) 2144 MIPS_SYS(sys_kcmp, 5) 2145 MIPS_SYS(sys_finit_module, 3) 2146 MIPS_SYS(sys_sched_setattr, 2) 2147 MIPS_SYS(sys_sched_getattr, 3) /* 350 */ 2148 MIPS_SYS(sys_renameat2, 5) 2149 MIPS_SYS(sys_seccomp, 3) 2150 MIPS_SYS(sys_getrandom, 3) 2151 MIPS_SYS(sys_memfd_create, 2) 2152 MIPS_SYS(sys_bpf, 3) /* 355 */ 2153 MIPS_SYS(sys_execveat, 5) 2154 MIPS_SYS(sys_userfaultfd, 1) 2155 MIPS_SYS(sys_membarrier, 2) 2156 MIPS_SYS(sys_mlock2, 3) 2157 MIPS_SYS(sys_copy_file_range, 6) /* 360 */ 2158 MIPS_SYS(sys_preadv2, 6) 2159 MIPS_SYS(sys_pwritev2, 6) 2160 }; 2161 # undef MIPS_SYS 2162 # endif /* O32 */ 2163 2164 static int do_store_exclusive(CPUMIPSState *env) 2165 { 2166 target_ulong addr; 2167 target_ulong page_addr; 2168 target_ulong val; 2169 int flags; 2170 int segv = 0; 2171 int reg; 2172 int d; 2173 2174 addr = env->lladdr; 2175 page_addr = addr & TARGET_PAGE_MASK; 2176 start_exclusive(); 2177 mmap_lock(); 2178 flags = page_get_flags(page_addr); 2179 if ((flags & PAGE_READ) == 0) { 2180 segv = 1; 2181 } else { 2182 reg = env->llreg & 0x1f; 2183 d = (env->llreg & 0x20) != 0; 2184 if (d) { 2185 segv = get_user_s64(val, addr); 2186 } else { 2187 segv = get_user_s32(val, addr); 2188 } 2189 if (!segv) { 2190 if (val != env->llval) { 2191 env->active_tc.gpr[reg] = 0; 2192 } else { 2193 if (d) { 2194 segv = put_user_u64(env->llnewval, addr); 2195 } else { 2196 segv = put_user_u32(env->llnewval, addr); 2197 } 2198 if (!segv) { 2199 env->active_tc.gpr[reg] = 1; 2200 } 2201 } 2202 } 2203 } 2204 env->lladdr = -1; 2205 if (!segv) { 2206 env->active_tc.PC += 4; 2207 } 2208 mmap_unlock(); 2209 end_exclusive(); 2210 return segv; 2211 } 2212 2213 /* Break codes */ 2214 enum { 2215 BRK_OVERFLOW = 6, 2216 BRK_DIVZERO = 7 2217 }; 2218 2219 static int do_break(CPUMIPSState *env, target_siginfo_t *info, 2220 unsigned int code) 2221 { 2222 int ret = -1; 2223 2224 switch (code) { 2225 case BRK_OVERFLOW: 2226 case BRK_DIVZERO: 2227 info->si_signo = TARGET_SIGFPE; 2228 info->si_errno = 0; 2229 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; 2230 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info); 2231 ret = 0; 2232 break; 2233 default: 2234 info->si_signo = TARGET_SIGTRAP; 2235 info->si_errno = 0; 2236 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info); 2237 ret = 0; 2238 break; 2239 } 2240 2241 return ret; 2242 } 2243 2244 void cpu_loop(CPUMIPSState *env) 2245 { 2246 CPUState *cs = CPU(mips_env_get_cpu(env)); 2247 target_siginfo_t info; 2248 int trapnr; 2249 abi_long ret; 2250 # ifdef TARGET_ABI_MIPSO32 2251 unsigned int syscall_num; 2252 # endif 2253 2254 for(;;) { 2255 cpu_exec_start(cs); 2256 trapnr = cpu_exec(cs); 2257 cpu_exec_end(cs); 2258 process_queued_cpu_work(cs); 2259 2260 switch(trapnr) { 2261 case EXCP_SYSCALL: 2262 env->active_tc.PC += 4; 2263 # ifdef TARGET_ABI_MIPSO32 2264 syscall_num = env->active_tc.gpr[2] - 4000; 2265 if (syscall_num >= sizeof(mips_syscall_args)) { 2266 ret = -TARGET_ENOSYS; 2267 } else { 2268 int nb_args; 2269 abi_ulong sp_reg; 2270 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; 2271 2272 nb_args = mips_syscall_args[syscall_num]; 2273 sp_reg = env->active_tc.gpr[29]; 2274 switch (nb_args) { 2275 /* these arguments are taken from the stack */ 2276 case 8: 2277 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { 2278 goto done_syscall; 2279 } 2280 case 7: 2281 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { 2282 goto done_syscall; 2283 } 2284 case 6: 2285 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { 2286 goto done_syscall; 2287 } 2288 case 5: 2289 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { 2290 goto done_syscall; 2291 } 2292 default: 2293 break; 2294 } 2295 ret = do_syscall(env, env->active_tc.gpr[2], 2296 env->active_tc.gpr[4], 2297 env->active_tc.gpr[5], 2298 env->active_tc.gpr[6], 2299 env->active_tc.gpr[7], 2300 arg5, arg6, arg7, arg8); 2301 } 2302 done_syscall: 2303 # else 2304 ret = do_syscall(env, env->active_tc.gpr[2], 2305 env->active_tc.gpr[4], env->active_tc.gpr[5], 2306 env->active_tc.gpr[6], env->active_tc.gpr[7], 2307 env->active_tc.gpr[8], env->active_tc.gpr[9], 2308 env->active_tc.gpr[10], env->active_tc.gpr[11]); 2309 # endif /* O32 */ 2310 if (ret == -TARGET_ERESTARTSYS) { 2311 env->active_tc.PC -= 4; 2312 break; 2313 } 2314 if (ret == -TARGET_QEMU_ESIGRETURN) { 2315 /* Returning from a successful sigreturn syscall. 2316 Avoid clobbering register state. */ 2317 break; 2318 } 2319 if ((abi_ulong)ret >= (abi_ulong)-1133) { 2320 env->active_tc.gpr[7] = 1; /* error flag */ 2321 ret = -ret; 2322 } else { 2323 env->active_tc.gpr[7] = 0; /* error flag */ 2324 } 2325 env->active_tc.gpr[2] = ret; 2326 break; 2327 case EXCP_TLBL: 2328 case EXCP_TLBS: 2329 case EXCP_AdEL: 2330 case EXCP_AdES: 2331 info.si_signo = TARGET_SIGSEGV; 2332 info.si_errno = 0; 2333 /* XXX: check env->error_code */ 2334 info.si_code = TARGET_SEGV_MAPERR; 2335 info._sifields._sigfault._addr = env->CP0_BadVAddr; 2336 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2337 break; 2338 case EXCP_CpU: 2339 case EXCP_RI: 2340 info.si_signo = TARGET_SIGILL; 2341 info.si_errno = 0; 2342 info.si_code = 0; 2343 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2344 break; 2345 case EXCP_INTERRUPT: 2346 /* just indicate that signals should be handled asap */ 2347 break; 2348 case EXCP_DEBUG: 2349 { 2350 int sig; 2351 2352 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2353 if (sig) 2354 { 2355 info.si_signo = sig; 2356 info.si_errno = 0; 2357 info.si_code = TARGET_TRAP_BRKPT; 2358 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2359 } 2360 } 2361 break; 2362 case EXCP_SC: 2363 if (do_store_exclusive(env)) { 2364 info.si_signo = TARGET_SIGSEGV; 2365 info.si_errno = 0; 2366 info.si_code = TARGET_SEGV_MAPERR; 2367 info._sifields._sigfault._addr = env->active_tc.PC; 2368 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2369 } 2370 break; 2371 case EXCP_DSPDIS: 2372 info.si_signo = TARGET_SIGILL; 2373 info.si_errno = 0; 2374 info.si_code = TARGET_ILL_ILLOPC; 2375 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2376 break; 2377 /* The code below was inspired by the MIPS Linux kernel trap 2378 * handling code in arch/mips/kernel/traps.c. 2379 */ 2380 case EXCP_BREAK: 2381 { 2382 abi_ulong trap_instr; 2383 unsigned int code; 2384 2385 if (env->hflags & MIPS_HFLAG_M16) { 2386 if (env->insn_flags & ASE_MICROMIPS) { 2387 /* microMIPS mode */ 2388 ret = get_user_u16(trap_instr, env->active_tc.PC); 2389 if (ret != 0) { 2390 goto error; 2391 } 2392 2393 if ((trap_instr >> 10) == 0x11) { 2394 /* 16-bit instruction */ 2395 code = trap_instr & 0xf; 2396 } else { 2397 /* 32-bit instruction */ 2398 abi_ulong instr_lo; 2399 2400 ret = get_user_u16(instr_lo, 2401 env->active_tc.PC + 2); 2402 if (ret != 0) { 2403 goto error; 2404 } 2405 trap_instr = (trap_instr << 16) | instr_lo; 2406 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2407 /* Unfortunately, microMIPS also suffers from 2408 the old assembler bug... */ 2409 if (code >= (1 << 10)) { 2410 code >>= 10; 2411 } 2412 } 2413 } else { 2414 /* MIPS16e mode */ 2415 ret = get_user_u16(trap_instr, env->active_tc.PC); 2416 if (ret != 0) { 2417 goto error; 2418 } 2419 code = (trap_instr >> 6) & 0x3f; 2420 } 2421 } else { 2422 ret = get_user_u32(trap_instr, env->active_tc.PC); 2423 if (ret != 0) { 2424 goto error; 2425 } 2426 2427 /* As described in the original Linux kernel code, the 2428 * below checks on 'code' are to work around an old 2429 * assembly bug. 2430 */ 2431 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2432 if (code >= (1 << 10)) { 2433 code >>= 10; 2434 } 2435 } 2436 2437 if (do_break(env, &info, code) != 0) { 2438 goto error; 2439 } 2440 } 2441 break; 2442 case EXCP_TRAP: 2443 { 2444 abi_ulong trap_instr; 2445 unsigned int code = 0; 2446 2447 if (env->hflags & MIPS_HFLAG_M16) { 2448 /* microMIPS mode */ 2449 abi_ulong instr[2]; 2450 2451 ret = get_user_u16(instr[0], env->active_tc.PC) || 2452 get_user_u16(instr[1], env->active_tc.PC + 2); 2453 2454 trap_instr = (instr[0] << 16) | instr[1]; 2455 } else { 2456 ret = get_user_u32(trap_instr, env->active_tc.PC); 2457 } 2458 2459 if (ret != 0) { 2460 goto error; 2461 } 2462 2463 /* The immediate versions don't provide a code. */ 2464 if (!