xref: /openbmc/qemu/linux-user/main.c (revision d901eff3)
1 /*
2  *  qemu user main
3  *
4  *  Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <stdarg.h>
22 #include <string.h>
23 #include <errno.h>
24 #include <unistd.h>
25 #include <sys/mman.h>
26 #include <sys/syscall.h>
27 #include <sys/resource.h>
28 
29 #include "qemu.h"
30 #include "qemu-common.h"
31 #include "cache-utils.h"
32 #include "cpu.h"
33 #include "tcg.h"
34 #include "qemu-timer.h"
35 #include "envlist.h"
36 #include "elf.h"
37 
38 #define DEBUG_LOGFILE "/tmp/qemu.log"
39 
40 char *exec_path;
41 
42 int singlestep;
43 const char *filename;
44 const char *argv0;
45 int gdbstub_port;
46 envlist_t *envlist;
47 const char *cpu_model;
48 unsigned long mmap_min_addr;
49 #if defined(CONFIG_USE_GUEST_BASE)
50 unsigned long guest_base;
51 int have_guest_base;
52 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
53 /*
54  * When running 32-on-64 we should make sure we can fit all of the possible
55  * guest address space into a contiguous chunk of virtual host memory.
56  *
57  * This way we will never overlap with our own libraries or binaries or stack
58  * or anything else that QEMU maps.
59  */
60 unsigned long reserved_va = 0xf7000000;
61 #else
62 unsigned long reserved_va;
63 #endif
64 #endif
65 
66 static void usage(void);
67 
68 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
69 const char *qemu_uname_release = CONFIG_UNAME_RELEASE;
70 
71 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
72    we allocate a bigger stack. Need a better solution, for example
73    by remapping the process stack directly at the right place */
74 unsigned long guest_stack_size = 8 * 1024 * 1024UL;
75 
76 void gemu_log(const char *fmt, ...)
77 {
78     va_list ap;
79 
80     va_start(ap, fmt);
81     vfprintf(stderr, fmt, ap);
82     va_end(ap);
83 }
84 
85 #if defined(TARGET_I386)
86 int cpu_get_pic_interrupt(CPUX86State *env)
87 {
88     return -1;
89 }
90 #endif
91 
92 /* timers for rdtsc */
93 
94 #if 0
95 
96 static uint64_t emu_time;
97 
98 int64_t cpu_get_real_ticks(void)
99 {
100     return emu_time++;
101 }
102 
103 #endif
104 
105 #if defined(CONFIG_USE_NPTL)
106 /***********************************************************/
107 /* Helper routines for implementing atomic operations.  */
108 
109 /* To implement exclusive operations we force all cpus to syncronise.
110    We don't require a full sync, only that no cpus are executing guest code.
111    The alternative is to map target atomic ops onto host equivalents,
112    which requires quite a lot of per host/target work.  */
113 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER;
114 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER;
115 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER;
116 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER;
117 static int pending_cpus;
118 
119 /* Make sure everything is in a consistent state for calling fork().  */
120 void fork_start(void)
121 {
122     pthread_mutex_lock(&tb_lock);
123     pthread_mutex_lock(&exclusive_lock);
124     mmap_fork_start();
125 }
126 
127 void fork_end(int child)
128 {
129     mmap_fork_end(child);
130     if (child) {
131         /* Child processes created by fork() only have a single thread.
132            Discard information about the parent threads.  */
133         first_cpu = thread_env;
134         thread_env->next_cpu = NULL;
135         pending_cpus = 0;
136         pthread_mutex_init(&exclusive_lock, NULL);
137         pthread_mutex_init(&cpu_list_mutex, NULL);
138         pthread_cond_init(&exclusive_cond, NULL);
139         pthread_cond_init(&exclusive_resume, NULL);
140         pthread_mutex_init(&tb_lock, NULL);
141         gdbserver_fork(thread_env);
142     } else {
143         pthread_mutex_unlock(&exclusive_lock);
144         pthread_mutex_unlock(&tb_lock);
145     }
146 }
147 
148 /* Wait for pending exclusive operations to complete.  The exclusive lock
149    must be held.  */
150 static inline void exclusive_idle(void)
151 {
152     while (pending_cpus) {
153         pthread_cond_wait(&exclusive_resume, &exclusive_lock);
154     }
155 }
156 
157 /* Start an exclusive operation.
158    Must only be called from outside cpu_arm_exec.   */
159 static inline void start_exclusive(void)
160 {
161     CPUArchState *other;
162     pthread_mutex_lock(&exclusive_lock);
163     exclusive_idle();
164 
165     pending_cpus = 1;
166     /* Make all other cpus stop executing.  */
167     for (other = first_cpu; other; other = other->next_cpu) {
168         if (other->running) {
169             pending_cpus++;
170             cpu_exit(other);
171         }
172     }
173     if (pending_cpus > 1) {
174         pthread_cond_wait(&exclusive_cond, &exclusive_lock);
175     }
176 }
177 
178 /* Finish an exclusive operation.  */
179 static inline void end_exclusive(void)
180 {
181     pending_cpus = 0;
182     pthread_cond_broadcast(&exclusive_resume);
183     pthread_mutex_unlock(&exclusive_lock);
184 }
185 
186 /* Wait for exclusive ops to finish, and begin cpu execution.  */
187 static inline void cpu_exec_start(CPUArchState *env)
188 {
189     pthread_mutex_lock(&exclusive_lock);
190     exclusive_idle();
191     env->running = 1;
192     pthread_mutex_unlock(&exclusive_lock);
193 }
194 
195 /* Mark cpu as not executing, and release pending exclusive ops.  */
196 static inline void cpu_exec_end(CPUArchState *env)
197 {
198     pthread_mutex_lock(&exclusive_lock);
199     env->running = 0;
200     if (pending_cpus > 1) {
201         pending_cpus--;
202         if (pending_cpus == 1) {
203             pthread_cond_signal(&exclusive_cond);
204         }
205     }
206     exclusive_idle();
207     pthread_mutex_unlock(&exclusive_lock);
208 }
209 
210 void cpu_list_lock(void)
211 {
212     pthread_mutex_lock(&cpu_list_mutex);
213 }
214 
215 void cpu_list_unlock(void)
216 {
217     pthread_mutex_unlock(&cpu_list_mutex);
218 }
219 #else /* if !CONFIG_USE_NPTL */
220 /* These are no-ops because we are not threadsafe.  */
221 static inline void cpu_exec_start(CPUArchState *env)
222 {
223 }
224 
225 static inline void cpu_exec_end(CPUArchState *env)
226 {
227 }
228 
229 static inline void start_exclusive(void)
230 {
231 }
232 
233 static inline void end_exclusive(void)
234 {
235 }
236 
237 void fork_start(void)
238 {
239 }
240 
241 void fork_end(int child)
242 {
243     if (child) {
244         gdbserver_fork(thread_env);
245     }
246 }
247 
248 void cpu_list_lock(void)
249 {
250 }
251 
252 void cpu_list_unlock(void)
253 {
254 }
255 #endif
256 
257 
258 #ifdef TARGET_I386
259 /***********************************************************/
260 /* CPUX86 core interface */
261 
262 void cpu_smm_update(CPUX86State *env)
263 {
264 }
265 
266 uint64_t cpu_get_tsc(CPUX86State *env)
267 {
268     return cpu_get_real_ticks();
269 }
270 
271 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
272                      int flags)
273 {
274     unsigned int e1, e2;
275     uint32_t *p;
276     e1 = (addr << 16) | (limit & 0xffff);
277     e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
278     e2 |= flags;
279     p = ptr;
280     p[0] = tswap32(e1);
281     p[1] = tswap32(e2);
282 }
283 
284 static uint64_t *idt_table;
285 #ifdef TARGET_X86_64
286 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
287                        uint64_t addr, unsigned int sel)
288 {
289     uint32_t *p, e1, e2;
290     e1 = (addr & 0xffff) | (sel << 16);
291     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
292     p = ptr;
293     p[0] = tswap32(e1);
294     p[1] = tswap32(e2);
295     p[2] = tswap32(addr >> 32);
296     p[3] = 0;
297 }
298 /* only dpl matters as we do only user space emulation */
299 static void set_idt(int n, unsigned int dpl)
300 {
301     set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
302 }
303 #else
304 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
305                      uint32_t addr, unsigned int sel)
306 {
307     uint32_t *p, e1, e2;
308     e1 = (addr & 0xffff) | (sel << 16);
309     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
310     p = ptr;
311     p[0] = tswap32(e1);
312     p[1] = tswap32(e2);
313 }
314 
315 /* only dpl matters as we do only user space emulation */
316 static void set_idt(int n, unsigned int dpl)
317 {
318     set_gate(idt_table + n, 0, dpl, 0, 0);
319 }
320 #endif
321 
322 void cpu_loop(CPUX86State *env)
323 {
324     int trapnr;
325     abi_ulong pc;
326     target_siginfo_t info;
327 
328     for(;;) {
329         trapnr = cpu_x86_exec(env);
330         switch(trapnr) {
331         case 0x80:
332             /* linux syscall from int $0x80 */
333             env->regs[R_EAX] = do_syscall(env,
334                                           env->regs[R_EAX],
335                                           env->regs[R_EBX],
336                                           env->regs[R_ECX],
337                                           env->regs[R_EDX],
338                                           env->regs[R_ESI],
339                                           env->regs[R_EDI],
340                                           env->regs[R_EBP],
341                                           0, 0);
342             break;
343 #ifndef TARGET_ABI32
344         case EXCP_SYSCALL:
345             /* linux syscall from syscall instruction */
346             env->regs[R_EAX] = do_syscall(env,
347                                           env->regs[R_EAX],
348                                           env->regs[R_EDI],
349                                           env->regs[R_ESI],
350                                           env->regs[R_EDX],
351                                           env->regs[10],
352                                           env->regs[8],
353                                           env->regs[9],
354                                           0, 0);
355             env->eip = env->exception_next_eip;
356             break;
357 #endif
358         case EXCP0B_NOSEG:
359         case EXCP0C_STACK:
360             info.si_signo = SIGBUS;
361             info.si_errno = 0;
362             info.si_code = TARGET_SI_KERNEL;
363             info._sifields._sigfault._addr = 0;
364             queue_signal(env, info.si_signo, &info);
365             break;
366         case EXCP0D_GPF:
367             /* XXX: potential problem if ABI32 */
368 #ifndef TARGET_X86_64
369             if (env->eflags & VM_MASK) {
370                 handle_vm86_fault(env);
371             } else
372 #endif
373             {
374                 info.si_signo = SIGSEGV;
375                 info.si_errno = 0;
376                 info.si_code = TARGET_SI_KERNEL;
377                 info._sifields._sigfault._addr = 0;
378                 queue_signal(env, info.si_signo, &info);
379             }
380             break;
381         case EXCP0E_PAGE:
382             info.si_signo = SIGSEGV;
383             info.si_errno = 0;
384             if (!(env->error_code & 1))
385                 info.si_code = TARGET_SEGV_MAPERR;
386             else
387                 info.si_code = TARGET_SEGV_ACCERR;
388             info._sifields._sigfault._addr = env->cr[2];
389             queue_signal(env, info.si_signo, &info);
390             break;
391         case EXCP00_DIVZ:
392 #ifndef TARGET_X86_64
393             if (env->eflags & VM_MASK) {
394                 handle_vm86_trap(env, trapnr);
395             } else
396 #endif
397             {
398                 /* division by zero */
399                 info.si_signo = SIGFPE;
400                 info.si_errno = 0;
401                 info.si_code = TARGET_FPE_INTDIV;
402                 info._sifields._sigfault._addr = env->eip;
403                 queue_signal(env, info.si_signo, &info);
404             }
405             break;
406         case EXCP01_DB:
407         case EXCP03_INT3:
408 #ifndef TARGET_X86_64
409             if (env->eflags & VM_MASK) {
410                 handle_vm86_trap(env, trapnr);
411             } else
412 #endif
413             {
414                 info.si_signo = SIGTRAP;
415                 info.si_errno = 0;
416                 if (trapnr == EXCP01_DB) {
417                     info.si_code = TARGET_TRAP_BRKPT;
418                     info._sifields._sigfault._addr = env->eip;
419                 } else {
420                     info.si_code = TARGET_SI_KERNEL;
421                     info._sifields._sigfault._addr = 0;
422                 }
423                 queue_signal(env, info.si_signo, &info);
424             }
425             break;
426         case EXCP04_INTO:
427         case EXCP05_BOUND:
428 #ifndef TARGET_X86_64
429             if (env->eflags & VM_MASK) {
430                 handle_vm86_trap(env, trapnr);
431             } else
432 #endif
433             {
434                 info.si_signo = SIGSEGV;
435                 info.si_errno = 0;
436                 info.si_code = TARGET_SI_KERNEL;
437                 info._sifields._sigfault._addr = 0;
438                 queue_signal(env, info.si_signo, &info);
439             }
440             break;
441         case EXCP06_ILLOP:
442             info.si_signo = SIGILL;
443             info.si_errno = 0;
444             info.si_code = TARGET_ILL_ILLOPN;
445             info._sifields._sigfault._addr = env->eip;
446             queue_signal(env, info.si_signo, &info);
447             break;
448         case EXCP_INTERRUPT:
449             /* just indicate that signals should be handled asap */
450             break;
451         case EXCP_DEBUG:
452             {
453                 int sig;
454 
455                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
456                 if (sig)
457                   {
458                     info.si_signo = sig;
459                     info.si_errno = 0;
460                     info.si_code = TARGET_TRAP_BRKPT;
461                     queue_signal(env, info.si_signo, &info);
462                   }
463             }
464             break;
465         default:
466             pc = env->segs[R_CS].base + env->eip;
467             fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
468                     (long)pc, trapnr);
469             abort();
470         }
471         process_pending_signals(env);
472     }
473 }
474 #endif
475 
476 #ifdef TARGET_ARM
477 
478 #define get_user_code_u32(x, gaddr, doswap)             \
479     ({ abi_long __r = get_user_u32((x), (gaddr));       \
480         if (!__r && (doswap)) {                         \
481             (x) = bswap32(x);                           \
482         }                                               \
483         __r;                                            \
484     })
485 
486 #define get_user_code_u16(x, gaddr, doswap)             \
487     ({ abi_long __r = get_user_u16((x), (gaddr));       \
488         if (!__r && (doswap)) {                         \
489             (x) = bswap16(x);                           \
490         }                                               \
491         __r;                                            \
492     })
493 
494 /*
495  * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
496  * Input:
497  * r0 = pointer to oldval
498  * r1 = pointer to newval
499  * r2 = pointer to target value
500  *
501  * Output:
502  * r0 = 0 if *ptr was changed, non-0 if no exchange happened
503  * C set if *ptr was changed, clear if no exchange happened
504  *
505  * Note segv's in kernel helpers are a bit tricky, we can set the
506  * data address sensibly but the PC address is just the entry point.