(trap_instr & 0xFC000000)) { 2465 if (env->hflags & MIPS_HFLAG_M16) { 2466 /* microMIPS mode */ 2467 code = ((trap_instr >> 12) & ((1 << 4) - 1)); 2468 } else { 2469 code = ((trap_instr >> 6) & ((1 << 10) - 1)); 2470 } 2471 } 2472 2473 if (do_break(env, &info, code) != 0) { 2474 goto error; 2475 } 2476 } 2477 break; 2478 case EXCP_ATOMIC: 2479 cpu_exec_step_atomic(cs); 2480 break; 2481 default: 2482 error: 2483 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 2484 abort(); 2485 } 2486 process_pending_signals(env); 2487 } 2488 } 2489 #endif 2490 2491 #ifdef TARGET_NIOS2 2492 2493 void cpu_loop(CPUNios2State *env) 2494 { 2495 CPUState *cs = ENV_GET_CPU(env); 2496 Nios2CPU *cpu = NIOS2_CPU(cs); 2497 target_siginfo_t info; 2498 int trapnr, gdbsig, ret; 2499 2500 for (;;) { 2501 cpu_exec_start(cs); 2502 trapnr = cpu_exec(cs); 2503 cpu_exec_end(cs); 2504 gdbsig = 0; 2505 2506 switch (trapnr) { 2507 case EXCP_INTERRUPT: 2508 /* just indicate that signals should be handled asap */ 2509 break; 2510 case EXCP_TRAP: 2511 if (env->regs[R_AT] == 0) { 2512 abi_long ret; 2513 qemu_log_mask(CPU_LOG_INT, "\nSyscall\n"); 2514 2515 ret = do_syscall(env, env->regs[2], 2516 env->regs[4], env->regs[5], env->regs[6], 2517 env->regs[7], env->regs[8], env->regs[9], 2518 0, 0); 2519 2520 if (env->regs[2] == 0) { /* FIXME: syscall 0 workaround */ 2521 ret = 0; 2522 } 2523 2524 env->regs[2] = abs(ret); 2525 /* Return value is 0..4096 */ 2526 env->regs[7] = (ret > 0xfffffffffffff000ULL); 2527 env->regs[CR_ESTATUS] = env->regs[CR_STATUS]; 2528 env->regs[CR_STATUS] &= ~0x3; 2529 env->regs[R_EA] = env->regs[R_PC] + 4; 2530 env->regs[R_PC] += 4; 2531 break; 2532 } else { 2533 qemu_log_mask(CPU_LOG_INT, "\nTrap\n"); 2534 2535 env->regs[CR_ESTATUS] = env->regs[CR_STATUS]; 2536 env->regs[CR_STATUS] &= ~0x3; 2537 env->regs[R_EA] = env->regs[R_PC] + 4; 2538 env->regs[R_PC] = cpu->exception_addr; 2539 2540 gdbsig = TARGET_SIGTRAP; 2541 break; 2542 } 2543 case 0xaa: 2544 switch (env->regs[R_PC]) { 2545 /*case 0x1000:*/ /* TODO:__kuser_helper_version */ 2546 case 0x1004: /* __kuser_cmpxchg */ 2547 start_exclusive(); 2548 if (env->regs[4] & 0x3) { 2549 goto kuser_fail; 2550 } 2551 ret = get_user_u32(env->regs[2], env->regs[4]); 2552 if (ret) { 2553 end_exclusive(); 2554 goto kuser_fail; 2555 } 2556 env->regs[2] -= env->regs[5]; 2557 if (env->regs[2] == 0) { 2558 put_user_u32(env->regs[6], env->regs[4]); 2559 } 2560 end_exclusive(); 2561 env->regs[R_PC] = env->regs[R_RA]; 2562 break; 2563 /*case 0x1040:*/ /* TODO:__kuser_sigtramp */ 2564 default: 2565 ; 2566 kuser_fail: 2567 info.si_signo = TARGET_SIGSEGV; 2568 info.si_errno = 0; 2569 /* TODO: check env->error_code */ 2570 info.si_code = TARGET_SEGV_MAPERR; 2571 info._sifields._sigfault._addr = env->regs[R_PC]; 2572 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2573 } 2574 break; 2575 default: 2576 EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n", 2577 trapnr); 2578 gdbsig = TARGET_SIGILL; 2579 break; 2580 } 2581 if (gdbsig) { 2582 gdb_handlesig(cs, gdbsig); 2583 if (gdbsig != TARGET_SIGTRAP) { 2584 exit(EXIT_FAILURE); 2585 } 2586 } 2587 2588 process_pending_signals(env); 2589 } 2590 } 2591 2592 #endif /* TARGET_NIOS2 */ 2593 2594 #ifdef TARGET_OPENRISC 2595 2596 void cpu_loop(CPUOpenRISCState *env) 2597 { 2598 CPUState *cs = CPU(openrisc_env_get_cpu(env)); 2599 int trapnr; 2600 abi_long ret; 2601 target_siginfo_t info; 2602 2603 for (;;) { 2604 cpu_exec_start(cs); 2605 trapnr = cpu_exec(cs); 2606 cpu_exec_end(cs); 2607 process_queued_cpu_work(cs); 2608 2609 switch (trapnr) { 2610 case EXCP_SYSCALL: 2611 env->pc += 4; /* 0xc00; */ 2612 ret = do_syscall(env, 2613 cpu_get_gpr(env, 11), /* return value */ 2614 cpu_get_gpr(env, 3), /* r3 - r7 are params */ 2615 cpu_get_gpr(env, 4), 2616 cpu_get_gpr(env, 5), 2617 cpu_get_gpr(env, 6), 2618 cpu_get_gpr(env, 7), 2619 cpu_get_gpr(env, 8), 0, 0); 2620 if (ret == -TARGET_ERESTARTSYS) { 2621 env->pc -= 4; 2622 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2623 cpu_set_gpr(env, 11, ret); 2624 } 2625 break; 2626 case EXCP_DPF: 2627 case EXCP_IPF: 2628 case EXCP_RANGE: 2629 info.si_signo = TARGET_SIGSEGV; 2630 info.si_errno = 0; 2631 info.si_code = TARGET_SEGV_MAPERR; 2632 info._sifields._sigfault._addr = env->pc; 2633 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2634 break; 2635 case EXCP_ALIGN: 2636 info.si_signo = TARGET_SIGBUS; 2637 info.si_errno = 0; 2638 info.si_code = TARGET_BUS_ADRALN; 2639 info._sifields._sigfault._addr = env->pc; 2640 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2641 break; 2642 case EXCP_ILLEGAL: 2643 info.si_signo = TARGET_SIGILL; 2644 info.si_errno = 0; 2645 info.si_code = TARGET_ILL_ILLOPC; 2646 info._sifields._sigfault._addr = env->pc; 2647 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2648 break; 2649 case EXCP_FPE: 2650 info.si_signo = TARGET_SIGFPE; 2651 info.si_errno = 0; 2652 info.si_code = 0; 2653 info._sifields._sigfault._addr = env->pc; 2654 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2655 break; 2656 case EXCP_INTERRUPT: 2657 /* We processed the pending cpu work above. */ 2658 break; 2659 case EXCP_DEBUG: 2660 trapnr = gdb_handlesig(cs, TARGET_SIGTRAP); 2661 if (trapnr) { 2662 info.si_signo = trapnr; 2663 info.si_errno = 0; 2664 info.si_code = TARGET_TRAP_BRKPT; 2665 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2666 } 2667 break; 2668 case EXCP_ATOMIC: 2669 cpu_exec_step_atomic(cs); 2670 break; 2671 default: 2672 g_assert_not_reached(); 2673 } 2674 process_pending_signals(env); 2675 } 2676 } 2677 2678 #endif /* TARGET_OPENRISC */ 2679 2680 #ifdef TARGET_SH4 2681 void cpu_loop(CPUSH4State *env) 2682 { 2683 CPUState *cs = CPU(sh_env_get_cpu(env)); 2684 int trapnr, ret; 2685 target_siginfo_t info; 2686 2687 while (1) { 2688 bool arch_interrupt = true; 2689 2690 cpu_exec_start(cs); 2691 trapnr = cpu_exec(cs); 2692 cpu_exec_end(cs); 2693 process_queued_cpu_work(cs); 2694 2695 switch (trapnr) { 2696 case 0x160: 2697 env->pc += 2; 2698 ret = do_syscall(env, 2699 env->gregs[3], 2700 env->gregs[4], 2701 env->gregs[5], 2702 env->gregs[6], 2703 env->gregs[7], 2704 env->gregs[0], 2705 env->gregs[1], 2706 0, 0); 2707 if (ret == -TARGET_ERESTARTSYS) { 2708 env->pc -= 2; 2709 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2710 env->gregs[0] = ret; 2711 } 2712 break; 2713 case EXCP_INTERRUPT: 2714 /* just indicate that signals should be handled asap */ 2715 break; 2716 case EXCP_DEBUG: 2717 { 2718 int sig; 2719 2720 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2721 if (sig) { 2722 info.si_signo = sig; 2723 info.si_errno = 0; 2724 info.si_code = TARGET_TRAP_BRKPT; 2725 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2726 } else { 2727 arch_interrupt = false; 2728 } 2729 } 2730 break; 2731 case 0xa0: 2732 case 0xc0: 2733 info.si_signo = TARGET_SIGSEGV; 2734 info.si_errno = 0; 2735 info.si_code = TARGET_SEGV_MAPERR; 2736 info._sifields._sigfault._addr = env->tea; 2737 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2738 break; 2739 case EXCP_ATOMIC: 2740 cpu_exec_step_atomic(cs); 2741 arch_interrupt = false; 2742 break; 2743 default: 2744 printf ("Unhandled trap: 0x%x\n", trapnr); 2745 cpu_dump_state(cs, stderr, fprintf, 0); 2746 exit(EXIT_FAILURE); 2747 } 2748 process_pending_signals (env); 2749 2750 /* Most of the traps imply an exception or interrupt, which 2751 implies an REI instruction has been executed. Which means 2752 that LDST (aka LOK_ADDR) should be cleared. But there are 2753 a few exceptions for traps internal to QEMU. */ 2754 if (arch_interrupt) { 2755 env->lock_addr = -1; 2756 } 2757 } 2758 } 2759 #endif 2760 2761 #ifdef TARGET_CRIS 2762 void cpu_loop(CPUCRISState *env) 2763 { 2764 CPUState *cs = CPU(cris_env_get_cpu(env)); 2765 int trapnr, ret; 2766 target_siginfo_t info; 2767 2768 while (1) { 2769 cpu_exec_start(cs); 2770 trapnr = cpu_exec(cs); 2771 cpu_exec_end(cs); 2772 process_queued_cpu_work(cs); 2773 2774 switch (trapnr) { 2775 case 0xaa: 2776 { 2777 info.si_signo = TARGET_SIGSEGV; 2778 info.si_errno = 0; 2779 /* XXX: check env->error_code */ 2780 info.si_code = TARGET_SEGV_MAPERR; 2781 info._sifields._sigfault._addr = env->pregs[PR_EDA]; 2782 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2783 } 2784 break; 2785 case EXCP_INTERRUPT: 2786 /* just indicate that signals should be handled asap */ 2787 break; 2788 case EXCP_BREAK: 2789 ret = do_syscall(env, 2790 env->regs[9], 2791 env->regs[10], 2792 env->regs[11], 2793 env->regs[12], 2794 env->regs[13], 2795 env->pregs[7], 2796 env->pregs[11], 2797 0, 0); 2798 if (ret == -TARGET_ERESTARTSYS) { 2799 env->pc -= 2; 2800 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2801 env->regs[10] = ret; 2802 } 2803 break; 2804 case EXCP_DEBUG: 2805 { 2806 int sig; 2807 2808 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2809 if (sig) 2810 { 2811 info.si_signo = sig; 2812 info.si_errno = 0; 2813 info.si_code = TARGET_TRAP_BRKPT; 2814 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2815 } 2816 } 2817 break; 2818 case EXCP_ATOMIC: 2819 cpu_exec_step_atomic(cs); 2820 break; 2821 default: 2822 printf ("Unhandled trap: 0x%x\n", trapnr); 2823 cpu_dump_state(cs, stderr, fprintf, 0); 2824 exit(EXIT_FAILURE); 2825 } 2826 process_pending_signals (env); 2827 } 2828 } 2829 #endif 2830 2831 #ifdef TARGET_MICROBLAZE 2832 void cpu_loop(CPUMBState *env) 2833 { 2834 CPUState *cs = CPU(mb_env_get_cpu(env)); 2835 int trapnr, ret; 2836 target_siginfo_t info; 2837 2838 while (1) { 2839 cpu_exec_start(cs); 2840 trapnr = cpu_exec(cs); 2841 cpu_exec_end(cs); 2842 process_queued_cpu_work(cs); 2843 2844 switch (trapnr) { 2845 case 0xaa: 2846 { 2847 info.si_signo = TARGET_SIGSEGV; 2848 info.si_errno = 0; 2849 /* XXX: check env->error_code */ 2850 info.si_code = TARGET_SEGV_MAPERR; 2851 info._sifields._sigfault._addr = 0; 2852 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2853 } 2854 break; 2855 case EXCP_INTERRUPT: 2856 /* just indicate that signals should be handled asap */ 2857 break; 2858 case EXCP_BREAK: 2859 /* Return address is 4 bytes after the call. */ 2860 env->regs[14] += 4; 2861 env->sregs[SR_PC] = env->regs[14]; 2862 ret = do_syscall(env, 2863 env->regs[12], 2864 env->regs[5], 2865 env->regs[6], 2866 env->regs[7], 2867 env->regs[8], 2868 env->regs[9], 2869 env->regs[10], 2870 0, 0); 2871 if (ret == -TARGET_ERESTARTSYS) { 2872 /* Wind back to before the syscall. */ 2873 env->sregs[SR_PC] -= 4; 2874 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2875 env->regs[3] = ret; 2876 } 2877 /* All syscall exits result in guest r14 being equal to the 2878 * PC we return to, because the kernel syscall exit "rtbd" does 2879 * this. (This is true even for sigreturn(); note that r14 is 2880 * not a userspace-usable register, as the kernel may clobber it 2881 * at any point.) 