507  */
508 static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
509 {
510     uint64_t oldval, newval, val;
511     uint32_t addr, cpsr;
512     target_siginfo_t info;
513 
514     /* Based on the 32 bit code in do_kernel_trap */
515 
516     /* XXX: This only works between threads, not between processes.
517        It's probably possible to implement this with native host
518        operations. However things like ldrex/strex are much harder so
519        there's not much point trying.  */
520     start_exclusive();
521     cpsr = cpsr_read(env);
522     addr = env->regs[2];
523 
524     if (get_user_u64(oldval, env->regs[0])) {
525         env->cp15.c6_data = env->regs[0];
526         goto segv;
527     };
528 
529     if (get_user_u64(newval, env->regs[1])) {
530         env->cp15.c6_data = env->regs[1];
531         goto segv;
532     };
533 
534     if (get_user_u64(val, addr)) {
535         env->cp15.c6_data = addr;
536         goto segv;
537     }
538 
539     if (val == oldval) {
540         val = newval;
541 
542         if (put_user_u64(val, addr)) {
543             env->cp15.c6_data = addr;
544             goto segv;
545         };
546 
547         env->regs[0] = 0;
548         cpsr |= CPSR_C;
549     } else {
550         env->regs[0] = -1;
551         cpsr &= ~CPSR_C;
552     }
553     cpsr_write(env, cpsr, CPSR_C);
554     end_exclusive();
555     return;
556 
557 segv:
558     end_exclusive();
559     /* We get the PC of the entry address - which is as good as anything,
560        on a real kernel what you get depends on which mode it uses. */
561     info.si_signo = SIGSEGV;
562     info.si_errno = 0;
563     /* XXX: check env->error_code */
564     info.si_code = TARGET_SEGV_MAPERR;
565     info._sifields._sigfault._addr = env->cp15.c6_data;
566     queue_signal(env, info.si_signo, &info);
567 
568     end_exclusive();
569 }
570 
571 /* Handle a jump to the kernel code page.  */
572 static int
573 do_kernel_trap(CPUARMState *env)
574 {
575     uint32_t addr;
576     uint32_t cpsr;
577     uint32_t val;
578 
579     switch (env->regs[15]) {
580     case 0xffff0fa0: /* __kernel_memory_barrier */
581         /* ??? No-op. Will need to do better for SMP.  */
582         break;
583     case 0xffff0fc0: /* __kernel_cmpxchg */
584          /* XXX: This only works between threads, not between processes.
585             It's probably possible to implement this with native host
586             operations. However things like ldrex/strex are much harder so
587             there's not much point trying.  */
588         start_exclusive();
589         cpsr = cpsr_read(env);
590         addr = env->regs[2];
591         /* FIXME: This should SEGV if the access fails.  */
592         if (get_user_u32(val, addr))
593             val = ~env->regs[0];
594         if (val == env->regs[0]) {
595             val = env->regs[1];
596             /* FIXME: Check for segfaults.  */
597             put_user_u32(val, addr);
598             env->regs[0] = 0;
599             cpsr |= CPSR_C;
600         } else {
601             env->regs[0] = -1;
602             cpsr &= ~CPSR_C;
603         }
604         cpsr_write(env, cpsr, CPSR_C);
605         end_exclusive();
606         break;
607     case 0xffff0fe0: /* __kernel_get_tls */
608         env->regs[0] = env->cp15.c13_tls2;
609         break;
610     case 0xffff0f60: /* __kernel_cmpxchg64 */
611         arm_kernel_cmpxchg64_helper(env);
612         break;
613 
614     default:
615         return 1;
616     }
617     /* Jump back to the caller.  */
618     addr = env->regs[14];
619     if (addr & 1) {
620         env->thumb = 1;
621         addr &= ~1;
622     }
623     env->regs[15] = addr;
624 
625     return 0;
626 }
627 
628 static int do_strex(CPUARMState *env)
629 {
630     uint32_t val;
631     int size;
632     int rc = 1;
633     int segv = 0;
634     uint32_t addr;
635     start_exclusive();
636     addr = env->exclusive_addr;
637     if (addr != env->exclusive_test) {
638         goto fail;
639     }
640     size = env->exclusive_info & 0xf;
641     switch (size) {
642     case 0:
643         segv = get_user_u8(val, addr);
644         break;
645     case 1:
646         segv = get_user_u16(val, addr);
647         break;
648     case 2:
649     case 3:
650         segv = get_user_u32(val, addr);
651         break;
652     default:
653         abort();
654     }
655     if (segv) {
656         env->cp15.c6_data = addr;
657         goto done;
658     }
659     if (val != env->exclusive_val) {
660         goto fail;
661     }
662     if (size == 3) {
663         segv = get_user_u32(val, addr + 4);
664         if (segv) {
665             env->cp15.c6_data = addr + 4;
666             goto done;
667         }
668         if (val != env->exclusive_high) {
669             goto fail;
670         }
671     }
672     val = env->regs[(env->exclusive_info >> 8) & 0xf];
673     switch (size) {
674     case 0:
675         segv = put_user_u8(val, addr);
676         break;
677     case 1:
678         segv = put_user_u16(val, addr);
679         break;
680     case 2:
681     case 3:
682         segv = put_user_u32(val, addr);
683         break;
684     }
685     if (segv) {
686         env->cp15.c6_data = addr;
687         goto done;
688     }
689     if (size == 3) {
690         val = env->regs[(env->exclusive_info >> 12) & 0xf];
691         segv = put_user_u32(val, addr + 4);
692         if (segv) {
693             env->cp15.c6_data = addr + 4;
694             goto done;
695         }
696     }
697     rc = 0;
698 fail:
699     env->regs[15] += 4;
700     env->regs[(env->exclusive_info >> 4) & 0xf] = rc;
701 done:
702     end_exclusive();
703     return segv;
704 }
705 
706 void cpu_loop(CPUARMState *env)
707 {
708     int trapnr;
709     unsigned int n, insn;
710     target_siginfo_t info;
711     uint32_t addr;
712 
713     for(;;) {
714         cpu_exec_start(env);
715         trapnr = cpu_arm_exec(env);
716         cpu_exec_end(env);
717         switch(trapnr) {
718         case EXCP_UDEF:
719             {
720                 TaskState *ts = env->opaque;
721                 uint32_t opcode;
722                 int rc;
723 
724                 /* we handle the FPU emulation here, as Linux */
725                 /* we get the opcode */
726                 /* FIXME - what to do if get_user() fails? */
727                 get_user_code_u32(opcode, env->regs[15], env->bswap_code);
728 
729                 rc = EmulateAll(opcode, &ts->fpa, env);
730                 if (rc == 0) { /* illegal instruction */
731                     info.si_signo = SIGILL;
732                     info.si_errno = 0;
733                     info.si_code = TARGET_ILL_ILLOPN;
734                     info._sifields._sigfault._addr = env->regs[15];
735                     queue_signal(env, info.si_signo, &info);
736                 } else if (rc < 0) { /* FP exception */
737                     int arm_fpe=0;
738 
739                     /* translate softfloat flags to FPSR flags */
740                     if (-rc & float_flag_invalid)
741                       arm_fpe |= BIT_IOC;
742                     if (-rc & float_flag_divbyzero)
743                       arm_fpe |= BIT_DZC;
744                     if (-rc & float_flag_overflow)
745                       arm_fpe |= BIT_OFC;
746                     if (-rc & float_flag_underflow)
747                       arm_fpe |= BIT_UFC;
748                     if (-rc & float_flag_inexact)
749                       arm_fpe |= BIT_IXC;
750 
751                     FPSR fpsr = ts->fpa.fpsr;
752                     //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
753 
754                     if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
755                       info.si_signo = SIGFPE;
756                       info.si_errno = 0;
757 
758                       /* ordered by priority, least first */
759                       if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
760                       if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
761                       if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
762                       if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
763                       if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
764 
765                       info._sifields._sigfault._addr = env->regs[15];
766                       queue_signal(env, info.si_signo, &info);
767                     } else {
768                       env->regs[15] += 4;
769                     }
770 
771                     /* accumulate unenabled exceptions */
772                     if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
773                       fpsr |= BIT_IXC;
774                     if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
775                       fpsr |= BIT_UFC;
776                     if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
777                       fpsr |= BIT_OFC;
778                     if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
779                       fpsr |= BIT_DZC;
780                     if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
781                       fpsr |= BIT_IOC;
782                     ts->fpa.fpsr=fpsr;
783                 } else { /* everything OK */
784                     /* increment PC */
785                     env->regs[15] += 4;
786                 }
787             }
788             break;
789         case EXCP_SWI:
790         case EXCP_BKPT:
791             {
792                 env->eabi = 1;
793                 /* system call */
794                 if (trapnr == EXCP_BKPT) {
795                     if (env->thumb) {
796                         /* FIXME - what to do if get_user() fails? */
797                         get_user_code_u16(insn, env->regs[15], env->bswap_code);
798                         n = insn & 0xff;
799                         env->regs[15] += 2;
800                     } else {
801                         /* FIXME - what to do if get_user() fails? */
802                         get_user_code_u32(insn, env->regs[15], env->bswap_code);
803                         n = (insn & 0xf) | ((insn >> 4) & 0xff0);
804                         env->regs[15] += 4;
805                     }
806                 } else {
807                     if (env->thumb) {
808                         /* FIXME - what to do if get_user() fails? */
809                         get_user_code_u16(insn, env->regs[15] - 2,
810                                           env->bswap_code);
811                         n = insn & 0xff;
812                     } else {
813                         /* FIXME - what to do if get_user() fails? */
814                         get_user_code_u32(insn, env->regs[15] - 4,
815                                           env->bswap_code);
816                         n = insn & 0xffffff;
817                     }
818                 }
819 
820                 if (n == ARM_NR_cacheflush) {
821                     /* nop */
822                 } else if (n == ARM_NR_semihosting
823                            || n == ARM_NR_thumb_semihosting) {
824                     env->regs[0] = do_arm_semihosting (env);
825                 } else if (n == 0 || n >= ARM_SYSCALL_BASE
826                            || (env->thumb && n == ARM_THUMB_SYSCALL)) {
827                     /* linux syscall */
828                     if (env->thumb || n == 0) {
829                         n = env->regs[7];
830                     } else {
831                         n -= ARM_SYSCALL_BASE;
832                         env->eabi = 0;
833                     }
834                     if ( n > ARM_NR_BASE) {
835                         switch (n) {
836                         case ARM_NR_cacheflush:
837                             /* nop */
838                             break;
839                         case ARM_NR_set_tls:
840                             cpu_set_tls(env, env->regs[0]);
841                             env->regs[0] = 0;
842                             break;
843                         default:
844                             gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
845                                      n);
846                             env->regs[0] = -TARGET_ENOSYS;
847                             break;
848                         }
849                     } else {
850                         env->regs[0] = do_syscall(env,
851                                                   n,
852                                                   env->regs[0],
853                                                   env->regs[1],
854                                                   env->regs[2],
855                                                   env->regs[3],
856                                                   env->regs[4],
857                                                   env->regs[5],
858                                                   0, 0);
859                     }
860                 } else {
861                     goto error;
862                 }
863             }
864             break;
865         case EXCP_INTERRUPT:
866             /* just indicate that signals should be handled asap */
867             break;
868         case EXCP_PREFETCH_ABORT:
869             addr = env->cp15.c6_insn;
870             goto do_segv;
871         case EXCP_DATA_ABORT:
872             addr = env->cp15.c6_data;
873         do_segv:
874             {
875                 info.si_signo = SIGSEGV;
876                 info.si_errno = 0;
877                 /* XXX: check env->error_code */
878                 info.si_code = TARGET_SEGV_MAPERR;
879                 info._sifields._sigfault._addr = addr;
880                 queue_signal(env, info.si_signo, &info);
881             }
882             break;
883         case EXCP_DEBUG:
884             {
885                 int sig;
886 
887                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
888                 if (sig)
889                   {
890                     info.si_signo = sig;
891                     info.si_errno = 0;
892                     info.si_code = TARGET_TRAP_BRKPT;
893                     queue_signal(env, info.si_signo, &info);
894                   }
895             }
896             break;
897         case EXCP_KERNEL_TRAP:
898             if (do_kernel_trap(env))
899               goto error;
900             break;
901         case EXCP_STREX:
902             if (do_strex(env)) {
903                 addr = env->cp15.c6_data;
904                 goto do_segv;
905             }
906             break;
907         default:
908         error:
909             fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
910                     trapnr);
911             cpu_dump_state(env, stderr, fprintf, 0);
912             abort();
913         }
914         process_pending_signals(env);
915     }
916 }
917 
918 #endif
919 
920 #ifdef TARGET_UNICORE32
921 
922 void cpu_loop(CPUUniCore32State *env)
923 {
924     int trapnr;
925     unsigned int n, insn;
926     target_siginfo_t info;
927 
928     for (;;) {
929         cpu_exec_start(env);
930         trapnr = uc32_cpu_exec(env);
931         cpu_exec_end(env);
932         switch (trapnr) {
933         case UC32_EXCP_PRIV:
934             {
935                 /* system call */
936                 get_user_u32(insn, env->regs[31] - 4);
937                 n = insn & 0xffffff;
938 
939                 if (n >= UC32_SYSCALL_BASE) {
940                     /* linux syscall */
941                     n -= UC32_SYSCALL_BASE;
942                     if (n == UC32_SYSCALL_NR_set_tls) {
943                             cpu_set_tls(env, env->regs[0]);
944                             env->regs[0] = 0;
945                     } else {
946                         env->regs[0] = do_syscall(env,
947                                                   n,
948                                                   env->regs[0],
949                                                   env->regs[1],
950                                                   env->regs[2],
951                                                   env->regs[3],
952                                                   env->regs[4],
953                                                   env->regs[5],
954                                                   0, 0);
955                     }