2882 */ 2883 env->regs[14] = env->sregs[SR_PC]; 2884 break; 2885 case EXCP_HW_EXCP: 2886 env->regs[17] = env->sregs[SR_PC] + 4; 2887 if (env->iflags & D_FLAG) { 2888 env->sregs[SR_ESR] |= 1 << 12; 2889 env->sregs[SR_PC] -= 4; 2890 /* FIXME: if branch was immed, replay the imm as well. */ 2891 } 2892 2893 env->iflags &= ~(IMM_FLAG | D_FLAG); 2894 2895 switch (env->sregs[SR_ESR] & 31) { 2896 case ESR_EC_DIVZERO: 2897 info.si_signo = TARGET_SIGFPE; 2898 info.si_errno = 0; 2899 info.si_code = TARGET_FPE_FLTDIV; 2900 info._sifields._sigfault._addr = 0; 2901 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2902 break; 2903 case ESR_EC_FPU: 2904 info.si_signo = TARGET_SIGFPE; 2905 info.si_errno = 0; 2906 if (env->sregs[SR_FSR] & FSR_IO) { 2907 info.si_code = TARGET_FPE_FLTINV; 2908 } 2909 if (env->sregs[SR_FSR] & FSR_DZ) { 2910 info.si_code = TARGET_FPE_FLTDIV; 2911 } 2912 info._sifields._sigfault._addr = 0; 2913 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2914 break; 2915 default: 2916 printf ("Unhandled hw-exception: 0x%x\n", 2917 env->sregs[SR_ESR] & ESR_EC_MASK); 2918 cpu_dump_state(cs, stderr, fprintf, 0); 2919 exit(EXIT_FAILURE); 2920 break; 2921 } 2922 break; 2923 case EXCP_DEBUG: 2924 { 2925 int sig; 2926 2927 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2928 if (sig) 2929 { 2930 info.si_signo = sig; 2931 info.si_errno = 0; 2932 info.si_code = TARGET_TRAP_BRKPT; 2933 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2934 } 2935 } 2936 break; 2937 case EXCP_ATOMIC: 2938 cpu_exec_step_atomic(cs); 2939 break; 2940 default: 2941 printf ("Unhandled trap: 0x%x\n", trapnr); 2942 cpu_dump_state(cs, stderr, fprintf, 0); 2943 exit(EXIT_FAILURE); 2944 } 2945 process_pending_signals (env); 2946 } 2947 } 2948 #endif 2949 2950 #ifdef TARGET_M68K 2951 2952 void cpu_loop(CPUM68KState *env) 2953 { 2954 CPUState *cs = CPU(m68k_env_get_cpu(env)); 2955 int trapnr; 2956 unsigned int n; 2957 target_siginfo_t info; 2958 TaskState *ts = cs->opaque; 2959 2960 for(;;) { 2961 cpu_exec_start(cs); 2962 trapnr = cpu_exec(cs); 2963 cpu_exec_end(cs); 2964 process_queued_cpu_work(cs); 2965 2966 switch(trapnr) { 2967 case EXCP_ILLEGAL: 2968 { 2969 if (ts->sim_syscalls) { 2970 uint16_t nr; 2971 get_user_u16(nr, env->pc + 2); 2972 env->pc += 4; 2973 do_m68k_simcall(env, nr); 2974 } else { 2975 goto do_sigill; 2976 } 2977 } 2978 break; 2979 case EXCP_HALT_INSN: 2980 /* Semihosing syscall. */ 2981 env->pc += 4; 2982 do_m68k_semihosting(env, env->dregs[0]); 2983 break; 2984 case EXCP_LINEA: 2985 case EXCP_LINEF: 2986 case EXCP_UNSUPPORTED: 2987 do_sigill: 2988 info.si_signo = TARGET_SIGILL; 2989 info.si_errno = 0; 2990 info.si_code = TARGET_ILL_ILLOPN; 2991 info._sifields._sigfault._addr = env->pc; 2992 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2993 break; 2994 case EXCP_CHK: 2995 info.si_signo = TARGET_SIGFPE; 2996 info.si_errno = 0; 2997 info.si_code = TARGET_FPE_INTOVF; 2998 info._sifields._sigfault._addr = env->pc; 2999 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3000 break; 3001 case EXCP_DIV0: 3002 info.si_signo = TARGET_SIGFPE; 3003 info.si_errno = 0; 3004 info.si_code = TARGET_FPE_INTDIV; 3005 info._sifields._sigfault._addr = env->pc; 3006 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3007 break; 3008 case EXCP_TRAP0: 3009 { 3010 abi_long ret; 3011 ts->sim_syscalls = 0; 3012 n = env->dregs[0]; 3013 env->pc += 2; 3014 ret = do_syscall(env, 3015 n, 3016 env->dregs[1], 3017 env->dregs[2], 3018 env->dregs[3], 3019 env->dregs[4], 3020 env->dregs[5], 3021 env->aregs[0], 3022 0, 0); 3023 if (ret == -TARGET_ERESTARTSYS) { 3024 env->pc -= 2; 3025 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3026 env->dregs[0] = ret; 3027 } 3028 } 3029 break; 3030 case EXCP_INTERRUPT: 3031 /* just indicate that signals should be handled asap */ 3032 break; 3033 case EXCP_ACCESS: 3034 { 3035 info.si_signo = TARGET_SIGSEGV; 3036 info.si_errno = 0; 3037 /* XXX: check env->error_code */ 3038 info.si_code = TARGET_SEGV_MAPERR; 3039 info._sifields._sigfault._addr = env->mmu.ar; 3040 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3041 } 3042 break; 3043 case EXCP_DEBUG: 3044 { 3045 int sig; 3046 3047 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3048 if (sig) 3049 { 3050 info.si_signo = sig; 3051 info.si_errno = 0; 3052 info.si_code = TARGET_TRAP_BRKPT; 3053 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3054 } 3055 } 3056 break; 3057 case EXCP_ATOMIC: 3058 cpu_exec_step_atomic(cs); 3059 break; 3060 default: 3061 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 3062 abort(); 3063 } 3064 process_pending_signals(env); 3065 } 3066 } 3067 #endif /* TARGET_M68K */ 3068 3069 #ifdef TARGET_ALPHA 3070 void cpu_loop(CPUAlphaState *env) 3071 { 3072 CPUState *cs = CPU(alpha_env_get_cpu(env)); 3073 int trapnr; 3074 target_siginfo_t info; 3075 abi_long sysret; 3076 3077 while (1) { 3078 bool arch_interrupt = true; 3079 3080 cpu_exec_start(cs); 3081 trapnr = cpu_exec(cs); 3082 cpu_exec_end(cs); 3083 process_queued_cpu_work(cs); 3084 3085 switch (trapnr) { 3086 case EXCP_RESET: 3087 fprintf(stderr, "Reset requested. Exit\n"); 3088 exit(EXIT_FAILURE); 3089 break; 3090 case EXCP_MCHK: 3091 fprintf(stderr, "Machine check exception. Exit\n"); 3092 exit(EXIT_FAILURE); 3093 break; 3094 case EXCP_SMP_INTERRUPT: 3095 case EXCP_CLK_INTERRUPT: 3096 case EXCP_DEV_INTERRUPT: 3097 fprintf(stderr, "External interrupt. Exit\n"); 3098 exit(EXIT_FAILURE); 3099 break; 3100 case EXCP_MMFAULT: 3101 info.si_signo = TARGET_SIGSEGV; 3102 info.si_errno = 0; 3103 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID 3104 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR); 3105 info._sifields._sigfault._addr = env->trap_arg0; 3106 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3107 break; 3108 case EXCP_UNALIGN: 3109 info.si_signo = TARGET_SIGBUS; 3110 info.si_errno = 0; 3111 info.si_code = TARGET_BUS_ADRALN; 3112 info._sifields._sigfault._addr = env->trap_arg0; 3113 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3114 break; 3115 case EXCP_OPCDEC: 3116 do_sigill: 3117 info.si_signo = TARGET_SIGILL; 3118 info.si_errno = 0; 3119 info.si_code = TARGET_ILL_ILLOPC; 3120 info._sifields._sigfault._addr = env->pc; 3121 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3122 break; 3123 case EXCP_ARITH: 3124 info.si_signo = TARGET_SIGFPE; 3125 info.si_errno = 0; 3126 info.si_code = TARGET_FPE_FLTINV; 3127 info._sifields._sigfault._addr = env->pc; 3128 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3129 break; 3130 case EXCP_FEN: 3131 /* No-op. Linux simply re-enables the FPU. */ 3132 break; 3133 case EXCP_CALL_PAL: 3134 switch (env->error_code) { 3135 case 0x80: 3136 /* BPT */ 3137 info.si_signo = TARGET_SIGTRAP; 3138 info.si_errno = 0; 3139 info.si_code = TARGET_TRAP_BRKPT; 3140 info._sifields._sigfault._addr = env->pc; 3141 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3142 break; 3143 case 0x81: 3144 /* BUGCHK */ 3145 info.si_signo = TARGET_SIGTRAP; 3146 info.si_errno = 0; 3147 info.si_code = 0; 3148 info._sifields._sigfault._addr = env->pc; 3149 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3150 break; 3151 case 0x83: 3152 /* CALLSYS */ 3153 trapnr = env->ir[IR_V0]; 3154 sysret = do_syscall(env, trapnr, 3155 env->ir[IR_A0], env->ir[IR_A1], 3156 env->ir[IR_A2], env->ir[IR_A3], 3157 env->ir[IR_A4], env->ir[IR_A5], 3158 0, 0); 3159 if (sysret == -TARGET_ERESTARTSYS) { 3160 env->pc -= 4; 3161 break; 3162 } 3163 if (sysret == -TARGET_QEMU_ESIGRETURN) { 3164 break; 3165 } 3166 /* Syscall writes 0 to V0 to bypass error check, similar 3167 to how this is handled internal to Linux kernel. 