956                 } else {
957                     goto error;
958                 }
959             }
960             break;
961         case UC32_EXCP_TRAP:
962             info.si_signo = SIGSEGV;
963             info.si_errno = 0;
964             /* XXX: check env->error_code */
965             info.si_code = TARGET_SEGV_MAPERR;
966             info._sifields._sigfault._addr = env->cp0.c4_faultaddr;
967             queue_signal(env, info.si_signo, &info);
968             break;
969         case EXCP_INTERRUPT:
970             /* just indicate that signals should be handled asap */
971             break;
972         case EXCP_DEBUG:
973             {
974                 int sig;
975 
976                 sig = gdb_handlesig(env, TARGET_SIGTRAP);
977                 if (sig) {
978                     info.si_signo = sig;
979                     info.si_errno = 0;
980                     info.si_code = TARGET_TRAP_BRKPT;
981                     queue_signal(env, info.si_signo, &info);
982                 }
983             }
984             break;
985         default:
986             goto error;
987         }
988         process_pending_signals(env);
989     }
990 
991 error:
992     fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
993     cpu_dump_state(env, stderr, fprintf, 0);
994     abort();
995 }
996 #endif
997 
998 #ifdef TARGET_SPARC
999 #define SPARC64_STACK_BIAS 2047
1000 
1001 //#define DEBUG_WIN
1002 
1003 /* WARNING: dealing with register windows _is_ complicated. More info
1004    can be found at http://www.sics.se/~psm/sparcstack.html */
1005 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
1006 {
1007     index = (index + cwp * 16) % (16 * env->nwindows);
1008     /* wrap handling : if cwp is on the last window, then we use the
1009        registers 'after' the end */
1010     if (index < 8 && env->cwp == env->nwindows - 1)
1011         index += 16 * env->nwindows;
1012     return index;
1013 }
1014 
1015 /* save the register window 'cwp1' */
1016 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
1017 {
1018     unsigned int i;
1019     abi_ulong sp_ptr;
1020 
1021     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1022 #ifdef TARGET_SPARC64
1023     if (sp_ptr & 3)
1024         sp_ptr += SPARC64_STACK_BIAS;
1025 #endif
1026 #if defined(DEBUG_WIN)
1027     printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
1028            sp_ptr, cwp1);
1029 #endif
1030     for(i = 0; i < 16; i++) {
1031         /* FIXME - what to do if put_user() fails? */
1032         put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1033         sp_ptr += sizeof(abi_ulong);
1034     }
1035 }
1036 
1037 static void save_window(CPUSPARCState *env)
1038 {
1039 #ifndef TARGET_SPARC64
1040     unsigned int new_wim;
1041     new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
1042         ((1LL << env->nwindows) - 1);
1043     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1044     env->wim = new_wim;
1045 #else
1046     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1047     env->cansave++;
1048     env->canrestore--;
1049 #endif
1050 }
1051 
1052 static void restore_window(CPUSPARCState *env)
1053 {
1054 #ifndef TARGET_SPARC64
1055     unsigned int new_wim;
1056 #endif
1057     unsigned int i, cwp1;
1058     abi_ulong sp_ptr;
1059 
1060 #ifndef TARGET_SPARC64
1061     new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
1062         ((1LL << env->nwindows) - 1);
1063 #endif
1064 
1065     /* restore the invalid window */
1066     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1067     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1068 #ifdef TARGET_SPARC64
1069     if (sp_ptr & 3)
1070         sp_ptr += SPARC64_STACK_BIAS;
1071 #endif
1072 #if defined(DEBUG_WIN)
1073     printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
1074            sp_ptr, cwp1);
1075 #endif
1076     for(i = 0; i < 16; i++) {
1077         /* FIXME - what to do if get_user() fails? */
1078         get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1079         sp_ptr += sizeof(abi_ulong);
1080     }
1081 #ifdef TARGET_SPARC64
1082     env->canrestore++;
1083     if (env->cleanwin < env->nwindows - 1)
1084         env->cleanwin++;
1085     env->cansave--;
1086 #else
1087     env->wim = new_wim;
1088 #endif
1089 }
1090 
1091 static void flush_windows(CPUSPARCState *env)
1092 {
1093     int offset, cwp1;
1094 
1095     offset = 1;
1096     for(;;) {
1097         /* if restore would invoke restore_window(), then we can stop */
1098         cwp1 = cpu_cwp_inc(env, env->cwp + offset);
1099 #ifndef TARGET_SPARC64
1100         if (env->wim & (1 << cwp1))
1101             break;
1102 #else
1103         if (env->canrestore == 0)
1104             break;
1105         env->cansave++;
1106         env->canrestore--;
1107 #endif
1108         save_window_offset(env, cwp1);
1109         offset++;
1110     }
1111     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1112 #ifndef TARGET_SPARC64
1113     /* set wim so that restore will reload the registers */
1114     env->wim = 1 << cwp1;
1115 #endif
1116 #if defined(DEBUG_WIN)
1117     printf("flush_windows: nb=%d\n", offset - 1);
1118 #endif
1119 }
1120 
1121 void cpu_loop (CPUSPARCState *env)
1122 {
1123     int trapnr;
1124     abi_long ret;
1125     target_siginfo_t info;
1126 
1127     while (1) {
1128         trapnr = cpu_sparc_exec (env);
1129 
1130         switch (trapnr) {
1131 #ifndef TARGET_SPARC64
1132         case 0x88:
1133         case 0x90:
1134 #else
1135         case 0x110:
1136         case 0x16d:
1137 #endif
1138             ret = do_syscall (env, env->gregs[1],
1139                               env->regwptr[0], env->regwptr[1],
1140                               env->regwptr[2], env->regwptr[3],
1141                               env->regwptr[4], env->regwptr[5],
1142                               0, 0);
1143             if ((abi_ulong)ret >= (abi_ulong)(-515)) {
1144 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1145                 env->xcc |= PSR_CARRY;
1146 #else
1147                 env->psr |= PSR_CARRY;
1148 #endif
1149                 ret = -ret;
1150             } else {
1151 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1152                 env->xcc &= ~PSR_CARRY;
1153 #else
1154                 env->psr &= ~PSR_CARRY;
1155 #endif
1156             }
1157             env->regwptr[0] = ret;
1158             /* next instruction */
1159             env->pc = env->npc;
1160             env->npc = env->npc + 4;
1161             break;
1162         case 0x83: /* flush windows */
1163 #ifdef TARGET_ABI32
1164         case 0x103:
1165 #endif
1166             flush_windows(env);
1167             /* next instruction */
1168             env->pc = env->npc;
1169             env->npc = env->npc + 4;
1170             break;
1171 #ifndef TARGET_SPARC64
1172         case TT_WIN_OVF: /* window overflow */
1173             save_window(env);
1174             break;
1175         case TT_WIN_UNF: /* window underflow */
1176             restore_window(env);
1177             break;
1178         case TT_TFAULT:
1179         case TT_DFAULT:
1180             {
1181                 info.si_signo = TARGET_SIGSEGV;
1182                 info.si_errno = 0;
1183                 /* XXX: check env->error_code */
1184                 info.si_code = TARGET_SEGV_MAPERR;
1185                 info._sifields._sigfault._addr = env->mmuregs[4];
1186                 queue_signal(env, info.si_signo, &info);
1187             }
1188             break;
1189 #else
1190         case TT_SPILL: /* window overflow */
1191             save_window(env);
1192             break;
1193         case TT_FILL: /* window underflow */
1194             restore_window(env);
1195             break;
1196         case TT_TFAULT:
1197         case TT_DFAULT:
1198             {
1199                 info.si_signo = TARGET_SIGSEGV;
1200                 info.si_errno = 0;
1201                 /* XXX: check env->error_code */
1202                 info.si_code = TARGET_SEGV_MAPERR;
1203                 if (trapnr == TT_DFAULT)
1204                     info._sifields._sigfault._addr = env->dmmuregs[4];
1205                 else
1206                     info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
1207                 queue_signal(env, info.si_signo, &info);
1208             }
1209             break;
1210 #ifndef TARGET_ABI32
1211         case 0x16e:
1212             flush_windows(env);
1213             sparc64_get_context(env);
1214             break;
1215         case 0x16f:
1216             flush_windows(env);
1217             sparc64_set_context(env);
1218             break;
1219 #endif
1220 #endif
1221         case EXCP_INTERRUPT:
1222             /* just indicate that signals should be handled asap */
1223             break;
1224         case TT_ILL_INSN:
1225             {
1226                 info.si_signo = TARGET_SIGILL;
1227                 info.si_errno = 0;
1228                 info.si_code = TARGET_ILL_ILLOPC;
1229                 info._sifields._sigfault._addr = env->pc;
1230                 queue_signal(env, info.si_signo, &info);
1231             }
1232             break;
1233         case EXCP_DEBUG:
1234             {
1235                 int sig;
1236 
1237                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
1238                 if (sig)
1239                   {
1240                     info.si_signo = sig;
1241                     info.si_errno = 0;
1242                     info.si_code = TARGET_TRAP_BRKPT;
1243                     queue_signal(env, info.si_signo, &info);
1244                   }
1245             }
1246             break;
1247         default:
1248             printf ("Unhandled trap: 0x%x\n", trapnr);
1249             cpu_dump_state(env, stderr, fprintf, 0);
1250             exit (1);
1251         }
1252         process_pending_signals (env);
1253     }
1254 }
1255 
1256 #endif
1257 
1258 #ifdef TARGET_PPC
1259 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env)
1260 {
1261     /* TO FIX */
1262     return 0;
1263 }
1264 
1265 uint64_t cpu_ppc_load_tbl(CPUPPCState *env)
1266 {
1267     return cpu_ppc_get_tb(env);
1268 }
1269 
1270 uint32_t cpu_ppc_load_tbu(CPUPPCState *env)
1271 {
1272     return cpu_ppc_get_tb(env) >> 32;
1273 }
1274 
1275 uint64_t cpu_ppc_load_atbl(CPUPPCState *env)
1276 {
1277     return cpu_ppc_get_tb(env);
1278 }
1279 
1280 uint32_t cpu_ppc_load_atbu(CPUPPCState *env)
1281 {
1282     return cpu_ppc_get_tb(env) >> 32;
1283 }
1284 
1285 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env)
1286 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1287 
1288 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env)
1289 {
1290     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1291 }
1292 
1293 /* XXX: to be fixed */
1294 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1295 {
1296     return -1;
1297 }
1298 
1299 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1300 {
1301     return -1;
1302 }
1303 
1304 #define EXCP_DUMP(env, fmt, ...)                                        \
1305 do {                                                                    \
1306     fprintf(stderr, fmt , ## __VA_ARGS__);                              \
1307     cpu_dump_state(env, stderr, fprintf, 0);                            \
1308     qemu_log(fmt, ## __VA_ARGS__);                                      \
1309     if (qemu_log_enabled()) {                                           \
1310         log_cpu_state(env, 0);                                          \
1311     }                                                                   \
1312 } while (0)
1313 
1314 static int do_store_exclusive(CPUPPCState *env)
1315 {
1316     target_ulong addr;
1317     target_ulong page_addr;
1318     target_ulong val;
1319     int flags;
1320     int segv = 0;
1321 
1322     addr = env->reserve_ea;
1323     page_addr = addr & TARGET_PAGE_MASK;
1324     start_exclusive();
1325     mmap_lock();
1326     flags = page_get_flags(page_addr);
1327     if ((flags & PAGE_READ) == 0) {
1328         segv = 1;
1329     } else {
1330         int reg = env->reserve_info & 0x1f;
1331         int size = (env->reserve_info >> 5) & 0xf;
1332         int stored = 0;
1333 
1334         if (addr == env->reserve_addr) {
1335             switch (size) {
1336             case 1: segv = get_user_u8(val, addr); break;
1337             case 2: segv = get_user_u16(val, addr); break;
1338             case 4: segv = get_user_u32(val, addr); break;
1339 #if defined(TARGET_PPC64)
1340             case 8: segv = get_user_u64(val, addr); break;
1341 #endif
1342             default: abort();
1343             }
1344             if (!segv && val == env->reserve_val) {
1345                 val = env->gpr[reg];
1346                 switch (size) {
1347                 case 1: segv = put_user_u8(val, addr); break;
1348                 case 2: segv = put_user_u16(val, addr); break;
1349                 case 4: segv = put_user_u32(val, addr); break;
1350 #if defined(TARGET_PPC64)
1351                 case 8: segv = put_user_u64(val, addr); break;
1352 #endif
1353                 default: abort();
1354                 }
1355                 if (!segv) {
1356                     stored = 1;
1357                 }
1358             }
1359         }
1360         env->crf[0] = (stored << 1) | xer_so;
1361         env->reserve_addr = (target_ulong)-1;
1362     }
1363     if (!segv) {
1364         env->nip += 4;
1365     }
1366     mmap_unlock();
1367     end_exclusive();
1368     return segv;
1369 }
1370 
1371 void cpu_loop(CPUPPCState *env)
1372 {
1373     target_siginfo_t info;
1374     int trapnr;
1375     target_ulong ret;
1376 
1377     for(;;) {
1378         cpu_exec_start(env);
1379         trapnr = cpu_ppc_exec(env);
1380         cpu_exec_end(env);
1381         switch(trapnr) {
1382         case POWERPC_EXCP_NONE:
1383             /* Just go on */
1384             break;
1385         case POWERPC_EXCP_CRITICAL: /* Critical input                        */
1386             cpu_abort(env, "Critical interrupt while in user mode. "
1387                       "Aborting\n");
1388             break;
1389         case POWERPC_EXCP_MCHECK:   /* Machine check exception               */
1390             cpu_abort(env, "Machine check exception while in user mode. "
1391                       "Aborting\n");
1392             break;
1393         case POWERPC_EXCP_DSI:      /* Data storage exception                */
1394             EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n",
1395                       env->spr[SPR_DAR]);
1396             /* XXX: check this. Seems bugged */
1397             switch (env->error_code & 0xFF000000) {
1398             case 0x40000000:
1399                 info.si_signo = TARGET_SIGSEGV;
1400                 info.si_errno = 0;
1401                 info.si_code = TARGET_SEGV_MAPERR;
1402                 break;
1403             case 0x04000000:
1404                 info.si_signo = TARGET_SIGILL;
1405                 info.si_errno = 0;
1406                 info.si_code = TARGET_ILL_ILLADR;
1407                 break;
1408             case 0x08000000:
1409                 info.si_signo = TARGET_SIGSEGV;
1410                 info.si_errno = 0;
1411                 info.si_code = TARGET_SEGV_ACCERR;
1412                 break;
1413             default:
1414                 /* Let's send a regular segfault... */
1415                 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1416                           env->error_code);
1417                 info.si_signo = TARGET_SIGSEGV;
1418                 info.si_errno = 0;
1419                 info.si_code = TARGET_SEGV_MAPERR;
1420                 break;
1421             }
1422             info._sifields._sigfault._addr = env->nip;
1423             queue_signal(env, info.si_signo, &info);
1424             break;
1425         case POWERPC_EXCP_ISI:      /* Instruction storage exception         */
1426             EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1427                       "\n", env->spr[SPR_SRR0]);
1428             /* XXX: check this */
1429             switch (env->error_code & 0xFF000000) {
1430             case 0x40000000:
1431                 info.si_signo = TARGET_SIGSEGV;
1432             info.si_errno = 0;
1433                 info.si_code = TARGET_SEGV_MAPERR;
1434                 break;
1435             case 0x10000000:
1436             case 0x08000000:
1437                 info.si_signo = TARGET_SIGSEGV;
1438                 info.si_errno = 0;
1439                 info.si_code = TARGET_SEGV_ACCERR;
1440                 break;
1441             default:
1442                 /* Let's send a regular segfault... */
1443                 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1444                           env->error_code);
1445                 info.si_signo = TARGET_SIGSEGV;
1446                 info.si_errno = 0;
1447                 info.si_code = TARGET_SEGV_MAPERR;
1448                 break;
1449             }
1450             info._sifields._sigfault._addr = env->nip - 4;
1451             queue_signal(env, info.si_signo, &info);
1452             break;
1453         case POWERPC_EXCP_EXTERNAL: /* External input                        */
1454             cpu_abort(env, "External interrupt while in user mode. "
1455                       "Aborting\n");
1456             break;
1457         case POWERPC_EXCP_ALIGN:    /* Alignment exception                   */
1458             EXCP_DUMP(env, "Unaligned memory access\n");
1459             /* XXX: check this */
1460             info.si_signo = TARGET_SIGBUS;
1461             info.si_errno = 0;
1462             info.si_code = TARGET_BUS_ADRALN;
1463             info._sifields._sigfault._addr = env->nip - 4;
1464             queue_signal(env, info.si_signo, &info);
1465             break;
1466         case POWERPC_EXCP_PROGRAM:  /* Program exception                     */
1467             /* XXX: check this */
1468             switch (env->error_code & ~0xF) {
1469             case POWERPC_EXCP_FP:
1470                 EXCP_DUMP(env, "Floating point program exception\n");
1471                 info.si_signo = TARGET_SIGFPE;
1472                 info.si_errno = 0;
1473                 switch (env->error_code & 0xF) {
1474                 case POWERPC_EXCP_FP_OX:
1475                     info.si_code = TARGET_FPE_FLTOVF;
1476                     break;
1477                 case POWERPC_EXCP_FP_UX:
1478                     info.si_code = TARGET_FPE_FLTUND;
1479                     break;
1480                 case POWERPC_EXCP_FP_ZX:
1481                 case POWERPC_EXCP_FP_VXZDZ:
1482                     info.si_code = TARGET_FPE_FLTDIV;
1483                     break;
1484                 case POWERPC_EXCP_FP_XX:
1485                     info.si_code = TARGET_FPE_FLTRES;
1486                     break;
1487                 case POWERPC_EXCP_FP_VXSOFT:
1488                     info.si_code = TARGET_FPE_FLTINV;
1489                     break;
1490                 case POWERPC_EXCP_FP_VXSNAN:
1491                 case POWERPC_EXCP_FP_VXISI:
1492                 case POWERPC_EXCP_FP_VXIDI:
1493                 case POWERPC_EXCP_FP_VXIMZ:
1494                 case POWERPC_EXCP_FP_VXVC:
1495                 case POWERPC_EXCP_FP_VXSQRT:
1496                 case POWERPC_EXCP_FP_VXCVI:
1497                     info.si_code = TARGET_FPE_FLTSUB;
1498                     break;
1499                 default:
1500                     EXCP_DUMP(env, "Unknown floating point exception (%02x)\n",
1501                               env->error_code);
1502                     break;
1503                 }
1504                 break;
1505             case POWERPC_EXCP_INVAL:
1506                 EXCP_DUMP(env, "Invalid instruction\n");
1507                 info.si_signo = TARGET_SIGILL;
1508                 info.si_errno = 0;
1509                 switch (env->error_code & 0xF) {
1510                 case POWERPC_EXCP_INVAL_INVAL:
1511                     info.si_code = TARGET_ILL_ILLOPC;
1512                     break;
1513                 case POWERPC_EXCP_INVAL_LSWX:
1514                     info.si_code = TARGET_ILL_ILLOPN;
1515                     break;
1516                 case POWERPC_EXCP_INVAL_SPR:
1517                     info.si_code = TARGET_ILL_PRVREG;
1518                     break;
1519                 case POWERPC_EXCP_INVAL_FP:
1520                     info.si_code = TARGET_ILL_COPROC;
1521                     break;
1522                 default:
1523                     EXCP_DUMP(env, "Unknown invalid operation (%02x)\n",
1524                               env->error_code & 0xF);
1525                     info.si_code = TARGET_ILL_ILLADR;
1526                     break;
1527                 }
1528                 break;
1529             case POWERPC_EXCP_PRIV:
1530                 EXCP_DUMP(env, "Privilege violation\n");
1531                 info.si_signo = TARGET_SIGILL;
1532                 info.si_errno = 0;
1533                 switch (env->error_code & 0xF) {
1534                 case POWERPC_EXCP_PRIV_OPC:
1535                     info.si_code = TARGET_ILL_PRVOPC;
1536                     break;
1537                 case POWERPC_EXCP_PRIV_REG:
1538                     info.si_code = TARGET_ILL_PRVREG;
1539                     break;
1540                 default:
1541                     EXCP_DUMP(env, "Unknown privilege violation (%02x)\n",
1542                               env->error_code & 0xF);
1543                     info.si_code = TARGET_ILL_PRVOPC;
1544                     break;
1545                 }
1546                 break;
1547             case POWERPC_EXCP_TRAP:
1548                 cpu_abort(env, "Tried to call a TRAP\n");
1549                 break;
1550             default:
1551                 /* Should not happen ! */
1552                 cpu_abort(env, "Unknown program exception (%02x)\n",
1553                           env->error_code);
1554                 break;
1555             }
1556             info._sifields._sigfault._addr = env->nip - 4;
1557             queue_signal(env, info.si_signo, &info);
1558             break;
1559         case POWERPC_EXCP_FPU:      /* Floating-point unavailable exception  */
1560             EXCP_DUMP(env, "No floating point allowed\n");
1561             info.si_signo = TARGET_SIGILL;
1562             info.si_errno = 0;
1563             info.si_code = TARGET_ILL_COPROC;
1564             info._sifields._sigfault._addr = env->nip - 4;
1565             queue_signal(env, info.si_signo, &info);
1566             break;
1567         case POWERPC_EXCP_SYSCALL:  /* System call exception                 */
1568             cpu_abort(env, "Syscall exception while in user mode. "
1569                       "Aborting\n");
1570             break;
1571         case POWERPC_EXCP_APU:      /* Auxiliary processor unavailable       */
1572             EXCP_DUMP(env, "No APU instruction allowed\n");
1573             info.si_signo = TARGET_SIGILL;
1574             info.si_errno = 0;
1575             info.si_code = TARGET_ILL_COPROC;
1576             info._sifields._sigfault._addr = env->nip - 4;
1577             queue_signal(env, info.si_signo, &info);
1578             break;
1579         case POWERPC_EXCP_DECR:     /* Decrementer exception                 */
1580             cpu_abort(env, "Decrementer interrupt while in user mode. "
1581                       "Aborting\n");
1582             break;
1583         case POWERPC_EXCP_FIT:      /* Fixed-interval timer interrupt        */
1584             cpu_abort(env, "Fix interval timer interrupt while in user mode. "
1585                       "Aborting\n");
1586             break;
1587         case POWERPC_EXCP_WDT:      /* Watchdog timer interrupt              */
1588             cpu_abort(env, "Watchdog timer interrupt while in user mode. "
1589                       "Aborting\n");
1590             break;
1591         case POWERPC_EXCP_DTLB:     /* Data TLB error                        */
1592             cpu_abort(env, "Data TLB exception while in user mode. "
1593                       "Aborting\n");
1594             break;
1595         case POWERPC_EXCP_ITLB:     /* Instruction TLB error                 */
1596             cpu_abort(env, "Instruction TLB exception while in user mode. "
1597                       "Aborting\n");
1598             break;
1599         case POWERPC_EXCP_SPEU:     /* SPE/embedded floating-point unavail.  */
1600             EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n");
1601             info.si_signo = TARGET_SIGILL;
1602             info.si_errno = 0;
1603             info.si_code = TARGET_ILL_COPROC;
1604             info._sifields._sigfault._addr = env->nip - 4;
1605             queue_signal(env, info.si_signo, &info);
1606             break;
1607         case POWERPC_EXCP_EFPDI:    /* Embedded floating-point data IRQ      */
1608             cpu_abort(env, "Embedded floating-point data IRQ not handled\n");
1609             break;
1610         case POWERPC_EXCP_EFPRI:    /* Embedded floating-point round IRQ     */
1611             cpu_abort(env, "Embedded floating-point round IRQ not handled\n");
1612             break;
1613         case POWERPC_EXCP_EPERFM:   /* Embedded performance monitor IRQ      */
1614             cpu_abort(env, "Performance monitor exception not handled\n");
1615             break;
1616         case POWERPC_EXCP_DOORI:    /* Embedded doorbell interrupt           */
1617             cpu_abort(env, "Doorbell interrupt while in user mode. "
1618                        "Aborting\n");
1619             break;
1620         case POWERPC_EXCP_DOORCI:   /* Embedded doorbell critical interrupt  */
1621             cpu_abort(env, "Doorbell critical interrupt while in user mode. "
1622                       "Aborting\n");
1623             break;
1624         case POWERPC_EXCP_RESET:    /* System reset exception                */
1625             cpu_abort(env, "Reset interrupt while in user mode. "
1626                       "Aborting\n");
1627             break;
1628         case POWERPC_EXCP_DSEG:     /* Data segment exception                */
1629             cpu_abort(env, "Data segment exception while in user mode. "
1630                       "Aborting\n");
1631             break;
1632         case POWERPC_EXCP_ISEG:     /* Instruction segment exception         */
1633             cpu_abort(env, "Instruction segment exception "
1634                       "while in user mode. Aborting\n");
1635             break;
1636         /* PowerPC 64 with hypervisor mode support */
1637         case POWERPC_EXCP_HDECR:    /* Hypervisor decrementer exception      */
1638             cpu_abort(env, "Hypervisor decrementer interrupt "
1639                       "while in user mode. Aborting\n");
1640             break;
1641         case POWERPC_EXCP_TRACE:    /* Trace exception                       */
1642             /* Nothing to do:
1643              * we use this exception to emulate step-by-step execution mode.
1644              */
1645             break;
1646         /* PowerPC 64 with hypervisor mode support */
1647         case POWERPC_EXCP_HDSI:     /* Hypervisor data storage exception     */
1648             cpu_abort(env, "Hypervisor data storage exception "
1649                       "while in user mode. Aborting\n");
1650             break;
1651         case POWERPC_EXCP_HISI:     /* Hypervisor instruction storage excp   */
1652             cpu_abort(env, "Hypervisor instruction storage exception "
1653                       "while in user mode. Aborting\n");
1654             break;
1655         case POWERPC_EXCP_HDSEG:    /* Hypervisor data segment exception     */
1656             cpu_abort(env, "Hypervisor data segment exception "
1657                       "while in user mode. Aborting\n");
1658             break;
1659         case POWERPC_EXCP_HISEG:    /* Hypervisor instruction segment excp   */
1660             cpu_abort(env, "Hypervisor instruction segment exception "
1661                       "while in user mode. Aborting\n");
1662             break;
1663         case POWERPC_EXCP_VPU:      /* Vector unavailable exception          */
1664             EXCP_DUMP(env, "No Altivec instructions allowed\n");
1665             info.si_signo = TARGET_SIGILL;
1666             info.si_errno = 0;
1667             info.si_code = TARGET_ILL_COPROC;
1668             info._sifields._sigfault._addr = env->nip - 4;
1669             queue_signal(env, info.si_signo, &info);
1670             break;
1671         case POWERPC_EXCP_PIT:      /* Programmable interval timer IRQ       */
1672             cpu_abort(env, "Programmable interval timer interrupt "
1673                       "while in user mode. Aborting\n");
1674             break;
1675         case POWERPC_EXCP_IO:       /* IO error exception                    */
1676             cpu_abort(env, "IO error exception while in user mode. "
1677                       "Aborting\n");
1678             break;
1679         case POWERPC_EXCP_RUNM:     /* Run mode exception                    */
1680             cpu_abort(env, "Run mode exception while in user mode. "
1681                       "Aborting\n");
1682             break;
1683         case POWERPC_EXCP_EMUL:     /* Emulation trap exception              */
1684             cpu_abort(env, "Emulation trap exception not handled\n");
1685             break;
1686         case POWERPC_EXCP_IFTLB:    /* Instruction fetch TLB error           */
1687             cpu_abort(env, "Instruction fetch TLB exception "
1688                       "while in user-mode. Aborting");
1689             break;
1690         case POWERPC_EXCP_DLTLB:    /* Data load TLB miss                    */
1691             cpu_abort(env, "Data load TLB exception while in user-mode. "
1692                       "Aborting");
1693             break;
1694         case POWERPC_EXCP_DSTLB:    /* Data store TLB miss                   */
1695             cpu_abort(env, "Data store TLB exception while in user-mode. "
1696                       "Aborting");
1697             break;
1698         case POWERPC_EXCP_FPA:      /* Floating-point assist exception       */
1699             cpu_abort(env, "Floating-point assist exception not handled\n");
1700             break;
1701         case POWERPC_EXCP_IABR:     /* Instruction address breakpoint        */
1702             cpu_abort(env, "Instruction address breakpoint exception "
1703                       "not handled\n");
1704             break;
1705         case POWERPC_EXCP_SMI:      /* System management interrupt           */
1706             cpu_abort(env, "System management interrupt while in user mode. "
1707                       "Aborting\n");
1708             break;
1709         case POWERPC_EXCP_THERM:    /* Thermal interrupt                     */
1710             cpu_abort(env, "Thermal interrupt interrupt while in user mode. "
1711                       "Aborting\n");
1712             break;
1713         case POWERPC_EXCP_PERFM:   /* Embedded performance monitor IRQ      */
1714             cpu_abort(env, "Performance monitor exception not handled\n");
1715             break;
1716         case POWERPC_EXCP_VPUA:     /* Vector assist exception               */
1717             cpu_abort(env, "Vector assist exception not handled\n");
1718             break;
1719         case POWERPC_EXCP_SOFTP:    /* Soft patch exception                  */
1720             cpu_abort(env, "Soft patch exception not handled\n");
1721             break;
1722         case POWERPC_EXCP_MAINT:    /* Maintenance exception                 */
1723             cpu_abort(env, "Maintenance exception while in user mode. "
1724                       "Aborting\n");
1725             break;
1726         case POWERPC_EXCP_STOP:     /* stop translation                      */
1727             /* We did invalidate the instruction cache. Go on */
1728             break;
1729         case POWERPC_EXCP_BRANCH:   /* branch instruction:                   */
1730             /* We just stopped because of a branch. Go on */
1731             break;
1732         case POWERPC_EXCP_SYSCALL_USER:
1733             /* system call in user-mode emulation */
1734             /* WARNING:
1735              * PPC ABI uses overflow flag in cr0 to signal an error
1736              * in syscalls.
1737              */
1738             env->crf[0] &= ~0x1;
1739             ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4],
1740                              env->gpr[5], env->gpr[6], env->gpr[7],
1741                              env->gpr[8], 0, 0);
1742             if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) {
1743                 /* Returning from a successful sigreturn syscall.