3168 (Ab)use trapnr temporarily as boolean indicating error. */ 3169 trapnr = (env->ir[IR_V0] != 0 && sysret < 0); 3170 env->ir[IR_V0] = (trapnr ? -sysret : sysret); 3171 env->ir[IR_A3] = trapnr; 3172 break; 3173 case 0x86: 3174 /* IMB */ 3175 /* ??? We can probably elide the code using page_unprotect 3176 that is checking for self-modifying code. Instead we 3177 could simply call tb_flush here. Until we work out the 3178 changes required to turn off the extra write protection, 3179 this can be a no-op. */ 3180 break; 3181 case 0x9E: 3182 /* RDUNIQUE */ 3183 /* Handled in the translator for usermode. */ 3184 abort(); 3185 case 0x9F: 3186 /* WRUNIQUE */ 3187 /* Handled in the translator for usermode. */ 3188 abort(); 3189 case 0xAA: 3190 /* GENTRAP */ 3191 info.si_signo = TARGET_SIGFPE; 3192 switch (env->ir[IR_A0]) { 3193 case TARGET_GEN_INTOVF: 3194 info.si_code = TARGET_FPE_INTOVF; 3195 break; 3196 case TARGET_GEN_INTDIV: 3197 info.si_code = TARGET_FPE_INTDIV; 3198 break; 3199 case TARGET_GEN_FLTOVF: 3200 info.si_code = TARGET_FPE_FLTOVF; 3201 break; 3202 case TARGET_GEN_FLTUND: 3203 info.si_code = TARGET_FPE_FLTUND; 3204 break; 3205 case TARGET_GEN_FLTINV: 3206 info.si_code = TARGET_FPE_FLTINV; 3207 break; 3208 case TARGET_GEN_FLTINE: 3209 info.si_code = TARGET_FPE_FLTRES; 3210 break; 3211 case TARGET_GEN_ROPRAND: 3212 info.si_code = 0; 3213 break; 3214 default: 3215 info.si_signo = TARGET_SIGTRAP; 3216 info.si_code = 0; 3217 break; 3218 } 3219 info.si_errno = 0; 3220 info._sifields._sigfault._addr = env->pc; 3221 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3222 break; 3223 default: 3224 goto do_sigill; 3225 } 3226 break; 3227 case EXCP_DEBUG: 3228 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP); 3229 if (info.si_signo) { 3230 info.si_errno = 0; 3231 info.si_code = TARGET_TRAP_BRKPT; 3232 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3233 } else { 3234 arch_interrupt = false; 3235 } 3236 break; 3237 case EXCP_INTERRUPT: 3238 /* Just indicate that signals should be handled asap. */ 3239 break; 3240 case EXCP_ATOMIC: 3241 cpu_exec_step_atomic(cs); 3242 arch_interrupt = false; 3243 break; 3244 default: 3245 printf ("Unhandled trap: 0x%x\n", trapnr); 3246 cpu_dump_state(cs, stderr, fprintf, 0); 3247 exit(EXIT_FAILURE); 3248 } 3249 process_pending_signals (env); 3250 3251 /* Most of the traps imply a transition through PALcode, which 3252 implies an REI instruction has been executed. Which means 3253 that RX and LOCK_ADDR should be cleared. But there are a 3254 few exceptions for traps internal to QEMU. */ 3255 if (arch_interrupt) { 3256 env->flags &= ~ENV_FLAG_RX_FLAG; 3257 env->lock_addr = -1; 3258 } 3259 } 3260 } 3261 #endif /* TARGET_ALPHA */ 3262 3263 #ifdef TARGET_S390X 3264 3265 /* s390x masks the fault address it reports in si_addr for SIGSEGV and SIGBUS */ 3266 #define S390X_FAIL_ADDR_MASK -4096LL 3267 3268 void cpu_loop(CPUS390XState *env) 3269 { 3270 CPUState *cs = CPU(s390_env_get_cpu(env)); 3271 int trapnr, n, sig; 3272 target_siginfo_t info; 3273 target_ulong addr; 3274 abi_long ret; 3275 3276 while (1) { 3277 cpu_exec_start(cs); 3278 trapnr = cpu_exec(cs); 3279 cpu_exec_end(cs); 3280 process_queued_cpu_work(cs); 3281 3282 switch (trapnr) { 3283 case EXCP_INTERRUPT: 3284 /* Just indicate that signals should be handled asap. */ 3285 break; 3286 3287 case EXCP_SVC: 3288 n = env->int_svc_code; 3289 if (!n) { 3290 /* syscalls > 255 */ 3291 n = env->regs[1]; 3292 } 3293 env->psw.addr += env->int_svc_ilen; 3294 ret = do_syscall(env, n, env->regs[2], env->regs[3], 3295 env->regs[4], env->regs[5], 3296 env->regs[6], env->regs[7], 0, 0); 3297 if (ret == -TARGET_ERESTARTSYS) { 3298 env->psw.addr -= env->int_svc_ilen; 3299 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3300 env->regs[2] = ret; 3301 } 3302 break; 3303 3304 case EXCP_DEBUG: 3305 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3306 if (sig) { 3307 n = TARGET_TRAP_BRKPT; 3308 goto do_signal_pc; 3309 } 3310 break; 3311 case EXCP_PGM: 3312 n = env->int_pgm_code; 3313 switch (n) { 3314 case PGM_OPERATION: 3315 case PGM_PRIVILEGED: 3316 sig = TARGET_SIGILL; 3317 n = TARGET_ILL_ILLOPC; 3318 goto do_signal_pc; 3319 case PGM_PROTECTION: 3320 case PGM_ADDRESSING: 3321 sig = TARGET_SIGSEGV; 3322 /* XXX: check env->error_code */ 3323 n = TARGET_SEGV_MAPERR; 3324 addr = env->__excp_addr & S390X_FAIL_ADDR_MASK; 3325 goto do_signal; 3326 case PGM_EXECUTE: 3327 case PGM_SPECIFICATION: 3328 case PGM_SPECIAL_OP: 3329 case PGM_OPERAND: 3330 do_sigill_opn: 3331 sig = TARGET_SIGILL; 3332 n = TARGET_ILL_ILLOPN; 3333 goto do_signal_pc; 3334 3335 case PGM_FIXPT_OVERFLOW: 3336 sig = TARGET_SIGFPE; 3337 n = TARGET_FPE_INTOVF; 3338 goto do_signal_pc; 3339 case PGM_FIXPT_DIVIDE: 3340 sig = TARGET_SIGFPE; 3341 n = TARGET_FPE_INTDIV; 3342 goto do_signal_pc; 3343 3344 case PGM_DATA: 3345 n = (env->fpc >> 8) & 0xff; 3346 if (n == 0xff) { 3347 /* compare-and-trap */ 3348 goto do_sigill_opn; 3349 } else { 3350 /* An IEEE exception, simulated or otherwise. */ 3351 if (n & 0x80) { 3352 n = TARGET_FPE_FLTINV; 3353 } else if (n & 0x40) { 3354 n = TARGET_FPE_FLTDIV; 3355 } else if (n & 0x20) { 3356 n = TARGET_FPE_FLTOVF; 3357 } else if (n & 0x10) { 3358 n = TARGET_FPE_FLTUND; 3359 } else if (n & 0x08) { 3360 n = TARGET_FPE_FLTRES; 3361 } else { 3362 /* ??? Quantum exception; BFP, DFP error. */ 3363 goto do_sigill_opn; 3364 } 3365 sig = TARGET_SIGFPE; 3366 goto do_signal_pc; 3367 } 3368 3369 default: 3370 fprintf(stderr, "Unhandled program exception: %#x\n", n); 3371 cpu_dump_state(cs, stderr, fprintf, 0); 3372 exit(EXIT_FAILURE); 3373 } 3374 break; 3375 3376 do_signal_pc: 3377 addr = env->psw.addr; 3378 do_signal: 3379 info.si_signo = sig; 3380 info.si_errno = 0; 3381 info.si_code = n; 3382 info._sifields._sigfault._addr = addr; 3383 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3384 break; 3385 3386 case EXCP_ATOMIC: 3387 cpu_exec_step_atomic(cs); 3388 break; 3389 default: 3390 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); 3391 cpu_dump_state(cs, stderr, fprintf, 0); 3392 exit(EXIT_FAILURE); 3393 } 3394 process_pending_signals (env); 3395 } 3396 } 3397 3398 #endif /* TARGET_S390X */ 3399 3400 #ifdef TARGET_TILEGX 3401 3402 static void gen_sigill_reg(CPUTLGState *env) 3403 { 3404 target_siginfo_t info; 3405 3406 info.si_signo = TARGET_SIGILL; 3407 info.si_errno = 0; 3408 info.si_code = TARGET_ILL_PRVREG; 3409 info._sifields._sigfault._addr = env->pc; 3410 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3411 } 3412 3413 static void do_signal(CPUTLGState *env, int signo, int sigcode) 3414 { 3415 target_siginfo_t info; 3416 3417 info.si_signo = signo; 3418 info.si_errno = 0; 3419 info._sifields._sigfault._addr = env->pc; 3420 3421 if (signo == TARGET_SIGSEGV) { 3422 /* The passed in sigcode is a dummy; check for a page mapping 3423 and pass either MAPERR or ACCERR. */ 3424 target_ulong addr = env->excaddr; 3425 info._sifields._sigfault._addr = addr; 3426 if (page_check_range(addr, 1, PAGE_VALID) < 0) { 3427 sigcode = TARGET_SEGV_MAPERR; 3428 } else { 3429 sigcode = TARGET_SEGV_ACCERR; 3430 } 3431 } 3432 info.si_code = sigcode; 3433 3434 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3435 } 3436 3437 static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr) 3438 { 3439 env->excaddr = addr; 3440 do_signal(env, TARGET_SIGSEGV, 0); 3441 } 3442 3443 static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val) 3444 { 3445 if (unlikely(reg >= TILEGX_R_COUNT)) { 3446 switch (reg) { 3447 case TILEGX_R_SN: 3448 case TILEGX_R_ZERO: 3449 return; 3450 case TILEGX_R_IDN0: 3451 case TILEGX_R_IDN1: 3452 case TILEGX_R_UDN0: 3453 case TILEGX_R_UDN1: 3454 case TILEGX_R_UDN2: 3455 case TILEGX_R_UDN3: 3456 gen_sigill_reg(env); 3457 return; 3458 default: 3459 g_assert_not_reached(); 3460 } 3461 } 3462 env->regs[reg] = val; 3463 } 3464 3465 /* 3466 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in 3467 * memory at the address held in the first source register. If the values are 3468 * not equal, then no memory operation is performed. If the values are equal, 3469 * the 8-byte quantity from the second source register is written into memory 3470 * at the address held in the first source register. In either case, the result 3471 * of the instruction is the value read from memory. The compare and write to 3472 * memory are atomic and thus can be used for synchronization purposes. This 3473 * instruction only operates for addresses aligned to a 8-byte boundary. 3474 * Unaligned memory access causes an Unaligned Data Reference interrupt. 3475 * 3476 * Functional Description (64-bit) 3477 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]); 3478 * rf[Dest] = memVal; 3479 * if (memVal == SPR[CmpValueSPR]) 3480 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]); 3481 * 3482 * Functional Description (32-bit) 3483 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA])); 3484 * rf[Dest] = memVal; 3485 * if (memVal == signExtend32 (SPR[CmpValueSPR])) 3486 * memoryWriteWord (rf[SrcA], rf[SrcB]); 3487 * 3488 * 3489 * This function also processes exch and exch4 which need not process SPR. 3490 */ 3491 static void do_exch(CPUTLGState *env, bool quad, bool cmp) 3492 { 3493 target_ulong addr; 3494 target_long val, sprval; 3495 3496 start_exclusive(); 3497 3498 addr = env->atomic_srca; 3499 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3500 goto sigsegv_maperr; 3501 } 3502 3503 if (cmp) { 3504 if (quad) { 3505 sprval = env->spregs[TILEGX_SPR_CMPEXCH]; 3506 } else { 3507 sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32); 3508 } 3509 } 3510 3511 if (!cmp || val == sprval) { 3512 target_long valb = env->atomic_srcb; 3513 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3514 goto sigsegv_maperr; 3515 } 3516 } 3517 3518 set_regval(env, env->atomic_dstr, val); 3519 end_exclusive(); 3520 return; 3521 3522 sigsegv_maperr: 3523 end_exclusive(); 3524 gen_sigsegv_maperr(env, addr); 3525 } 3526 3527 static void do_fetch(CPUTLGState *env, int trapnr, bool quad) 3528 { 3529 int8_t write = 1; 3530 target_ulong addr; 3531 target_long val, valb; 3532 3533 start_exclusive(); 3534 3535 addr = env->atomic_srca; 3536 valb = env->atomic_srcb; 3537 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3538 goto sigsegv_maperr; 3539 } 3540 3541 switch (trapnr) { 3542 case TILEGX_EXCP_OPCODE_FETCHADD: 3543 case TILEGX_EXCP_OPCODE_FETCHADD4: 3544 valb += val; 3545 break; 3546 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3547 valb += val; 3548 if (valb < 0) { 3549 write = 0; 3550 } 3551 break; 3552 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3553 valb += val; 3554 if ((int32_t)valb < 0) { 3555 write = 0; 3556 } 3557 break; 3558 case TILEGX_EXCP_OPCODE_FETCHAND: 3559 case TILEGX_EXCP_OPCODE_FETCHAND4: 3560 valb &= val; 3561 break; 3562 case TILEGX_EXCP_OPCODE_FETCHOR: 3563 case TILEGX_EXCP_OPCODE_FETCHOR4: 3564 valb |= val; 3565 break; 3566 default: 3567 g_assert_not_reached(); 3568 } 3569 3570 if (write) { 3571 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3572 goto sigsegv_maperr; 3573 } 3574 } 3575 3576 set_regval(env, env->atomic_dstr, val); 3577 end_exclusive(); 3578 return; 3579 3580 sigsegv_maperr: 3581 end_exclusive(); 3582 gen_sigsegv_maperr(env, addr); 3583 } 3584 3585 void cpu_loop(CPUTLGState *env) 3586 { 3587 CPUState *cs = CPU(tilegx_env_get_cpu(env)); 3588 int trapnr; 3589 3590 while (1) { 3591 cpu_exec_start(cs); 3592 trapnr = cpu_exec(cs); 3593 cpu_exec_end(cs); 3594 process_queued_cpu_work(cs); 3595 3596 switch (trapnr) { 3597 case TILEGX_EXCP_SYSCALL: 3598 { 3599 abi_ulong ret = do_syscall(env, env->regs[TILEGX_R_NR], 3600 env->regs[0], env->regs[1], 3601 env->regs[2], env->regs[3], 3602 env->regs[4], env->regs[5], 3603 env->regs[6], env->regs[7]); 3604 if (ret == -TARGET_ERESTARTSYS) { 3605 env->pc -= 8; 3606 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3607 env->regs[TILEGX_R_RE] = ret; 3608 env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(ret) ? -ret : 0; 3609 } 3610 break; 3611 } 3612 case TILEGX_EXCP_OPCODE_EXCH: 3613 do_exch(env, true, false); 3614 break; 3615 case TILEGX_EXCP_OPCODE_EXCH4: 3616 do_exch(env, false, false); 3617 break; 3618 case TILEGX_EXCP_OPCODE_CMPEXCH: 3619 do_exch(env, true, true); 3620 break; 3621 case TILEGX_EXCP_OPCODE_CMPEXCH4: 3622 do_exch(env, false, true); 3623 break; 3624 case TILEGX_EXCP_OPCODE_FETCHADD: 3625 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3626 case TILEGX_EXCP_OPCODE_FETCHAND: 3627 case TILEGX_EXCP_OPCODE_FETCHOR: 3628 do_fetch(env, trapnr, true); 3629 break; 3630 case TILEGX_EXCP_OPCODE_FETCHADD4: 3631 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3632 case TILEGX_EXCP_OPCODE_FETCHAND4: 3633 case TILEGX_EXCP_OPCODE_FETCHOR4: 3634 do_fetch(env, trapnr, false); 3635 break; 3636 case TILEGX_EXCP_SIGNAL: 3637 do_signal(env, env->signo, env->sigcode); 3638 break; 3639 case TILEGX_EXCP_REG_IDN_ACCESS: 3640 case TILEGX_EXCP_REG_UDN_ACCESS: 3641 gen_sigill_reg(env); 3642 break; 3643 case EXCP_ATOMIC: 3644 cpu_exec_step_atomic(cs); 3645 break; 3646 default: 3647 fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr); 3648 g_assert_not_reached(); 3649 } 3650 process_pending_signals(env); 3651 } 3652 } 3653 3654 #endif 3655 3656 #ifdef TARGET_HPPA 3657 3658 static abi_ulong hppa_lws(CPUHPPAState *env) 3659 { 3660 uint32_t which = env->gr[20]; 3661 abi_ulong addr = env->gr[26]; 3662 abi_ulong old = env->gr[25]; 3663 abi_ulong new = env->gr[24]; 3664 abi_ulong size, ret; 3665 3666 switch (which) { 3667 default: 3668 return -TARGET_ENOSYS; 3669 3670 case 0: /* elf32 atomic 32bit cmpxchg */ 3671 if ((addr & 3) || !access_ok(VERIFY_WRITE, addr, 4)) { 3672 return -TARGET_EFAULT; 3673 } 3674 old = tswap32(old); 3675 new = tswap32(new); 3676 ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new); 3677 ret = tswap32(ret); 3678 break; 3679 3680 case 2: /* elf32 atomic "new" cmpxchg */ 3681 size = env->gr[23]; 3682 if (size >= 4) { 3683 return -TARGET_ENOSYS; 3684 } 3685 if (((addr | old | new) & ((1 << size) - 1)) 3686 || !access_ok(VERIFY_WRITE, addr, 1 << size) 3687 || !access_ok(VERIFY_READ, old, 1 << size) 3688 || !access_ok(VERIFY_READ, new, 1 << size)) { 3689 return -TARGET_EFAULT; 3690 } 3691 /* Note that below we use host-endian loads so that the cmpxchg 3692 can be host-endian as well. */ 3693 switch (size) { 3694 case 0: 3695 old = *(uint8_t *)g2h(old); 3696 new = *(uint8_t *)g2h(new); 3697 ret = atomic_cmpxchg((uint8_t *)g2h(addr), old, new); 3698 ret = ret != old; 3699 break; 3700 case 1: 3701 old = *(uint16_t *)g2h(old); 3702 new = *(uint16_t *)g2h(new); 3703 ret = atomic_cmpxchg((uint16_t *)g2h(addr), old, new); 3704 ret = ret != old; 3705 break; 3706 case 2: 3707 old = *(uint32_t *)g2h(old); 3708 new = *(uint32_t *)g2h(new); 3709 ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new); 3710 ret = ret != old; 3711 break; 3712 case 3: 3713 { 3714 uint64_t o64, n64, r64; 3715 o64 = *(uint64_t *)g2h(old); 3716 n64 = *(uint64_t *)g2h(new); 3717 #ifdef CONFIG_ATOMIC64 3718 r64 = atomic_cmpxchg__nocheck((uint64_t *)g2h(addr), o64, n64); 3719 ret = r64 != o64; 3720 #else 3721 start_exclusive(); 3722 r64 = *(uint64_t *)g2h(addr); 3723 ret = 1; 3724 if (r64 == o64) { 3725 *(uint64_t *)g2h(addr) = n64; 3726 ret = 0; 3727 } 3728 end_exclusive(); 3729 #endif 3730 } 3731 break; 3732 } 3733 break; 3734 } 3735 3736 env->gr[28] = ret; 3737 return 0; 3738 } 3739 3740 void cpu_loop(CPUHPPAState *env) 3741 { 3742 CPUState *cs = CPU(hppa_env_get_cpu(env)); 3743 target_siginfo_t info; 3744 abi_ulong ret; 3745 int trapnr; 3746 3747 while (1) { 3748 cpu_exec_start(cs); 3749 trapnr = cpu_exec(cs); 3750 cpu_exec_end(cs); 3751 process_queued_cpu_work(cs); 3752 3753 switch (trapnr) { 3754 case EXCP_SYSCALL: 3755 ret = do_syscall(env, env->gr[20], 3756 env->gr[26], env->gr[25], 3757 env->gr[24], env->gr[23], 3758 env->gr[22], env->gr[21], 0, 0); 3759 switch (ret) { 3760 default: 3761 env->gr[28] = ret; 3762 /* We arrived here by faking the gateway page. Return. */ 3763 env->iaoq_f = env->gr[31]; 3764 env->iaoq_b = env->gr[31] + 4; 3765 break; 3766 case -TARGET_ERESTARTSYS: 3767 case -TARGET_QEMU_ESIGRETURN: 3768 break; 3769 } 3770 break; 3771 case EXCP_SYSCALL_LWS: 3772 env->gr[21] = hppa_lws(env); 3773 /* We arrived here by faking the gateway page. Return. */ 3774 env->iaoq_f = env->gr[31]; 3775 env->iaoq_b = env->gr[31] + 4; 3776 break; 3777 case EXCP_ITLB_MISS: 3778 case EXCP_DTLB_MISS: 3779 case EXCP_NA_ITLB_MISS: 3780 case EXCP_NA_DTLB_MISS: 3781 case EXCP_IMP: 3782 case EXCP_DMP: 3783 case EXCP_DMB: 3784 case EXCP_PAGE_REF: 3785 case EXCP_DMAR: 3786 case EXCP_DMPI: 3787 info.si_signo = TARGET_SIGSEGV; 3788 info.si_errno = 0; 3789 info.si_code = TARGET_SEGV_ACCERR; 3790 info._sifields._sigfault._addr = env->cr[CR_IOR]; 3791 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3792 break; 3793 case EXCP_UNALIGN: 3794 info.si_signo = TARGET_SIGBUS; 3795 info.si_errno = 0; 3796 info.si_code = 0; 3797 info._sifields._sigfault._addr = env->cr[CR_IOR]; 3798 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3799 break; 3800 case EXCP_ILL: 3801 case EXCP_PRIV_OPR: 3802 case EXCP_PRIV_REG: 3803 info.si_signo = TARGET_SIGILL; 3804 info.si_errno = 0; 3805 info.si_code = TARGET_ILL_ILLOPN; 3806 info._sifields._sigfault._addr = env->iaoq_f; 3807 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3808 break; 3809 case EXCP_OVERFLOW: 3810 case EXCP_COND: 3811 case EXCP_ASSIST: 3812 info.si_signo = TARGET_SIGFPE; 3813 info.si_errno = 0; 3814 info.si_code = 0; 3815 info._sifields._sigfault._addr = env->iaoq_f; 3816 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3817 break; 3818 case EXCP_DEBUG: 3819 trapnr = gdb_handlesig(cs, TARGET_SIGTRAP); 3820 if (trapnr) { 3821 info.si_signo = trapnr; 3822 info.si_errno = 0; 3823 info.si_code = TARGET_TRAP_BRKPT; 3824 queue_signal(env, trapnr, QEMU_SI_FAULT, &info); 3825 } 3826 break; 3827 case EXCP_INTERRUPT: 3828 /* just indicate that signals should be handled asap */ 3829 break; 3830 default: 3831 g_assert_not_reached(); 3832 } 3833 process_pending_signals(env); 3834 } 3835 } 3836 3837 #endif /* TARGET_HPPA */ 3838 3839 __thread CPUState *thread_cpu; 3840 3841 bool qemu_cpu_is_self(CPUState *cpu) 3842 { 3843 return thread_cpu == cpu; 3844 } 3845 3846 void qemu_cpu_kick(CPUState *cpu) 3847 { 3848 cpu_exit(cpu); 3849 } 3850 3851 void task_settid(TaskState *ts) 3852 { 3853 if (ts->ts_tid == 0) { 3854 ts->ts_tid = (pid_t)syscall(SYS_gettid); 3855 } 3856 } 3857 3858 void stop_all_tasks(void) 3859 { 3860 /* 3861 * We trust that when using NPTL, start_exclusive() 3862 * handles thread stopping correctly. 3863 */ 3864 start_exclusive(); 3865 } 3866 3867 /* Assumes contents are already zeroed. */ 3868 void init_task_state(TaskState *ts) 3869 { 3870 ts->used = 1; 3871 } 3872 3873 CPUArchState *cpu_copy(CPUArchState *env) 3874 { 3875 CPUState *cpu = ENV_GET_CPU(env); 3876 CPUState *new_cpu = cpu_init(cpu_model); 3877 CPUArchState *new_env = new_cpu->env_ptr; 3878 CPUBreakpoint *bp; 3879 CPUWatchpoint *wp; 3880 3881 /* Reset non arch specific state */ 3882 cpu_reset(new_cpu); 3883 3884 memcpy(new_env, env, sizeof(CPUArchState)); 3885 3886 /* Clone all break/watchpoints. 