1744                    Avoid corrupting register state.  */
1745                 break;
1746             }
1747             if (ret > (target_ulong)(-515)) {
1748                 env->crf[0] |= 0x1;
1749                 ret = -ret;
1750             }
1751             env->gpr[3] = ret;
1752             break;
1753         case POWERPC_EXCP_STCX:
1754             if (do_store_exclusive(env)) {
1755                 info.si_signo = TARGET_SIGSEGV;
1756                 info.si_errno = 0;
1757                 info.si_code = TARGET_SEGV_MAPERR;
1758                 info._sifields._sigfault._addr = env->nip;
1759                 queue_signal(env, info.si_signo, &info);
1760             }
1761             break;
1762         case EXCP_DEBUG:
1763             {
1764                 int sig;
1765 
1766                 sig = gdb_handlesig(env, TARGET_SIGTRAP);
1767                 if (sig) {
1768                     info.si_signo = sig;
1769                     info.si_errno = 0;
1770                     info.si_code = TARGET_TRAP_BRKPT;
1771                     queue_signal(env, info.si_signo, &info);
1772                   }
1773             }
1774             break;
1775         case EXCP_INTERRUPT:
1776             /* just indicate that signals should be handled asap */
1777             break;
1778         default:
1779             cpu_abort(env, "Unknown exception 0x%d. Aborting\n", trapnr);
1780             break;
1781         }
1782         process_pending_signals(env);
1783     }
1784 }
1785 #endif
1786 
1787 #ifdef TARGET_MIPS
1788 
1789 #define MIPS_SYS(name, args) args,
1790 
1791 static const uint8_t mips_syscall_args[] = {
1792 	MIPS_SYS(sys_syscall	, 8)	/* 4000 */
1793 	MIPS_SYS(sys_exit	, 1)
1794 	MIPS_SYS(sys_fork	, 0)
1795 	MIPS_SYS(sys_read	, 3)
1796 	MIPS_SYS(sys_write	, 3)
1797 	MIPS_SYS(sys_open	, 3)	/* 4005 */
1798 	MIPS_SYS(sys_close	, 1)
1799 	MIPS_SYS(sys_waitpid	, 3)
1800 	MIPS_SYS(sys_creat	, 2)
1801 	MIPS_SYS(sys_link	, 2)
1802 	MIPS_SYS(sys_unlink	, 1)	/* 4010 */
1803 	MIPS_SYS(sys_execve	, 0)
1804 	MIPS_SYS(sys_chdir	, 1)
1805 	MIPS_SYS(sys_time	, 1)
1806 	MIPS_SYS(sys_mknod	, 3)
1807 	MIPS_SYS(sys_chmod	, 2)	/* 4015 */
1808 	MIPS_SYS(sys_lchown	, 3)
1809 	MIPS_SYS(sys_ni_syscall	, 0)
1810 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_stat */
1811 	MIPS_SYS(sys_lseek	, 3)
1812 	MIPS_SYS(sys_getpid	, 0)	/* 4020 */
1813 	MIPS_SYS(sys_mount	, 5)
1814 	MIPS_SYS(sys_oldumount	, 1)
1815 	MIPS_SYS(sys_setuid	, 1)
1816 	MIPS_SYS(sys_getuid	, 0)
1817 	MIPS_SYS(sys_stime	, 1)	/* 4025 */
1818 	MIPS_SYS(sys_ptrace	, 4)
1819 	MIPS_SYS(sys_alarm	, 1)
1820 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_fstat */
1821 	MIPS_SYS(sys_pause	, 0)
1822 	MIPS_SYS(sys_utime	, 2)	/* 4030 */
1823 	MIPS_SYS(sys_ni_syscall	, 0)
1824 	MIPS_SYS(sys_ni_syscall	, 0)
1825 	MIPS_SYS(sys_access	, 2)
1826 	MIPS_SYS(sys_nice	, 1)
1827 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4035 */
1828 	MIPS_SYS(sys_sync	, 0)
1829 	MIPS_SYS(sys_kill	, 2)
1830 	MIPS_SYS(sys_rename	, 2)
1831 	MIPS_SYS(sys_mkdir	, 2)
1832 	MIPS_SYS(sys_rmdir	, 1)	/* 4040 */
1833 	MIPS_SYS(sys_dup		, 1)
1834 	MIPS_SYS(sys_pipe	, 0)
1835 	MIPS_SYS(sys_times	, 1)
1836 	MIPS_SYS(sys_ni_syscall	, 0)
1837 	MIPS_SYS(sys_brk		, 1)	/* 4045 */
1838 	MIPS_SYS(sys_setgid	, 1)
1839 	MIPS_SYS(sys_getgid	, 0)
1840 	MIPS_SYS(sys_ni_syscall	, 0)	/* was signal(2) */
1841 	MIPS_SYS(sys_geteuid	, 0)
1842 	MIPS_SYS(sys_getegid	, 0)	/* 4050 */
1843 	MIPS_SYS(sys_acct	, 0)
1844 	MIPS_SYS(sys_umount	, 2)
1845 	MIPS_SYS(sys_ni_syscall	, 0)
1846 	MIPS_SYS(sys_ioctl	, 3)
1847 	MIPS_SYS(sys_fcntl	, 3)	/* 4055 */
1848 	MIPS_SYS(sys_ni_syscall	, 2)
1849 	MIPS_SYS(sys_setpgid	, 2)
1850 	MIPS_SYS(sys_ni_syscall	, 0)
1851 	MIPS_SYS(sys_olduname	, 1)
1852 	MIPS_SYS(sys_umask	, 1)	/* 4060 */
1853 	MIPS_SYS(sys_chroot	, 1)
1854 	MIPS_SYS(sys_ustat	, 2)
1855 	MIPS_SYS(sys_dup2	, 2)
1856 	MIPS_SYS(sys_getppid	, 0)
1857 	MIPS_SYS(sys_getpgrp	, 0)	/* 4065 */
1858 	MIPS_SYS(sys_setsid	, 0)
1859 	MIPS_SYS(sys_sigaction	, 3)
1860 	MIPS_SYS(sys_sgetmask	, 0)
1861 	MIPS_SYS(sys_ssetmask	, 1)
1862 	MIPS_SYS(sys_setreuid	, 2)	/* 4070 */
1863 	MIPS_SYS(sys_setregid	, 2)
1864 	MIPS_SYS(sys_sigsuspend	, 0)
1865 	MIPS_SYS(sys_sigpending	, 1)
1866 	MIPS_SYS(sys_sethostname	, 2)
1867 	MIPS_SYS(sys_setrlimit	, 2)	/* 4075 */
1868 	MIPS_SYS(sys_getrlimit	, 2)
1869 	MIPS_SYS(sys_getrusage	, 2)
1870 	MIPS_SYS(sys_gettimeofday, 2)
1871 	MIPS_SYS(sys_settimeofday, 2)
1872 	MIPS_SYS(sys_getgroups	, 2)	/* 4080 */
1873 	MIPS_SYS(sys_setgroups	, 2)
1874 	MIPS_SYS(sys_ni_syscall	, 0)	/* old_select */
1875 	MIPS_SYS(sys_symlink	, 2)
1876 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_lstat */
1877 	MIPS_SYS(sys_readlink	, 3)	/* 4085 */
1878 	MIPS_SYS(sys_uselib	, 1)
1879 	MIPS_SYS(sys_swapon	, 2)
1880 	MIPS_SYS(sys_reboot	, 3)
1881 	MIPS_SYS(old_readdir	, 3)
1882 	MIPS_SYS(old_mmap	, 6)	/* 4090 */
1883 	MIPS_SYS(sys_munmap	, 2)
1884 	MIPS_SYS(sys_truncate	, 2)
1885 	MIPS_SYS(sys_ftruncate	, 2)
1886 	MIPS_SYS(sys_fchmod	, 2)
1887 	MIPS_SYS(sys_fchown	, 3)	/* 4095 */
1888 	MIPS_SYS(sys_getpriority	, 2)
1889 	MIPS_SYS(sys_setpriority	, 3)
1890 	MIPS_SYS(sys_ni_syscall	, 0)
1891 	MIPS_SYS(sys_statfs	, 2)
1892 	MIPS_SYS(sys_fstatfs	, 2)	/* 4100 */
1893 	MIPS_SYS(sys_ni_syscall	, 0)	/* was ioperm(2) */
1894 	MIPS_SYS(sys_socketcall	, 2)
1895 	MIPS_SYS(sys_syslog	, 3)
1896 	MIPS_SYS(sys_setitimer	, 3)
1897 	MIPS_SYS(sys_getitimer	, 2)	/* 4105 */
1898 	MIPS_SYS(sys_newstat	, 2)
1899 	MIPS_SYS(sys_newlstat	, 2)
1900 	MIPS_SYS(sys_newfstat	, 2)
1901 	MIPS_SYS(sys_uname	, 1)
1902 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4110 was iopl(2) */
1903 	MIPS_SYS(sys_vhangup	, 0)
1904 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_idle() */
1905 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_vm86 */
1906 	MIPS_SYS(sys_wait4	, 4)
1907 	MIPS_SYS(sys_swapoff	, 1)	/* 4115 */
1908 	MIPS_SYS(sys_sysinfo	, 1)
1909 	MIPS_SYS(sys_ipc		, 6)
1910 	MIPS_SYS(sys_fsync	, 1)
1911 	MIPS_SYS(sys_sigreturn	, 0)
1912 	MIPS_SYS(sys_clone	, 6)	/* 4120 */
1913 	MIPS_SYS(sys_setdomainname, 2)
1914 	MIPS_SYS(sys_newuname	, 1)
1915 	MIPS_SYS(sys_ni_syscall	, 0)	/* sys_modify_ldt */
1916 	MIPS_SYS(sys_adjtimex	, 1)
1917 	MIPS_SYS(sys_mprotect	, 3)	/* 4125 */
1918 	MIPS_SYS(sys_sigprocmask	, 3)
1919 	MIPS_SYS(sys_ni_syscall	, 0)	/* was create_module */
1920 	MIPS_SYS(sys_init_module	, 5)
1921 	MIPS_SYS(sys_delete_module, 1)
1922 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4130	was get_kernel_syms */
1923 	MIPS_SYS(sys_quotactl	, 0)
1924 	MIPS_SYS(sys_getpgid	, 1)
1925 	MIPS_SYS(sys_fchdir	, 1)
1926 	MIPS_SYS(sys_bdflush	, 2)
1927 	MIPS_SYS(sys_sysfs	, 3)	/* 4135 */
1928 	MIPS_SYS(sys_personality	, 1)
1929 	MIPS_SYS(sys_ni_syscall	, 0)	/* for afs_syscall */
1930 	MIPS_SYS(sys_setfsuid	, 1)
1931 	MIPS_SYS(sys_setfsgid	, 1)
1932 	MIPS_SYS(sys_llseek	, 5)	/* 4140 */
1933 	MIPS_SYS(sys_getdents	, 3)
1934 	MIPS_SYS(sys_select	, 5)
1935 	MIPS_SYS(sys_flock	, 2)
1936 	MIPS_SYS(sys_msync	, 3)
1937 	MIPS_SYS(sys_readv	, 3)	/* 4145 */
1938 	MIPS_SYS(sys_writev	, 3)
1939 	MIPS_SYS(sys_cacheflush	, 3)
1940 	MIPS_SYS(sys_cachectl	, 3)
1941 	MIPS_SYS(sys_sysmips	, 4)
1942 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4150 */
1943 	MIPS_SYS(sys_getsid	, 1)
1944 	MIPS_SYS(sys_fdatasync	, 0)
1945 	MIPS_SYS(sys_sysctl	, 1)
1946 	MIPS_SYS(sys_mlock	, 2)
1947 	MIPS_SYS(sys_munlock	, 2)	/* 4155 */
1948 	MIPS_SYS(sys_mlockall	, 1)
1949 	MIPS_SYS(sys_munlockall	, 0)
1950 	MIPS_SYS(sys_sched_setparam, 2)
1951 	MIPS_SYS(sys_sched_getparam, 2)
1952 	MIPS_SYS(sys_sched_setscheduler, 3)	/* 4160 */
1953 	MIPS_SYS(sys_sched_getscheduler, 1)
1954 	MIPS_SYS(sys_sched_yield	, 0)
1955 	MIPS_SYS(sys_sched_get_priority_max, 1)
1956 	MIPS_SYS(sys_sched_get_priority_min, 1)
1957 	MIPS_SYS(sys_sched_rr_get_interval, 2)	/* 4165 */
1958 	MIPS_SYS(sys_nanosleep,	2)
1959 	MIPS_SYS(sys_mremap	, 4)
1960 	MIPS_SYS(sys_accept	, 3)
1961 	MIPS_SYS(sys_bind	, 3)
1962 	MIPS_SYS(sys_connect	, 3)	/* 4170 */
1963 	MIPS_SYS(sys_getpeername	, 3)
1964 	MIPS_SYS(sys_getsockname	, 3)
1965 	MIPS_SYS(sys_getsockopt	, 5)
1966 	MIPS_SYS(sys_listen	, 2)
1967 	MIPS_SYS(sys_recv	, 4)	/* 4175 */
1968 	MIPS_SYS(sys_recvfrom	, 6)
1969 	MIPS_SYS(sys_recvmsg	, 3)
1970 	MIPS_SYS(sys_send	, 4)
1971 	MIPS_SYS(sys_sendmsg	, 3)
1972 	MIPS_SYS(sys_sendto	, 6)	/* 4180 */
1973 	MIPS_SYS(sys_setsockopt	, 5)
1974 	MIPS_SYS(sys_shutdown	, 2)
1975 	MIPS_SYS(sys_socket	, 3)
1976 	MIPS_SYS(sys_socketpair	, 4)
1977 	MIPS_SYS(sys_setresuid	, 3)	/* 4185 */
1978 	MIPS_SYS(sys_getresuid	, 3)
1979 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_query_module */
1980 	MIPS_SYS(sys_poll	, 3)
1981 	MIPS_SYS(sys_nfsservctl	, 3)
1982 	MIPS_SYS(sys_setresgid	, 3)	/* 4190 */
1983 	MIPS_SYS(sys_getresgid	, 3)
1984 	MIPS_SYS(sys_prctl	, 5)
1985 	MIPS_SYS(sys_rt_sigreturn, 0)
1986 	MIPS_SYS(sys_rt_sigaction, 4)
1987 	MIPS_SYS(sys_rt_sigprocmask, 4)	/* 4195 */
1988 	MIPS_SYS(sys_rt_sigpending, 2)
1989 	MIPS_SYS(sys_rt_sigtimedwait, 4)
1990 	MIPS_SYS(sys_rt_sigqueueinfo, 3)
1991 	MIPS_SYS(sys_rt_sigsuspend, 0)
1992 	MIPS_SYS(sys_pread64	, 6)	/* 4200 */
1993 	MIPS_SYS(sys_pwrite64	, 6)
1994 	MIPS_SYS(sys_chown	, 3)
1995 	MIPS_SYS(sys_getcwd	, 2)