3887 Note: Once we support ptrace with hw-debug register access, make sure 3888 BP_CPU break/watchpoints are handled correctly on clone. */ 3889 QTAILQ_INIT(&new_cpu->breakpoints); 3890 QTAILQ_INIT(&new_cpu->watchpoints); 3891 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 3892 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL); 3893 } 3894 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 3895 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL); 3896 } 3897 3898 return new_env; 3899 } 3900 3901 static void handle_arg_help(const char *arg) 3902 { 3903 usage(EXIT_SUCCESS); 3904 } 3905 3906 static void handle_arg_log(const char *arg) 3907 { 3908 int mask; 3909 3910 mask = qemu_str_to_log_mask(arg); 3911 if (!mask) { 3912 qemu_print_log_usage(stdout); 3913 exit(EXIT_FAILURE); 3914 } 3915 qemu_log_needs_buffers(); 3916 qemu_set_log(mask); 3917 } 3918 3919 static void handle_arg_dfilter(const char *arg) 3920 { 3921 qemu_set_dfilter_ranges(arg, NULL); 3922 } 3923 3924 static void handle_arg_log_filename(const char *arg) 3925 { 3926 qemu_set_log_filename(arg, &error_fatal); 3927 } 3928 3929 static void handle_arg_set_env(const char *arg) 3930 { 3931 char *r, *p, *token; 3932 r = p = strdup(arg); 3933 while ((token = strsep(&p, ",")) != NULL) { 3934 if (envlist_setenv(envlist, token) != 0) { 3935 usage(EXIT_FAILURE); 3936 } 3937 } 3938 free(r); 3939 } 3940 3941 static void handle_arg_unset_env(const char *arg) 3942 { 3943 char *r, *p, *token; 3944 r = p = strdup(arg); 3945 while ((token = strsep(&p, ",")) != NULL) { 3946 if (envlist_unsetenv(envlist, token) != 0) { 3947 usage(EXIT_FAILURE); 3948 } 3949 } 3950 free(r); 3951 } 3952 3953 static void handle_arg_argv0(const char *arg) 3954 { 3955 argv0 = strdup(arg); 3956 } 3957 3958 static void handle_arg_stack_size(const char *arg) 3959 { 3960 char *p; 3961 guest_stack_size = strtoul(arg, &p, 0); 3962 if (guest_stack_size == 0) { 3963 usage(EXIT_FAILURE); 3964 } 3965 3966 if (*p == 'M') { 3967 guest_stack_size *= 1024 * 1024; 3968 } else if (*p == 'k' || *p == 'K') { 3969 guest_stack_size *= 1024; 3970 } 3971 } 3972 3973 static void handle_arg_ld_prefix(const char *arg) 3974 { 3975 interp_prefix = strdup(arg); 3976 } 3977 3978 static void handle_arg_pagesize(const char *arg) 3979 { 3980 qemu_host_page_size = atoi(arg); 3981 if (qemu_host_page_size == 0 || 3982 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 3983 fprintf(stderr, "page size must be a power of two\n"); 3984 exit(EXIT_FAILURE); 3985 } 3986 } 3987 3988 static void handle_arg_randseed(const char *arg) 3989 { 3990 unsigned long long seed; 3991 3992 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) { 3993 fprintf(stderr, "Invalid seed number: %s\n", arg); 3994 exit(EXIT_FAILURE); 3995 } 3996 srand(seed); 3997 } 3998 3999 static void handle_arg_gdb(const char *arg) 4000 { 4001 gdbstub_port = atoi(arg); 4002 } 4003 4004 static void handle_arg_uname(const char *arg) 4005 { 4006 qemu_uname_release = strdup(arg); 4007 } 4008 4009 static void handle_arg_cpu(const char *arg) 4010 { 4011 cpu_model = strdup(arg); 4012 if (cpu_model == NULL || is_help_option(cpu_model)) { 4013 /* XXX: implement xxx_cpu_list for targets that still miss it */ 4014 #if defined(cpu_list) 4015 cpu_list(stdout, &fprintf); 4016 #endif 4017 exit(EXIT_FAILURE); 4018 } 4019 } 4020 4021 static void handle_arg_guest_base(const char *arg) 4022 { 4023 guest_base = strtol(arg, NULL, 0); 4024 have_guest_base = 1; 4025 } 4026 4027 static void handle_arg_reserved_va(const char *arg) 4028 { 4029 char *p; 4030 int shift = 0; 4031 reserved_va = strtoul(arg, &p, 0); 4032 switch (*p) { 4033 case 'k': 4034 case 'K': 4035 shift = 10; 4036 break; 4037 case 'M': 4038 shift = 20; 4039 break; 4040 case 'G': 4041 shift = 30; 4042 break; 4043 } 4044 if (shift) { 4045 unsigned long unshifted = reserved_va; 4046 p++; 4047 reserved_va <<= shift; 4048 if (reserved_va >> shift != unshifted 4049 || (MAX_RESERVED_VA && reserved_va > MAX_RESERVED_VA)) { 4050 fprintf(stderr, "Reserved virtual address too big\n"); 4051 exit(EXIT_FAILURE); 4052 } 4053 } 4054 if (*p) { 4055 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); 4056 exit(EXIT_FAILURE); 4057 } 4058 } 4059 4060 static void handle_arg_singlestep(const char *arg) 4061 { 4062 singlestep = 1; 4063 } 4064 4065 static void handle_arg_strace(const char *arg) 4066 { 4067 do_strace = 1; 4068 } 4069 4070 static void handle_arg_version(const char *arg) 4071 { 4072 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 4073 "\n" QEMU_COPYRIGHT "\n"); 4074 exit(EXIT_SUCCESS); 4075 } 4076 4077 static char *trace_file; 4078 static void handle_arg_trace(const char *arg) 4079 { 4080 g_free(trace_file); 4081 trace_file = trace_opt_parse(arg); 4082 } 4083 4084 struct qemu_argument { 4085 const char *argv; 4086 const char *env; 4087 bool has_arg; 4088 void (*handle_opt)(const char *arg); 4089 const char *example; 4090 const char *help; 4091 }; 4092 4093 static const struct qemu_argument arg_table[] = { 4094 {"h", "", false, handle_arg_help, 4095 "", "print this help"}, 4096 {"help", "", false, handle_arg_help, 4097 "", ""}, 4098 {"g", "QEMU_GDB", true, handle_arg_gdb, 4099 "port", "wait gdb connection to 'port'"}, 4100 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix, 4101 "path", "set the elf interpreter prefix to 'path'"}, 4102 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size, 4103 "size", "set the stack size to 'size' bytes"}, 4104 {"cpu", "QEMU_CPU", true, handle_arg_cpu, 4105 "model", "select CPU (-cpu help for list)"}, 4106 {"E", "QEMU_SET_ENV", true, handle_arg_set_env, 4107 "var=value", "sets targets environment variable (see below)"}, 4108 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env, 4109 "var", "unsets targets environment variable (see below)"}, 4110 {"0", "QEMU_ARGV0", true, handle_arg_argv0, 4111 "argv0", "forces target process argv[0] to be 'argv0'"}, 4112 {"r", "QEMU_UNAME", true, handle_arg_uname, 4113 "uname", "set qemu uname release string to 'uname'"}, 4114 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base, 4115 "address", "set guest_base address to 'address'"}, 4116 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va, 4117 "size", "reserve 'size' bytes for guest virtual address space"}, 4118 {"d", "QEMU_LOG", true, handle_arg_log, 4119 "item[,...]", "enable logging of specified items " 4120 "(use '-d help' for a list of items)"}, 4121 {"dfilter", "QEMU_DFILTER", true, handle_arg_dfilter, 4122 "range[,...]","filter logging based on address range"}, 4123 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename, 4124 "logfile", "write logs to 'logfile' (default stderr)"}, 4125 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize, 4126 "pagesize", "set the host page size to 'pagesize'"}, 4127 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep, 4128 "", "run in singlestep mode"}, 4129 {"strace", "QEMU_STRACE", false, handle_arg_strace, 4130 "", "log system calls"}, 4131 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed, 4132 "", "Seed for pseudo-random number generator"}, 4133 {"trace", "QEMU_TRACE", true, handle_arg_trace, 4134 "", "[[enable=]<pattern>][,events=<file>][,file=<file>]"}, 4135 {"version", "QEMU_VERSION", false, handle_arg_version, 4136 "", "display version information and exit"}, 4137 {NULL, NULL, false, NULL, NULL, NULL} 4138 }; 4139 4140 static void usage(int exitcode) 4141 { 4142 const struct qemu_argument *arginfo; 4143 int maxarglen; 4144 int maxenvlen; 4145 4146 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 4147 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n" 4148 "\n" 4149 "Options and associated environment variables:\n" 4150 "\n"); 4151 4152 /* Calculate column widths. We must always have at least enough space 4153 * for the column header. 4154 */ 4155 maxarglen = strlen("Argument"); 4156 maxenvlen = strlen("Env-variable"); 4157 4158 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4159 int arglen = strlen(arginfo->argv); 4160 if (arginfo->has_arg) { 4161 arglen += strlen(arginfo->example) + 1; 4162 } 4163 if (strlen(arginfo->env) > maxenvlen) { 4164 maxenvlen = strlen(arginfo->env); 4165 } 4166 if (arglen > maxarglen) { 4167 maxarglen = arglen; 4168 } 4169 } 4170 4171 printf("%-*s %-*s Description\n", maxarglen+1, "Argument", 4172 maxenvlen, "Env-variable"); 4173 4174 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4175 if (arginfo->has_arg) { 4176 printf("-%s %-*s %-*s %s\n", arginfo->argv, 4177 (int)(maxarglen - strlen(arginfo->argv) - 1), 4178 arginfo->example, maxenvlen, arginfo->env, arginfo->help); 4179 } else { 4180 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv, 4181 maxenvlen, arginfo->env, 4182 arginfo->help); 4183 } 4184 } 4185 4186 printf("\n" 4187 "Defaults:\n" 4188 "QEMU_LD_PREFIX = %s\n" 4189 "QEMU_STACK_SIZE = %ld byte\n", 4190 interp_prefix, 4191 guest_stack_size); 4192 4193 printf("\n" 4194 "You can use -E and -U options or the QEMU_SET_ENV and\n" 4195 "QEMU_UNSET_ENV environment variables to set and unset\n" 4196 "environment variables for the target process.\n" 4197 "It is possible to provide several variables by separating them\n" 4198 "by commas in getsubopt(3) style. Additionally it is possible to\n" 4199 "provide the -E and -U options multiple times.\n" 4200 "The following lines are equivalent:\n" 4201 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 4202 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n" 4203 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n" 4204 "Note that if you provide several changes to a single variable\n" 4205 "the last change will stay in effect.