1996 	MIPS_SYS(sys_capget	, 2)
1997 	MIPS_SYS(sys_capset	, 2)	/* 4205 */
1998 	MIPS_SYS(sys_sigaltstack	, 2)
1999 	MIPS_SYS(sys_sendfile	, 4)
2000 	MIPS_SYS(sys_ni_syscall	, 0)
2001 	MIPS_SYS(sys_ni_syscall	, 0)
2002 	MIPS_SYS(sys_mmap2	, 6)	/* 4210 */
2003 	MIPS_SYS(sys_truncate64	, 4)
2004 	MIPS_SYS(sys_ftruncate64	, 4)
2005 	MIPS_SYS(sys_stat64	, 2)
2006 	MIPS_SYS(sys_lstat64	, 2)
2007 	MIPS_SYS(sys_fstat64	, 2)	/* 4215 */
2008 	MIPS_SYS(sys_pivot_root	, 2)
2009 	MIPS_SYS(sys_mincore	, 3)
2010 	MIPS_SYS(sys_madvise	, 3)
2011 	MIPS_SYS(sys_getdents64	, 3)
2012 	MIPS_SYS(sys_fcntl64	, 3)	/* 4220 */
2013 	MIPS_SYS(sys_ni_syscall	, 0)
2014 	MIPS_SYS(sys_gettid	, 0)
2015 	MIPS_SYS(sys_readahead	, 5)
2016 	MIPS_SYS(sys_setxattr	, 5)
2017 	MIPS_SYS(sys_lsetxattr	, 5)	/* 4225 */
2018 	MIPS_SYS(sys_fsetxattr	, 5)
2019 	MIPS_SYS(sys_getxattr	, 4)
2020 	MIPS_SYS(sys_lgetxattr	, 4)
2021 	MIPS_SYS(sys_fgetxattr	, 4)
2022 	MIPS_SYS(sys_listxattr	, 3)	/* 4230 */
2023 	MIPS_SYS(sys_llistxattr	, 3)
2024 	MIPS_SYS(sys_flistxattr	, 3)
2025 	MIPS_SYS(sys_removexattr	, 2)
2026 	MIPS_SYS(sys_lremovexattr, 2)
2027 	MIPS_SYS(sys_fremovexattr, 2)	/* 4235 */
2028 	MIPS_SYS(sys_tkill	, 2)
2029 	MIPS_SYS(sys_sendfile64	, 5)
2030 	MIPS_SYS(sys_futex	, 2)
2031 	MIPS_SYS(sys_sched_setaffinity, 3)
2032 	MIPS_SYS(sys_sched_getaffinity, 3)	/* 4240 */
2033 	MIPS_SYS(sys_io_setup	, 2)
2034 	MIPS_SYS(sys_io_destroy	, 1)
2035 	MIPS_SYS(sys_io_getevents, 5)
2036 	MIPS_SYS(sys_io_submit	, 3)
2037 	MIPS_SYS(sys_io_cancel	, 3)	/* 4245 */
2038 	MIPS_SYS(sys_exit_group	, 1)
2039 	MIPS_SYS(sys_lookup_dcookie, 3)
2040 	MIPS_SYS(sys_epoll_create, 1)
2041 	MIPS_SYS(sys_epoll_ctl	, 4)
2042 	MIPS_SYS(sys_epoll_wait	, 3)	/* 4250 */
2043 	MIPS_SYS(sys_remap_file_pages, 5)
2044 	MIPS_SYS(sys_set_tid_address, 1)
2045 	MIPS_SYS(sys_restart_syscall, 0)
2046 	MIPS_SYS(sys_fadvise64_64, 7)
2047 	MIPS_SYS(sys_statfs64	, 3)	/* 4255 */
2048 	MIPS_SYS(sys_fstatfs64	, 2)
2049 	MIPS_SYS(sys_timer_create, 3)
2050 	MIPS_SYS(sys_timer_settime, 4)
2051 	MIPS_SYS(sys_timer_gettime, 2)
2052 	MIPS_SYS(sys_timer_getoverrun, 1)	/* 4260 */
2053 	MIPS_SYS(sys_timer_delete, 1)
2054 	MIPS_SYS(sys_clock_settime, 2)
2055 	MIPS_SYS(sys_clock_gettime, 2)
2056 	MIPS_SYS(sys_clock_getres, 2)
2057 	MIPS_SYS(sys_clock_nanosleep, 4)	/* 4265 */
2058 	MIPS_SYS(sys_tgkill	, 3)
2059 	MIPS_SYS(sys_utimes	, 2)
2060 	MIPS_SYS(sys_mbind	, 4)
2061 	MIPS_SYS(sys_ni_syscall	, 0)	/* sys_get_mempolicy */
2062 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4270 sys_set_mempolicy */
2063 	MIPS_SYS(sys_mq_open	, 4)
2064 	MIPS_SYS(sys_mq_unlink	, 1)
2065 	MIPS_SYS(sys_mq_timedsend, 5)
2066 	MIPS_SYS(sys_mq_timedreceive, 5)
2067 	MIPS_SYS(sys_mq_notify	, 2)	/* 4275 */
2068 	MIPS_SYS(sys_mq_getsetattr, 3)
2069 	MIPS_SYS(sys_ni_syscall	, 0)	/* sys_vserver */
2070 	MIPS_SYS(sys_waitid	, 4)
2071 	MIPS_SYS(sys_ni_syscall	, 0)	/* available, was setaltroot */
2072 	MIPS_SYS(sys_add_key	, 5)
2073 	MIPS_SYS(sys_request_key, 4)
2074 	MIPS_SYS(sys_keyctl	, 5)
2075 	MIPS_SYS(sys_set_thread_area, 1)
2076 	MIPS_SYS(sys_inotify_init, 0)
2077 	MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */
2078 	MIPS_SYS(sys_inotify_rm_watch, 2)
2079 	MIPS_SYS(sys_migrate_pages, 4)
2080 	MIPS_SYS(sys_openat, 4)
2081 	MIPS_SYS(sys_mkdirat, 3)
2082 	MIPS_SYS(sys_mknodat, 4)	/* 4290 */
2083 	MIPS_SYS(sys_fchownat, 5)
2084 	MIPS_SYS(sys_futimesat, 3)
2085 	MIPS_SYS(sys_fstatat64, 4)
2086 	MIPS_SYS(sys_unlinkat, 3)
2087 	MIPS_SYS(sys_renameat, 4)	/* 4295 */
2088 	MIPS_SYS(sys_linkat, 5)
2089 	MIPS_SYS(sys_symlinkat, 3)
2090 	MIPS_SYS(sys_readlinkat, 4)
2091 	MIPS_SYS(sys_fchmodat, 3)
2092 	MIPS_SYS(sys_faccessat, 3)	/* 4300 */
2093 	MIPS_SYS(sys_pselect6, 6)
2094 	MIPS_SYS(sys_ppoll, 5)
2095 	MIPS_SYS(sys_unshare, 1)
2096 	MIPS_SYS(sys_splice, 4)
2097 	MIPS_SYS(sys_sync_file_range, 7) /* 4305 */
2098 	MIPS_SYS(sys_tee, 4)
2099 	MIPS_SYS(sys_vmsplice, 4)
2100 	MIPS_SYS(sys_move_pages, 6)
2101 	MIPS_SYS(sys_set_robust_list, 2)
2102 	MIPS_SYS(sys_get_robust_list, 3) /* 4310 */
2103 	MIPS_SYS(sys_kexec_load, 4)
2104 	MIPS_SYS(sys_getcpu, 3)
2105 	MIPS_SYS(sys_epoll_pwait, 6)
2106 	MIPS_SYS(sys_ioprio_set, 3)
2107 	MIPS_SYS(sys_ioprio_get, 2)
2108         MIPS_SYS(sys_utimensat, 4)
2109         MIPS_SYS(sys_signalfd, 3)
2110         MIPS_SYS(sys_ni_syscall, 0)     /* was timerfd */
2111         MIPS_SYS(sys_eventfd, 1)
2112         MIPS_SYS(sys_fallocate, 6)      /* 4320 */
2113         MIPS_SYS(sys_timerfd_create, 2)
2114         MIPS_SYS(sys_timerfd_gettime, 2)
2115         MIPS_SYS(sys_timerfd_settime, 4)
2116         MIPS_SYS(sys_signalfd4, 4)
2117         MIPS_SYS(sys_eventfd2, 2)       /* 4325 */
2118         MIPS_SYS(sys_epoll_create1, 1)
2119         MIPS_SYS(sys_dup3, 3)
2120         MIPS_SYS(sys_pipe2, 2)
2121         MIPS_SYS(sys_inotify_init1, 1)
2122         MIPS_SYS(sys_preadv, 6)         /* 4330 */
2123         MIPS_SYS(sys_pwritev, 6)
2124         MIPS_SYS(sys_rt_tgsigqueueinfo, 4)
2125         MIPS_SYS(sys_perf_event_open, 5)
2126         MIPS_SYS(sys_accept4, 4)
2127         MIPS_SYS(sys_recvmmsg, 5)       /* 4335 */
2128         MIPS_SYS(sys_fanotify_init, 2)
2129         MIPS_SYS(sys_fanotify_mark, 6)
2130         MIPS_SYS(sys_prlimit64, 4)
2131         MIPS_SYS(sys_name_to_handle_at, 5)
2132         MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */
2133         MIPS_SYS(sys_clock_adjtime, 2)
2134         MIPS_SYS(sys_syncfs, 1)
2135 };
2136 
2137 #undef MIPS_SYS
2138 
2139 static int do_store_exclusive(CPUMIPSState *env)
2140 {
2141     target_ulong addr;
2142     target_ulong page_addr;
2143     target_ulong val;
2144     int flags;
2145     int segv = 0;
2146     int reg;
2147     int d;
2148 
2149     addr = env->lladdr;
2150     page_addr = addr & TARGET_PAGE_MASK;
2151     start_exclusive();
2152     mmap_lock();
2153     flags = page_get_flags(page_addr);
2154     if ((flags & PAGE_READ) == 0) {
2155         segv = 1;
2156     } else {
2157         reg = env->llreg & 0x1f;
2158         d = (env->llreg & 0x20) != 0;
2159         if (d) {
2160             segv = get_user_s64(val, addr);
2161         } else {
2162             segv = get_user_s32(val, addr);
2163         }
2164         if (!segv) {
2165             if (val != env->llval) {
2166                 env->active_tc.gpr[reg] = 0;
2167             } else {
2168                 if (d) {
2169                     segv = put_user_u64(env->llnewval, addr);
2170                 } else {
2171                     segv = put_user_u32(env->llnewval, addr);
2172                 }
2173                 if (!segv) {
2174                     env->active_tc.gpr[reg] = 1;
2175                 }
2176             }
2177         }
2178     }
2179     env->lladdr = -1;
2180     if (!segv) {
2181         env->active_tc.PC += 4;
2182     }
2183     mmap_unlock();
2184     end_exclusive();
2185     return segv;
2186 }
2187 
2188 void cpu_loop(CPUMIPSState *env)
2189 {
2190     target_siginfo_t info;
2191     int trapnr, ret;
2192     unsigned int syscall_num;
2193 
2194     for(;;) {
2195         cpu_exec_start(env);
2196         trapnr = cpu_mips_exec(env);
2197         cpu_exec_end(env);
2198         switch(trapnr) {
2199         case EXCP_SYSCALL:
2200             syscall_num = env->active_tc.gpr[2] - 4000;
2201             env->active_tc.PC += 4;
2202             if (syscall_num >= sizeof(mips_syscall_args)) {
2203                 ret = -TARGET_ENOSYS;
2204             } else {
2205                 int nb_args;
2206                 abi_ulong sp_reg;
2207                 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0;
2208 
2209                 nb_args = mips_syscall_args[syscall_num];
2210                 sp_reg = env->active_tc.gpr[29];
2211                 switch (nb_args) {
2212                 /* these arguments are taken from the stack */
2213                 case 8:
2214                     if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) {
2215                         goto done_syscall;
2216                     }
2217                 case 7:
2218                     if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) {
2219                         goto done_syscall;
2220                     }
2221                 case 6:
2222                     if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) {
2223                         goto done_syscall;
2224                     }
2225                 case 5:
2226                     if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) {
2227                         goto done_syscall;
2228                     }
2229                 default:
2230                     break;
2231                 }
2232                 ret = do_syscall(env, env->active_tc.gpr[2],
2233                                  env->active_tc.gpr[4],
2234                                  env->active_tc.gpr[5],
2235                                  env->active_tc.gpr[6],
2236                                  env->active_tc.gpr[7],
2237                                  arg5, arg6, arg7, arg8);
2238             }
2239 done_syscall:
2240             if (ret == -TARGET_QEMU_ESIGRETURN) {
2241                 /* Returning from a successful sigreturn syscall.
2242                    Avoid clobbering register state.  */
2243                 break;
2244             }
2245             if ((unsigned int)ret >= (unsigned int)(-1133)) {
2246                 env->active_tc.gpr[7] = 1; /* error flag */
2247                 ret = -ret;
2248             } else {
2249                 env->active_tc.gpr[7] = 0; /* error flag */
2250             }
2251             env->active_tc.gpr[2] = ret;
2252             break;
2253         case EXCP_TLBL:
2254         case EXCP_TLBS:
2255         case EXCP_AdEL:
2256         case EXCP_AdES:
2257             info.si_signo = TARGET_SIGSEGV;
2258             info.si_errno = 0;
2259             /* XXX: check env->error_code */
2260             info.si_code = TARGET_SEGV_MAPERR;
2261             info._sifields._sigfault._addr = env->CP0_BadVAddr;
2262             queue_signal(env, info.si_signo, &info);
2263             break;
2264         case EXCP_CpU:
2265         case EXCP_RI:
2266             info.si_signo = TARGET_SIGILL;
2267             info.si_errno = 0;
2268             info.si_code = 0;
2269             queue_signal(env, info.si_signo, &info);
2270             break;
2271         case EXCP_INTERRUPT:
2272             /* just indicate that signals should be handled asap */
2273             break;
2274         case EXCP_DEBUG:
2275             {
2276                 int sig;
2277 
2278                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2279                 if (sig)
2280                   {
2281                     info.si_signo = sig;
2282                     info.si_errno = 0;
2283                     info.si_code = TARGET_TRAP_BRKPT;
2284                     queue_signal(env, info.si_signo, &info);
2285                   }
2286             }
2287             break;
2288         case EXCP_SC:
2289             if (do_store_exclusive(env)) {
2290                 info.si_signo = TARGET_SIGSEGV;
2291                 info.si_errno = 0;
2292                 info.si_code = TARGET_SEGV_MAPERR;
2293                 info._sifields._sigfault._addr = env->active_tc.PC;
2294                 queue_signal(env, info.si_signo, &info);
2295             }
2296             break;
2297         default:
2298             //        error:
2299             fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
2300                     trapnr);
2301             cpu_dump_state(env, stderr, fprintf, 0);
2302             abort();
2303         }
2304         process_pending_signals(env);
2305     }
2306 }
2307 #endif
2308 
2309 #ifdef TARGET_OPENRISC
2310 
2311 void cpu_loop(CPUOpenRISCState *env)
2312 {
2313     int trapnr, gdbsig;
2314 
2315     for (;;) {
2316         trapnr = cpu_exec(env);
2317         gdbsig = 0;
2318 
2319         switch (trapnr) {
2320         case EXCP_RESET:
2321             qemu_log("\nReset request, exit, pc is %#x\n", env->pc);
2322             exit(1);
2323             break;
2324         case EXCP_BUSERR:
2325             qemu_log("\nBus error, exit, pc is %#x\n", env->pc);
2326             gdbsig = SIGBUS;
2327             break;
2328         case EXCP_DPF:
2329         case EXCP_IPF:
2330             cpu_dump_state(env, stderr, fprintf, 0);
2331             gdbsig = TARGET_SIGSEGV;
2332             break;
2333         case EXCP_TICK:
2334             qemu_log("\nTick time interrupt pc is %#x\n", env->pc);
2335             break;
2336         case EXCP_ALIGN:
2337             qemu_log("\nAlignment pc is %#x\n", env->pc);
2338             gdbsig = SIGBUS;
2339             break;
2340         case EXCP_ILLEGAL:
2341             qemu_log("\nIllegal instructionpc is %#x\n", env->pc);
2342             gdbsig = SIGILL;
2343             break;
2344         case EXCP_INT:
2345             qemu_log("\nExternal interruptpc is %#x\n", env->pc);
2346             break;
2347         case EXCP_DTLBMISS:
2348         case EXCP_ITLBMISS:
2349             qemu_log("\nTLB miss\n");
2350             break;
2351         case EXCP_RANGE:
2352             qemu_log("\nRange\n");
2353             gdbsig = SIGSEGV;
2354             break;
2355         case EXCP_SYSCALL:
2356             env->pc += 4;   /* 0xc00; */
2357             env->gpr[11] = do_syscall(env,
2358                                       env->gpr[11], /* return value       */
2359                                       env->gpr[3],  /* r3 - r7 are params */
2360                                       env->gpr[4],
2361                                       env->gpr[5],
2362                                       env->gpr[6],
2363                                       env->gpr[7],
2364                                       env->gpr[8], 0, 0);
2365             break;
2366         case EXCP_FPE:
2367             qemu_log("\nFloating point error\n");
2368             break;
2369         case EXCP_TRAP:
2370             qemu_log("\nTrap\n");
2371             gdbsig = SIGTRAP;
2372             break;
2373         case EXCP_NR:
2374             qemu_log("\nNR\n");
2375             break;
2376         default:
2377             qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
2378                      trapnr);
2379             cpu_dump_state(env, stderr, fprintf, 0);
2380             gdbsig = TARGET_SIGILL;
2381             break;
2382         }
2383         if (gdbsig) {
2384             gdb_handlesig(env, gdbsig);
2385             if (gdbsig != TARGET_SIGTRAP) {
2386                 exit(1);
2387             }
2388         }
2389 
2390         process_pending_signals(env);
2391     }
2392 }
2393 
2394 #endif /* TARGET_OPENRISC */
2395 
2396 #ifdef TARGET_SH4
2397 void cpu_loop(CPUSH4State *env)
2398 {
2399     int trapnr, ret;
2400     target_siginfo_t info;
2401 
2402     while (1) {
2403         trapnr = cpu_sh4_exec (env);
2404 
2405         switch (trapnr) {
2406         case 0x160:
2407             env->pc += 2;
2408             ret = do_syscall(env,
2409                              env->gregs[3],
2410                              env->gregs[4],
2411                              env->gregs[5],
2412                              env->gregs[6],
2413                              env->gregs[7],
2414                              env->gregs[0],
2415                              env->gregs[1],
2416                              0, 0);
2417             env->gregs[0] = ret;
2418             break;
2419         case EXCP_INTERRUPT:
2420             /* just indicate that signals should be handled asap */
2421             break;
2422         case EXCP_DEBUG:
2423             {
2424                 int sig;
2425 
2426                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2427                 if (sig)
2428                   {
2429                     info.si_signo = sig;
2430                     info.si_errno = 0;
2431                     info.si_code = TARGET_TRAP_BRKPT;
2432                     queue_signal(env, info.si_signo, &info);
2433                   }
2434             }
2435             break;
2436 	case 0xa0:
2437 	case 0xc0:
2438             info.si_signo = SIGSEGV;
2439             info.si_errno = 0;
2440             info.si_code = TARGET_SEGV_MAPERR;
2441             info._sifields._sigfault._addr = env->tea;
2442             queue_signal(env, info.si_signo, &info);
2443 	    break;
2444 
2445         default:
2446             printf ("Unhandled trap: 0x%x\n", trapnr);
2447             cpu_dump_state(env, stderr, fprintf, 0);
2448             exit (1);
2449         }
2450         process_pending_signals (env);
2451     }
2452 }
2453 #endif
2454 
2455 #ifdef TARGET_CRIS
2456 void cpu_loop(CPUCRISState *env)
2457 {
2458     int trapnr, ret;
2459     target_siginfo_t info;
2460 
2461     while (1) {
2462         trapnr = cpu_cris_exec (env);
2463         switch (trapnr) {
2464         case 0xaa:
2465             {
2466                 info.si_signo = SIGSEGV;
2467                 info.si_errno = 0;
2468                 /* XXX: check env->error_code */
2469                 info.si_code = TARGET_SEGV_MAPERR;
2470                 info._sifields._sigfault._addr = env->pregs[PR_EDA];
2471                 queue_signal(env, info.si_signo, &info);
2472             }
2473             break;
2474 	case EXCP_INTERRUPT:
2475 	  /* just indicate that signals should be handled asap */
2476 	  break;
2477         case EXCP_BREAK:
2478             ret = do_syscall(env,
2479                              env->regs[9],
2480                              env->regs[10],
2481                              env->regs[11],
2482                              env->regs[12],
2483                              env->regs[13],
2484                              env->pregs[7],
2485                              env->pregs[11],
2486                              0, 0);
2487             env->regs[10] = ret;
2488             break;
2489         case EXCP_DEBUG:
2490             {
2491                 int sig;
2492 
2493                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2494                 if (sig)
2495                   {
2496                     info.si_signo = sig;
2497                     info.si_errno = 0;
2498                     info.si_code = TARGET_TRAP_BRKPT;
2499                     queue_signal(env, info.si_signo, &info);
2500                   }
2501             }
2502             break;
2503         default:
2504             printf ("Unhandled trap: 0x%x\n", trapnr);
2505             cpu_dump_state(env, stderr, fprintf, 0);
2506             exit (1);
2507         }
2508         process_pending_signals (env);
2509     }
2510 }
2511 #endif
2512 
2513 #ifdef TARGET_MICROBLAZE
2514 void cpu_loop(CPUMBState *env)
2515 {
2516     int trapnr, ret;
2517     target_siginfo_t info;
2518 
2519     while (1) {
2520         trapnr = cpu_mb_exec (env);
2521         switch (trapnr) {
2522         case 0xaa:
2523             {
2524                 info.si_signo = SIGSEGV;
2525                 info.si_errno = 0;
2526                 /* XXX: check env->error_code */
2527                 info.si_code = TARGET_SEGV_MAPERR;
2528                 info._sifields._sigfault._addr = 0;
2529                 queue_signal(env, info.si_signo, &info);
2530             }
2531             break;
2532 	case EXCP_INTERRUPT:
2533 	  /* just indicate that signals should be handled asap */
2534 	  break;
2535         case EXCP_BREAK:
2536             /* Return address is 4 bytes after the call.  */
2537             env->regs[14] += 4;
2538             ret = do_syscall(env,
2539                              env->regs[12],
2540                              env->regs[5],
2541                              env->regs[6],
2542                              env->regs[7],
2543                              env->regs[8],
2544                              env->regs[9],
2545                              env->regs[10],
2546                              0, 0);
2547             env->regs[3] = ret;
2548             env->sregs[SR_PC] = env->regs[14];
2549             break;
2550         case EXCP_HW_EXCP:
2551             env->regs[17] = env->sregs[SR_PC] + 4;
2552             if (env->iflags & D_FLAG) {
2553                 env->sregs[SR_ESR] |= 1 << 12;
2554                 env->sregs[SR_PC] -= 4;
2555                 /* FIXME: if branch was immed, replay the imm as well.  */
2556             }
2557 
2558             env->iflags &= ~(IMM_FLAG | D_FLAG);
2559 
2560             switch (env->sregs[SR_ESR] & 31) {
2561                 case ESR_EC_DIVZERO:
2562                     info.si_signo = SIGFPE;
2563                     info.si_errno = 0;
2564                     info.si_code = TARGET_FPE_FLTDIV;
2565                     info._sifields._sigfault._addr = 0;
2566                     queue_signal(env, info.si_signo, &info);
2567                     break;
2568                 case ESR_EC_FPU:
2569                     info.si_signo = SIGFPE;
2570                     info.si_errno = 0;
2571                     if (env->sregs[SR_FSR] & FSR_IO) {
2572                         info.si_code = TARGET_FPE_FLTINV;
2573                     }
2574                     if (env->sregs[SR_FSR] & FSR_DZ) {
2575                         info.si_code = TARGET_FPE_FLTDIV;
2576                     }
2577                     info._sifields._sigfault._addr = 0;
2578                     queue_signal(env, info.si_signo, &info);
2579                     break;
2580                 default:
2581                     printf ("Unhandled hw-exception: 0x%x\n",
2582                             env->sregs[SR_ESR] & ESR_EC_MASK);
2583                     cpu_dump_state(env, stderr, fprintf, 0);
2584                     exit (1);
2585                     break;
2586             }
2587             break;
2588         case EXCP_DEBUG:
2589             {
2590                 int sig;
2591 
2592                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2593                 if (sig)
2594                   {
2595                     info.si_signo = sig;
2596                     info.si_errno = 0;
2597                     info.si_code = TARGET_TRAP_BRKPT;
2598                     queue_signal(env, info.si_signo, &info);
2599                   }
2600             }
2601             break;
2602         default:
2603             printf ("Unhandled trap: 0x%x\n", trapnr);
2604             cpu_dump_state(env, stderr, fprintf, 0);
2605             exit (1);
2606         }
2607         process_pending_signals (env);
2608     }
2609 }
2610 #endif
2611 
2612 #ifdef TARGET_M68K
2613 
2614 void cpu_loop(CPUM68KState *env)
2615 {
2616     int trapnr;
2617     unsigned int n;
2618     target_siginfo_t info;
2619     TaskState *ts = env->opaque;
2620 
2621     for(;;) {
2622         trapnr = cpu_m68k_exec(env);
2623         switch(trapnr) {
2624         case EXCP_ILLEGAL:
2625             {
2626                 if (ts->sim_syscalls) {
2627                     uint16_t nr;
2628                     nr = lduw(env->pc + 2);
2629                     env->pc += 4;
2630                     do_m68k_simcall(env, nr);
2631                 } else {
2632                     goto do_sigill;
2633                 }
2634             }
2635             break;
2636         case EXCP_HALT_INSN:
2637             /* Semihosing syscall.  */
2638             env->pc += 4;
2639             do_m68k_semihosting(env, env->dregs[0]);
2640             break;
2641         case EXCP_LINEA:
2642         case EXCP_LINEF:
2643         case EXCP_UNSUPPORTED:
2644         do_sigill:
2645             info.si_signo = SIGILL;
2646             info.si_errno = 0;
2647             info.si_code = TARGET_ILL_ILLOPN;
2648             info._sifields._sigfault._addr = env->pc;
2649             queue_signal(env, info.si_signo, &info);
2650             break;
2651         case EXCP_TRAP0:
2652             {
2653                 ts->sim_syscalls = 0;
2654                 n = env->dregs[0];
2655                 env->pc += 2;
2656                 env->dregs[0] = do_syscall(env,
2657                                           n,
2658                                           env->dregs[1],
2659                                           env->dregs[2],
2660                                           env->dregs[3],
2661                                           env->dregs[4],
2662                                           env->dregs[5],
2663                                           env->aregs[0],
2664                                           0, 0);
2665             }
2666             break;
2667         case EXCP_INTERRUPT:
2668             /* just indicate that signals should be handled asap */
2669             break;
2670         case EXCP_ACCESS:
2671             {
2672                 info.si_signo = SIGSEGV;
2673                 info.si_errno = 0;
2674                 /* XXX: check env->error_code */
2675                 info.si_code = TARGET_SEGV_MAPERR;
2676                 info._sifields._sigfault._addr = env->mmu.ar;
2677                 queue_signal(env, info.si_signo, &info);
2678             }
2679             break;
2680         case EXCP_DEBUG:
2681             {
2682                 int sig;
2683 
2684                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2685                 if (sig)
2686                   {
2687                     info.si_signo = sig;
2688                     info.si_errno = 0;
2689                     info.si_code = TARGET_TRAP_BRKPT;
2690                     queue_signal(env, info.si_signo, &info);
2691                   }
2692             }
2693             break;
2694         default:
2695             fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
2696                     trapnr);
2697             cpu_dump_state(env, stderr, fprintf, 0);
2698             abort();
2699         }
2700         process_pending_signals(env);
2701     }
2702 }
2703 #endif /* TARGET_M68K */
2704 