\n" 4206 "\n" 4207 QEMU_HELP_BOTTOM "\n"); 4208 4209 exit(exitcode); 4210 } 4211 4212 static int parse_args(int argc, char **argv) 4213 { 4214 const char *r; 4215 int optind; 4216 const struct qemu_argument *arginfo; 4217 4218 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4219 if (arginfo->env == NULL) { 4220 continue; 4221 } 4222 4223 r = getenv(arginfo->env); 4224 if (r != NULL) { 4225 arginfo->handle_opt(r); 4226 } 4227 } 4228 4229 optind = 1; 4230 for (;;) { 4231 if (optind >= argc) { 4232 break; 4233 } 4234 r = argv[optind]; 4235 if (r[0] != '-') { 4236 break; 4237 } 4238 optind++; 4239 r++; 4240 if (!strcmp(r, "-")) { 4241 break; 4242 } 4243 /* Treat --foo the same as -foo. */ 4244 if (r[0] == '-') { 4245 r++; 4246 } 4247 4248 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4249 if (!strcmp(r, arginfo->argv)) { 4250 if (arginfo->has_arg) { 4251 if (optind >= argc) { 4252 (void) fprintf(stderr, 4253 "qemu: missing argument for option '%s'\n", r); 4254 exit(EXIT_FAILURE); 4255 } 4256 arginfo->handle_opt(argv[optind]); 4257 optind++; 4258 } else { 4259 arginfo->handle_opt(NULL); 4260 } 4261 break; 4262 } 4263 } 4264 4265 /* no option matched the current argv */ 4266 if (arginfo->handle_opt == NULL) { 4267 (void) fprintf(stderr, "qemu: unknown option '%s'\n", r); 4268 exit(EXIT_FAILURE); 4269 } 4270 } 4271 4272 if (optind >= argc) { 4273 (void) fprintf(stderr, "qemu: no user program specified\n"); 4274 exit(EXIT_FAILURE); 4275 } 4276 4277 filename = argv[optind]; 4278 exec_path = argv[optind]; 4279 4280 return optind; 4281 } 4282 4283 int main(int argc, char **argv, char **envp) 4284 { 4285 struct target_pt_regs regs1, *regs = ®s1; 4286 struct image_info info1, *info = &info1; 4287 struct linux_binprm bprm; 4288 TaskState *ts; 4289 CPUArchState *env; 4290 CPUState *cpu; 4291 int optind; 4292 char **target_environ, **wrk; 4293 char **target_argv; 4294 int target_argc; 4295 int i; 4296 int ret; 4297 int execfd; 4298 4299 module_call_init(MODULE_INIT_TRACE); 4300 qemu_init_cpu_list(); 4301 module_call_init(MODULE_INIT_QOM); 4302 4303 envlist = envlist_create(); 4304 4305 /* add current environment into the list */ 4306 for (wrk = environ; *wrk != NULL; wrk++) { 4307 (void) envlist_setenv(envlist, *wrk); 4308 } 4309 4310 /* Read the stack limit from the kernel. If it's "unlimited", 4311 then we can do little else besides use the default. */ 4312 { 4313 struct rlimit lim; 4314 if (getrlimit(RLIMIT_STACK, &lim) == 0 4315 && lim.rlim_cur != RLIM_INFINITY 4316 && lim.rlim_cur == (target_long)lim.rlim_cur) { 4317 guest_stack_size = lim.rlim_cur; 4318 } 4319 } 4320 4321 cpu_model = NULL; 4322 4323 srand(time(NULL)); 4324 4325 qemu_add_opts(&qemu_trace_opts); 4326 4327 optind = parse_args(argc, argv); 4328 4329 if (!trace_init_backends()) { 4330 exit(1); 4331 } 4332 trace_init_file(trace_file); 4333 4334 /* Zero out regs */ 4335 memset(regs, 0, sizeof(struct target_pt_regs)); 4336 4337 /* Zero out image_info */ 4338 memset(info, 0, sizeof(struct image_info)); 4339 4340 memset(&bprm, 0, sizeof (bprm)); 4341 4342 /* Scan interp_prefix dir for replacement files. */ 4343 init_paths(interp_prefix); 4344 4345 init_qemu_uname_release(); 4346 4347 execfd = qemu_getauxval(AT_EXECFD); 4348 if (execfd == 0) { 4349 execfd = open(filename, O_RDONLY); 4350 if (execfd < 0) { 4351 printf("Error while loading %s: %s\n", filename, strerror(errno)); 4352 _exit(EXIT_FAILURE); 4353 } 4354 } 4355 4356 if (cpu_model == NULL) { 4357 cpu_model = cpu_get_model(get_elf_eflags(execfd)); 4358 } 4359 tcg_exec_init(0); 4360 /* NOTE: we need to init the CPU at this stage to get 4361 qemu_host_page_size */ 4362 cpu = cpu_init(cpu_model); 4363 env = cpu->env_ptr; 4364 cpu_reset(cpu); 4365 4366 thread_cpu = cpu; 4367 4368 if (getenv("QEMU_STRACE")) { 4369 do_strace = 1; 4370 } 4371 4372 if (getenv("QEMU_RAND_SEED")) { 4373 handle_arg_randseed(getenv("QEMU_RAND_SEED")); 4374 } 4375 4376 target_environ = envlist_to_environ(envlist, NULL); 4377 envlist_free(envlist); 4378 4379 /* 4380 * Now that page sizes are configured in cpu_init() we can do 4381 * proper page alignment for guest_base. 4382 */ 4383 guest_base = HOST_PAGE_ALIGN(guest_base); 4384 4385 if (reserved_va || have_guest_base) { 4386 guest_base = init_guest_space(guest_base, reserved_va, 0, 4387 have_guest_base); 4388 if (guest_base == (unsigned long)-1) { 4389 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " 4390 "space for use as guest address space (check your virtual " 4391 "memory ulimit setting or reserve less using -R option)\n", 4392 reserved_va); 4393 exit(EXIT_FAILURE); 4394 } 4395 4396 if (reserved_va) { 4397 mmap_next_start = reserved_va; 4398 } 4399 } 4400 4401 /* 4402 * Read in mmap_min_addr kernel parameter. This value is used 4403 * When loading the ELF image to determine whether guest_base 4404 * is needed. It is also used in mmap_find_vma. 4405 */ 4406 { 4407 FILE *fp; 4408 4409 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 4410 unsigned long tmp; 4411 if (fscanf(fp, "%lu", &tmp) == 1) { 4412 mmap_min_addr = tmp; 4413 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr); 4414 } 4415 fclose(fp); 4416 } 4417 } 4418 4419 /* 4420 * Prepare copy of argv vector for target. 4421 */ 4422 target_argc = argc - optind; 4423 target_argv = calloc(target_argc + 1, sizeof (char *)); 4424 if (target_argv == NULL) { 4425 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); 4426 exit(EXIT_FAILURE); 4427 } 4428 4429 /* 4430 * If argv0 is specified (using '-0' switch) we replace 4431 * argv[0] pointer with the given one. 4432 */ 4433 i = 0; 4434 if (argv0 != NULL) { 4435 target_argv[i++] = strdup(argv0); 4436 } 4437 for (; i < target_argc; i++) { 4438 target_argv[i] = strdup(argv[optind + i]); 4439 } 4440 target_argv[target_argc] = NULL; 4441 4442 ts = g_new0(TaskState, 1); 4443 init_task_state(ts); 4444 /* build Task State */ 4445 ts->info = info; 4446 ts->bprm = &bprm; 4447 cpu->opaque = ts; 4448 task_settid(ts); 4449 4450 ret = loader_exec(execfd, filename, target_argv, target_environ, regs, 4451 info, &bprm); 4452 if (ret != 0) { 4453 printf("Error while loading %s: %s\n", filename, strerror(-ret)); 4454 _exit(EXIT_FAILURE); 4455 } 4456 4457 for (wrk = target_environ; *wrk; wrk++) { 4458 g_free(*wrk); 4459 } 4460 4461 g_free(target_environ); 4462 4463 if (qemu_loglevel_mask(CPU_LOG_PAGE)) { 4464 qemu_log("guest_base 0x%lx\n", guest_base); 4465 log_page_dump(); 4466 4467 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 4468 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 4469 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", info->start_code); 4470 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", info->start_data); 4471 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 4472 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", info->start_stack); 4473 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 4474 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 4475 qemu_log("argv_start 0x" TARGET_ABI_FMT_lx "\n", info->arg_start); 4476 qemu_log("env_start 0x" TARGET_ABI_FMT_lx "\n", 4477 info->arg_end + (abi_ulong)sizeof(abi_ulong)); 4478 qemu_log("auxv_start 0x" TARGET_ABI_FMT_lx "\n", info->saved_auxv); 4479 } 4480 4481 target_set_brk(info->brk); 4482 syscall_init(); 4483 signal_init(); 4484 4485 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 4486 generating the prologue until now so that the prologue can take 4487 the real value of GUEST_BASE into account. */ 4488 tcg_prologue_init(tcg_ctx); 4489 tcg_region_init(); 4490 4491 #if defined(TARGET_I386) 4492 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 4493 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 4494 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 4495 env->cr[4] |= CR4_OSFXSR_MASK; 4496 env->hflags |= HF_OSFXSR_MASK; 4497 } 4498 #ifndef TARGET_ABI32 4499 /* enable 64 bit mode if possible */ 4500 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 4501 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 4502 exit(EXIT_FAILURE); 4503 } 4504 env->cr[4] |= CR4_PAE_MASK; 4505 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 4506 env->hflags |= HF_LMA_MASK; 4507 #endif 4508 4509 /* flags setup : we activate the IRQs by default as in user mode */ 4510 env->eflags |= IF_MASK; 4511 4512 /* linux register setup */ 4513 #ifndef TARGET_ABI32 4514 env->regs[R_EAX] = regs->rax; 4515 env->regs[R_EBX] = regs->rbx; 4516 env->regs[R_ECX] = regs->rcx; 4517 env->regs[R_EDX] = regs->rdx; 4518 env->regs[R_ESI] = regs->rsi; 4519 env->regs[R_EDI] = regs->rdi; 4520 env->regs[R_EBP] = regs->rbp; 4521 env->regs[R_ESP] = regs->rsp; 4522 env->eip = regs->rip; 4523 #else 4524 env->regs[R_EAX] = regs->eax; 4525 env->regs[R_EBX] = regs->ebx; 4526 env->regs[R_ECX] = regs->ecx; 4527 env->regs[R_EDX] = regs->edx; 4528 env->regs[R_ESI] = regs->esi; 4529 env->regs[R_EDI] = regs->edi; 4530 env->regs[R_EBP] = regs->ebp; 4531 env->regs[R_ESP] = regs->esp; 4532 env->eip = regs->eip; 4533 #endif 4534 4535 /* linux interrupt setup */ 4536 #ifndef TARGET_ABI32 4537 env->idt.limit = 511; 4538 #else 4539 env->idt.limit = 255; 4540 #endif 4541 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 4542 PROT_READ|PROT_WRITE, 4543 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4544 idt_table = g2h(env->idt.base); 4545 set_idt(0, 0); 4546 set_idt(1, 0); 4547 set_idt(2, 0); 4548 set_idt(3, 3); 4549 set_idt(4, 3); 4550 set_idt(5, 0); 4551 set_idt(6, 0); 4552 set_idt(7, 0); 4553 set_idt(8, 0); 4554 set_idt(9, 0); 4555 set_idt(10, 0); 4556 set_idt(11, 0); 4557 set_idt(12, 0); 4558 set_idt(13, 0); 4559 set_idt(14, 0); 4560 set_idt(15, 0); 4561 set_idt(16, 0); 4562 set_idt(17, 0); 4563 set_idt(18, 0); 4564 set_idt(19, 0); 4565 set_idt(0x80, 3); 4566 4567 /* linux segment setup */ 4568 { 4569 uint64_t *gdt_table; 4570 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 4571 PROT_READ|PROT_WRITE, 4572 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4573 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 4574 gdt_table = g2h(env->gdt.base); 4575 #ifdef TARGET_ABI32 4576 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4577 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4578 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4579 #else 4580 /* 64 bit code segment */ 4581 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4582 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4583 DESC_L_MASK | 4584 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4585 #endif 4586 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 4587 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4588 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 4589 } 4590 cpu_x86_load_seg(env, R_CS, __USER_CS); 4591 cpu_x86_load_seg(env, R_SS, __USER_DS); 4592 #ifdef TARGET_ABI32 4593 cpu_x86_load_seg(env, R_DS, __USER_DS); 4594 cpu_x86_load_seg(env, R_ES, __USER_DS); 4595 cpu_x86_load_seg(env, R_FS, __USER_DS); 4596 cpu_x86_load_seg(env, R_GS, __USER_DS); 4597 /* This hack makes Wine work... */ 4598 env->segs[R_FS].selector = 0; 4599 #else 4600 cpu_x86_load_seg(env, R_DS, 0); 4601 cpu_x86_load_seg(env, R_ES, 0); 4602 cpu_x86_load_seg(env, R_FS, 0); 4603 cpu_x86_load_seg(env, R_GS, 0); 4604 #endif 4605 #elif defined(TARGET_AARCH64) 4606 { 4607 int i; 4608 4609 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { 4610 fprintf(stderr, 4611 "The selected ARM CPU does not support 64 bit mode\n"); 4612 exit(EXIT_FAILURE); 4613 } 4614 4615 for (i = 0; i < 31; i++) { 4616 env->xregs[i] = regs->regs[i]; 4617 } 4618 env->pc = regs->pc; 4619 env->xregs[31] = regs->sp; 4620 #ifdef TARGET_WORDS_BIGENDIAN 4621 env->cp15.sctlr_el[1] |= SCTLR_E0E; 4622 for (i = 1; i < 4; ++i) { 4623 env->cp15.sctlr_el[i] |= SCTLR_EE; 4624 } 4625 #endif 4626 } 4627 #elif defined(TARGET_ARM) 4628 { 4629 int i; 4630 cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC, 4631 CPSRWriteByInstr); 4632 for(i = 0; i < 16; i++) { 4633 env->regs[i] = regs->uregs[i]; 4634 } 4635 #ifdef TARGET_WORDS_BIGENDIAN 4636 /* Enable BE8. */ 4637 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 4638 && (info->elf_flags & EF_ARM_BE8)) { 4639 env->uncached_cpsr |= CPSR_E; 4640 env->cp15.sctlr_el[1] |= SCTLR_E0E; 4641 } else { 4642 env->cp15.sctlr_el[1] |= SCTLR_B; 4643 } 4644 #endif 4645 } 4646 #elif defined(TARGET_UNICORE32) 4647 { 4648 int i; 4649 cpu_asr_write(env, regs->uregs[32], 0xffffffff); 4650 for (i = 0; i < 32; i++) { 4651 env->regs[i] = regs->uregs[i]; 4652 } 4653 } 4654 #elif defined(TARGET_SPARC) 4655 { 4656 int i; 4657 env->pc = regs->pc; 4658 env->npc = regs->npc; 4659 env->y = regs->y; 4660 for(i = 0; i < 8; i++) 4661 env->gregs[i] = regs->u_regs[i]; 4662 for(i = 0; i < 8; i++) 4663 env->regwptr[i] = regs->u_regs[i + 8]; 4664 } 4665 #elif defined(TARGET_PPC) 4666 { 4667 int i; 4668 4669 #if defined(TARGET_PPC64) 4670 int flag = (env->insns_flags2 & PPC2_BOOKE206) ? MSR_CM : MSR_SF; 4671 #if defined(TARGET_ABI32) 4672 env->msr &= ~((target_ulong)1 << flag); 4673 #else 4674 env->msr |= (target_ulong)1 << flag; 4675 #endif 4676 #endif 4677 env->nip = regs->nip; 4678 for(i = 0; i < 32; i++) { 4679 env->gpr[i] = regs->gpr[i]; 4680 } 4681 } 4682 #elif defined(TARGET_M68K) 4683 { 4684 env->pc = regs->pc; 4685 env->dregs[0] = regs->d0; 4686 env->dregs[1] = regs->d1; 4687 env->dregs[2] = regs->d2; 4688 env->dregs[3] = regs->d3; 4689 env->dregs[4] = regs->d4; 4690 env->dregs[5] = regs->d5; 4691 env->dregs[6] = regs->d6; 4692 env->dregs[7] = regs->d7; 4693 env->aregs[0] = regs->a0; 4694 env->aregs[1] = regs->a1; 4695 env->aregs[2] = regs->a2; 4696 env->aregs[3] = regs->a3; 4697 env->aregs[4] = regs->a4; 4698 env->aregs[5] = regs->a5; 4699 env->aregs[6] = regs->a6; 4700 env->aregs[7] = regs->usp; 4701 env->sr = regs->sr; 4702 ts->sim_syscalls = 1; 4703 } 4704 #elif defined(TARGET_MICROBLAZE) 4705 { 4706 env->regs[0] = regs->r0; 4707 env->regs[1] = regs->r1; 4708 env->regs[2] = regs->r2; 4709 env->regs[3] = regs->r3; 4710 env->regs[4] = regs->r4; 4711 env->regs[5] = regs->r5; 4712 env->regs[6] = regs->r6; 4713 env->regs[7] = regs->r7; 4714 env->regs[8] = regs->r8; 4715 env->regs[9] = regs->r9; 4716 env->regs[10] = regs->r10; 4717 env->regs[11] = regs->r11; 4718 env->regs[12] = regs->r12; 4719 env->regs[13] = regs->r13; 4720 env->regs[14] = regs->r14; 4721 env->regs[15] = regs->r15; 4722 env->regs[16] = regs->r16; 4723 env->regs[17] = regs->r17; 4724 env->regs[18] = regs->r18; 4725 env->regs[19] = regs->r19; 4726 env->regs[20] = regs->r20; 4727 env->regs[21] = regs->r21; 4728 env->regs[22] = regs->r22; 4729 env->regs[23] = regs->r23; 4730 env->regs[24] = regs->r24; 4731 env->regs[25] = regs->r25; 4732 env->regs[26] = regs->r26; 4733 env->regs[27] = regs->r27; 4734 env->regs[28] = regs->r28; 4735 env->regs[29] = regs->r29; 4736 env->regs[30] = regs->r30; 4737 env->regs[31] = regs->r31; 4738 env->sregs[SR_PC] = regs->pc; 4739 } 4740 #elif defined(TARGET_MIPS) 4741 { 4742 int i; 4743 4744 for(i = 0; i < 32; i++) { 4745 env->active_tc.gpr[i] = regs->regs[i]; 4746 } 4747 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; 4748 if (regs->cp0_epc & 1) { 4749 env->hflags |= MIPS_HFLAG_M16; 4750 } 4751 if (((info->elf_flags & EF_MIPS_NAN2008) != 0) != 4752 ((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) != 0)) { 4753 if ((env->active_fpu.fcr31_rw_bitmask & 4754 (1 << FCR31_NAN2008)) == 0) { 4755 fprintf(stderr, "ELF binary's NaN mode not supported by CPU\n"); 4756 exit(1); 4757 } 4758 if ((info->elf_flags & EF_MIPS_NAN2008) != 0) { 4759 env->active_fpu.fcr31 |= (1 << FCR31_NAN2008); 4760 } else { 4761 env->active_fpu.fcr31 &= ~(1 << FCR31_NAN2008); 4762 } 4763 restore_snan_bit_mode(env); 4764 } 4765 } 4766 #elif defined(TARGET_NIOS2) 4767 { 4768 env->regs[0] = 0; 4769 env->regs[1] = regs->r1; 4770 env->regs[2] = regs->r2; 4771 env->regs[3] = regs->r3; 4772 env->regs[4] = regs->r4; 4773 env->regs[5] = regs->r5; 4774 env->regs[6] = regs->r6; 4775 env->regs[7] = regs->r7; 4776 env->regs[8] = regs->r8; 4777 env->regs[9] = regs->r9; 4778 env->regs[10] = regs->r10; 4779 env->regs[11] = regs->r11; 4780 env->regs[12] = regs->r12; 4781 env->regs[13] = regs->r13; 4782 env->regs[14] = regs->r14; 4783 env->regs[15] = regs->r15; 4784 /* TODO: unsigned long orig_r2; */ 4785 env->regs[R_RA] = regs->ra; 4786 env->regs[R_FP] = regs->fp; 4787 env->regs[R_SP] = regs->sp; 4788 env->regs[R_GP] = regs->gp; 4789 env->regs[CR_ESTATUS] = regs->estatus; 4790 env->regs[R_EA] = regs->ea; 4791 /* TODO: unsigned long orig_r7; */ 4792 4793 /* Emulate eret when starting thread. */ 4794 env->regs[R_PC] = regs->ea; 4795 } 4796 #elif defined(TARGET_OPENRISC) 4797 { 4798 int i; 4799 4800 for (i = 0; i < 32; i++) { 4801 cpu_set_gpr(env, i, regs->gpr[i]); 4802 } 4803 env->pc = regs->pc; 4804 cpu_set_sr(env, regs->sr); 4805 } 4806 #elif defined(TARGET_SH4) 4807 { 4808 int i; 4809 4810 for(i = 0; i < 16; i++) { 4811 env->gregs[i] = regs->regs[i]; 4812 } 4813 env->pc = regs->pc; 4814 } 4815 #elif defined(TARGET_ALPHA) 4816 { 4817 int i; 4818 4819 for(i = 0; i < 28; i++) { 4820 env->ir[i] = ((abi_ulong *)regs)[i]; 4821 } 4822 env->ir[IR_SP] = regs->usp; 4823 env->pc = regs->pc; 4824 } 4825 #elif defined(TARGET_CRIS) 4826 { 4827 env->regs[0] = regs->r0; 4828 env->regs[1] = regs->r1; 4829 env->regs[2] = regs->r2; 4830 env->regs[3] = regs->r3; 4831 env->regs[4] = regs->r4; 4832 env->regs[5] = regs->r5; 4833 env->regs[6] = regs->r6; 4834 env->regs[7] = regs->r7; 4835 env->regs[8] = regs->r8; 4836 env->regs[9] = regs->r9; 4837 env->regs[10] = regs->r10; 4838 env->regs[11] = regs->r11; 4839 env->regs[12] = regs->r12; 4840 env->regs[13] = regs->r13; 4841 env->regs[14] = info->start_stack; 4842 env->regs[15] = regs->acr; 4843 env->pc = regs->erp; 4844 } 4845 #elif defined(TARGET_S390X) 4846 { 4847 int i; 4848 for (i = 0; i < 16; i++) { 4849 env->regs[i] = regs->gprs[i]; 4850 } 4851 env->psw.mask = regs->psw.mask; 4852 env->psw.addr = regs->psw.addr; 4853 } 4854 #elif defined(TARGET_TILEGX) 4855 { 4856 int i; 4857 for (i = 0; i < TILEGX_R_COUNT; i++) { 4858 env->regs[i] = regs->regs[i]; 4859 } 4860 for (i = 0; i < TILEGX_SPR_COUNT; i++) { 4861 env->spregs[i] = 0; 4862 } 4863 env->pc = regs->pc; 4864 } 4865 #elif defined(TARGET_HPPA) 4866 { 4867 int i; 4868 for (i = 1; i < 32; i++) { 4869 env->gr[i] = regs->gr[i]; 4870 } 4871 env->iaoq_f = regs->iaoq[0]; 4872 env->iaoq_b = regs->iaoq[1]; 4873 } 4874 #else 4875 #error unsupported target CPU 4876 #endif 4877 4878 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 4879 ts->stack_base = info->start_stack; 4880 ts->heap_base = info->brk; 4881 /* This will be filled in on the first SYS_HEAPINFO call. */ 4882 ts->heap_limit = 0; 4883 #endif 4884 4885 if (gdbstub_port) { 4886 if (gdbserver_start(gdbstub_port) < 0) { 4887 fprintf(stderr, "qemu: could not open gdbserver on port %d\n", 4888 gdbstub_port); 4889 exit(EXIT_FAILURE); 4890 } 4891 gdb_handlesig(cpu, 0); 4892 } 4893 cpu_loop(env); 4894 /* never exits */ 4895 return 0; 4896 } 4897