2705 #ifdef TARGET_ALPHA
2706 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad)
2707 {
2708     target_ulong addr, val, tmp;
2709     target_siginfo_t info;
2710     int ret = 0;
2711 
2712     addr = env->lock_addr;
2713     tmp = env->lock_st_addr;
2714     env->lock_addr = -1;
2715     env->lock_st_addr = 0;
2716 
2717     start_exclusive();
2718     mmap_lock();
2719 
2720     if (addr == tmp) {
2721         if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
2722             goto do_sigsegv;
2723         }
2724 
2725         if (val == env->lock_value) {
2726             tmp = env->ir[reg];
2727             if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) {
2728                 goto do_sigsegv;
2729             }
2730             ret = 1;
2731         }
2732     }
2733     env->ir[reg] = ret;
2734     env->pc += 4;
2735 
2736     mmap_unlock();
2737     end_exclusive();
2738     return;
2739 
2740  do_sigsegv:
2741     mmap_unlock();
2742     end_exclusive();
2743 
2744     info.si_signo = TARGET_SIGSEGV;
2745     info.si_errno = 0;
2746     info.si_code = TARGET_SEGV_MAPERR;
2747     info._sifields._sigfault._addr = addr;
2748     queue_signal(env, TARGET_SIGSEGV, &info);
2749 }
2750 
2751 void cpu_loop(CPUAlphaState *env)
2752 {
2753     int trapnr;
2754     target_siginfo_t info;
2755     abi_long sysret;
2756 
2757     while (1) {
2758         trapnr = cpu_alpha_exec (env);
2759 
2760         /* All of the traps imply a transition through PALcode, which
2761            implies an REI instruction has been executed.  Which means
2762            that the intr_flag should be cleared.  */
2763         env->intr_flag = 0;
2764 
2765         switch (trapnr) {
2766         case EXCP_RESET:
2767             fprintf(stderr, "Reset requested. Exit\n");
2768             exit(1);
2769             break;
2770         case EXCP_MCHK:
2771             fprintf(stderr, "Machine check exception. Exit\n");
2772             exit(1);
2773             break;
2774         case EXCP_SMP_INTERRUPT:
2775         case EXCP_CLK_INTERRUPT:
2776         case EXCP_DEV_INTERRUPT:
2777             fprintf(stderr, "External interrupt. Exit\n");
2778             exit(1);
2779             break;
2780         case EXCP_MMFAULT:
2781             env->lock_addr = -1;
2782             info.si_signo = TARGET_SIGSEGV;
2783             info.si_errno = 0;
2784             info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID
2785                             ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR);
2786             info._sifields._sigfault._addr = env->trap_arg0;
2787             queue_signal(env, info.si_signo, &info);
2788             break;
2789         case EXCP_UNALIGN:
2790             env->lock_addr = -1;
2791             info.si_signo = TARGET_SIGBUS;
2792             info.si_errno = 0;
2793             info.si_code = TARGET_BUS_ADRALN;
2794             info._sifields._sigfault._addr = env->trap_arg0;
2795             queue_signal(env, info.si_signo, &info);
2796             break;
2797         case EXCP_OPCDEC:
2798         do_sigill:
2799             env->lock_addr = -1;
2800             info.si_signo = TARGET_SIGILL;
2801             info.si_errno = 0;
2802             info.si_code = TARGET_ILL_ILLOPC;
2803             info._sifields._sigfault._addr = env->pc;
2804             queue_signal(env, info.si_signo, &info);
2805             break;
2806         case EXCP_ARITH:
2807             env->lock_addr = -1;
2808             info.si_signo = TARGET_SIGFPE;
2809             info.si_errno = 0;
2810             info.si_code = TARGET_FPE_FLTINV;
2811             info._sifields._sigfault._addr = env->pc;
2812             queue_signal(env, info.si_signo, &info);
2813             break;
2814         case EXCP_FEN:
2815             /* No-op.  Linux simply re-enables the FPU.  */
2816             break;
2817         case EXCP_CALL_PAL:
2818             env->lock_addr = -1;
2819             switch (env->error_code) {
2820             case 0x80:
2821                 /* BPT */
2822                 info.si_signo = TARGET_SIGTRAP;
2823                 info.si_errno = 0;
2824                 info.si_code = TARGET_TRAP_BRKPT;
2825                 info._sifields._sigfault._addr = env->pc;
2826                 queue_signal(env, info.si_signo, &info);
2827                 break;
2828             case 0x81:
2829                 /* BUGCHK */
2830                 info.si_signo = TARGET_SIGTRAP;
2831                 info.si_errno = 0;
2832                 info.si_code = 0;
2833                 info._sifields._sigfault._addr = env->pc;
2834                 queue_signal(env, info.si_signo, &info);
2835                 break;
2836             case 0x83:
2837                 /* CALLSYS */
2838                 trapnr = env->ir[IR_V0];
2839                 sysret = do_syscall(env, trapnr,
2840                                     env->ir[IR_A0], env->ir[IR_A1],
2841                                     env->ir[IR_A2], env->ir[IR_A3],
2842                                     env->ir[IR_A4], env->ir[IR_A5],
2843                                     0, 0);
2844                 if (trapnr == TARGET_NR_sigreturn
2845                     || trapnr == TARGET_NR_rt_sigreturn) {
2846                     break;
2847                 }
2848                 /* Syscall writes 0 to V0 to bypass error check, similar
2849                    to how this is handled internal to Linux kernel.  */
2850                 if (env->ir[IR_V0] == 0) {
2851                     env->ir[IR_V0] = sysret;
2852                 } else {
2853                     env->ir[IR_V0] = (sysret < 0 ? -sysret : sysret);
2854                     env->ir[IR_A3] = (sysret < 0);
2855                 }
2856                 break;
2857             case 0x86:
2858                 /* IMB */
2859                 /* ??? We can probably elide the code using page_unprotect
2860                    that is checking for self-modifying code.  Instead we
2861                    could simply call tb_flush here.  Until we work out the
2862                    changes required to turn off the extra write protection,
2863                    this can be a no-op.  */
2864                 break;
2865             case 0x9E:
2866                 /* RDUNIQUE */
2867                 /* Handled in the translator for usermode.  */
2868                 abort();
2869             case 0x9F:
2870                 /* WRUNIQUE */
2871                 /* Handled in the translator for usermode.  */
2872                 abort();
2873             case 0xAA:
2874                 /* GENTRAP */
2875                 info.si_signo = TARGET_SIGFPE;
2876                 switch (env->ir[IR_A0]) {
2877                 case TARGET_GEN_INTOVF:
2878                     info.si_code = TARGET_FPE_INTOVF;
2879                     break;
2880                 case TARGET_GEN_INTDIV:
2881                     info.si_code = TARGET_FPE_INTDIV;
2882                     break;
2883                 case TARGET_GEN_FLTOVF:
2884                     info.si_code = TARGET_FPE_FLTOVF;
2885                     break;
2886                 case TARGET_GEN_FLTUND:
2887                     info.si_code = TARGET_FPE_FLTUND;
2888                     break;
2889                 case TARGET_GEN_FLTINV:
2890                     info.si_code = TARGET_FPE_FLTINV;
2891                     break;
2892                 case TARGET_GEN_FLTINE:
2893                     info.si_code = TARGET_FPE_FLTRES;
2894                     break;
2895                 case TARGET_GEN_ROPRAND:
2896                     info.si_code = 0;
2897                     break;
2898                 default:
2899                     info.si_signo = TARGET_SIGTRAP;
2900                     info.si_code = 0;
2901                     break;
2902                 }
2903                 info.si_errno = 0;
2904                 info._sifields._sigfault._addr = env->pc;
2905                 queue_signal(env, info.si_signo, &info);
2906                 break;
2907             default:
2908                 goto do_sigill;
2909             }
2910             break;
2911         case EXCP_DEBUG:
2912             info.si_signo = gdb_handlesig (env, TARGET_SIGTRAP);
2913             if (info.si_signo) {
2914                 env->lock_addr = -1;
2915                 info.si_errno = 0;
2916                 info.si_code = TARGET_TRAP_BRKPT;
2917                 queue_signal(env, info.si_signo, &info);
2918             }
2919             break;
2920         case EXCP_STL_C:
2921         case EXCP_STQ_C:
2922             do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C);
2923             break;
2924         default:
2925             printf ("Unhandled trap: 0x%x\n", trapnr);
2926             cpu_dump_state(env, stderr, fprintf, 0);
2927             exit (1);
2928         }
2929         process_pending_signals (env);
2930     }
2931 }
2932 #endif /* TARGET_ALPHA */
2933 
2934 #ifdef TARGET_S390X
2935 void cpu_loop(CPUS390XState *env)
2936 {
2937     int trapnr;
2938     target_siginfo_t info;
2939 
2940     while (1) {
2941         trapnr = cpu_s390x_exec (env);
2942 
2943         switch (trapnr) {
2944         case EXCP_INTERRUPT:
2945             /* just indicate that signals should be handled asap */
2946             break;
2947         case EXCP_DEBUG:
2948             {
2949                 int sig;
2950 
2951                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
2952                 if (sig) {
2953                     info.si_signo = sig;
2954                     info.si_errno = 0;
2955                     info.si_code = TARGET_TRAP_BRKPT;
2956                     queue_signal(env, info.si_signo, &info);
2957                 }
2958             }
2959             break;
2960         case EXCP_SVC:
2961             {
2962                 int n = env->int_svc_code;
2963                 if (!n) {
2964                     /* syscalls > 255 */
2965                     n = env->regs[1];
2966                 }
2967                 env->psw.addr += env->int_svc_ilc;
2968                 env->regs[2] = do_syscall(env, n,
2969                            env->regs[2],
2970                            env->regs[3],
2971                            env->regs[4],
2972                            env->regs[5],
2973                            env->regs[6],
2974                            env->regs[7],
2975                            0, 0);
2976             }
2977             break;
2978         case EXCP_ADDR:
2979             {
2980                 info.si_signo = SIGSEGV;
2981                 info.si_errno = 0;
2982                 /* XXX: check env->error_code */
2983                 info.si_code = TARGET_SEGV_MAPERR;
2984                 info._sifields._sigfault._addr = env->__excp_addr;
2985                 queue_signal(env, info.si_signo, &info);
2986             }
2987             break;
2988         case EXCP_SPEC:
2989             {
2990                 fprintf(stderr,"specification exception insn 0x%08x%04x\n", ldl(env->psw.addr), lduw(env->psw.addr + 4));
2991                 info.si_signo = SIGILL;
2992                 info.si_errno = 0;
2993                 info.si_code = TARGET_ILL_ILLOPC;
2994                 info._sifields._sigfault._addr = env->__excp_addr;
2995                 queue_signal(env, info.si_signo, &info);
2996             }
2997             break;
2998         default:
2999             printf ("Unhandled trap: 0x%x\n", trapnr);
3000             cpu_dump_state(env, stderr, fprintf, 0);
3001             exit (1);
3002         }
3003         process_pending_signals (env);
3004     }
3005 }
3006 
3007 #endif /* TARGET_S390X */
3008 
3009 THREAD CPUArchState *thread_env;
3010 
3011 void task_settid(TaskState *ts)
3012 {
3013     if (ts->ts_tid == 0) {
3014 #ifdef CONFIG_USE_NPTL
3015         ts->ts_tid = (pid_t)syscall(SYS_gettid);
3016 #else
3017         /* when no threads are used, tid becomes pid */
3018         ts->ts_tid = getpid();
3019 #endif
3020     }
3021 }
3022 
3023 void stop_all_tasks(void)
3024 {
3025     /*
3026      * We trust that when using NPTL, start_exclusive()
3027      * handles thread stopping correctly.
3028      */
3029     start_exclusive();
3030 }
3031 
3032 /* Assumes contents are already zeroed.  */
3033 void init_task_state(TaskState *ts)
3034 {
3035     int i;
3036 
3037     ts->used = 1;
3038     ts->first_free = ts->sigqueue_table;
3039     for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
3040         ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
3041     }
3042     ts->sigqueue_table[i].next = NULL;
3043 }
3044 
3045 static void handle_arg_help(const char *arg)
3046 {
3047     usage();
3048 }
3049 
3050 static void handle_arg_log(const char *arg)
3051 {
3052     int mask;
3053     const CPULogItem *item;
3054 
3055     mask = cpu_str_to_log_mask(arg);
3056     if (!mask) {
3057         printf("Log items (comma separated):\n");
3058         for (item = cpu_log_items; item->mask != 0; item++) {
3059             printf("%-10s %s\n", item->name, item->help);
3060         }
3061         exit(1);
3062     }
3063     cpu_set_log(mask);
3064 }
3065 
3066 static void handle_arg_log_filename(const char *arg)
3067 {
3068     cpu_set_log_filename(arg);
3069 }
3070 
3071 static void handle_arg_set_env(const char *arg)
3072 {
3073     char *r, *p, *token;
3074     r = p = strdup(arg);
3075     while ((token = strsep(&p, ",")) != NULL) {
3076         if (envlist_setenv(envlist, token) != 0) {
3077             usage();
3078         }
3079     }
3080     free(r);
3081 }
3082 
3083 static void handle_arg_unset_env(const char *arg)
3084 {
3085     char *r, *p, *token;
3086     r = p = strdup(arg);
3087     while ((token = strsep(&p, ",")) != NULL) {
3088         if (envlist_unsetenv(envlist, token) != 0) {
3089             usage();
3090         }
3091     }
3092     free(r);
3093 }
3094 
3095 static void handle_arg_argv0(const char *arg)
3096 {
3097     argv0 = strdup(arg);
3098 }
3099 
3100 static void handle_arg_stack_size(const char *arg)
3101 {
3102     char *p;
3103     guest_stack_size = strtoul(arg, &p, 0);
3104     if (guest_stack_size == 0) {
3105         usage();
3106     }
3107 
3108     if (*p == 'M') {
3109         guest_stack_size *= 1024 * 1024;
3110     } else if (*p == 'k' || *p == 'K') {
3111         guest_stack_size *= 1024;
3112     }
3113 }
3114 
3115 static void handle_arg_ld_prefix(const char *arg)
3116 {
3117     interp_prefix = strdup(arg);
3118 }
3119 
3120 static void handle_arg_pagesize(const char *arg)
3121 {
3122     qemu_host_page_size = atoi(arg);
3123     if (qemu_host_page_size == 0 ||
3124         (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
3125         fprintf(stderr, "page size must be a power of two\n");
3126         exit(1);
3127     }
3128 }
3129 
3130 static void handle_arg_gdb(const char *arg)
3131 {
3132     gdbstub_port = atoi(arg);
3133 }
3134 
3135 static void handle_arg_uname(const char *arg)
3136 {
3137     qemu_uname_release = strdup(arg);
3138 }
3139 
3140 static void handle_arg_cpu(const char *arg)
3141 {
3142     cpu_model = strdup(arg);
3143     if (cpu_model == NULL || strcmp(cpu_model, "?") == 0) {
3144         /* XXX: implement xxx_cpu_list for targets that still miss it */
3145 #if defined(cpu_list_id)
3146         cpu_list_id(stdout, &fprintf, "");
3147 #elif defined(cpu_list)
3148         cpu_list(stdout, &fprintf); /* deprecated */
3149 #endif
3150         exit(1);
3151     }
3152 }
3153 
3154 #if defined(CONFIG_USE_GUEST_BASE)
3155 static void handle_arg_guest_base(const char *arg)
3156 {
3157     guest_base = strtol(arg, NULL, 0);
3158     have_guest_base = 1;
3159 }
3160 
3161 static void handle_arg_reserved_va(const char *arg)
3162 {
3163     char *p;
3164     int shift = 0;
3165     reserved_va = strtoul(arg, &p, 0);
3166     switch (*p) {
3167     case 'k':
3168     case 'K':
3169         shift = 10;
3170         break;
3171     case 'M':
3172         shift = 20;
3173         break;
3174     case 'G':
3175         shift = 30;
3176         break;
3177     }
3178     if (shift) {
3179         unsigned long unshifted = reserved_va;
3180         p++;
3181         reserved_va <<= shift;
3182         if (((reserved_va >> shift) != unshifted)
3183 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3184             || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS))
3185 #endif
3186             ) {
3187             fprintf(stderr, "Reserved virtual address too big\n");
3188             exit(1);
3189         }
3190     }
3191     if (*p) {
3192         fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
3193         exit(1);
3194     }
3195 }
3196 #endif
3197 
3198 static void handle_arg_singlestep(const char *arg)
3199 {
3200     singlestep = 1;
3201 }
3202 
3203 static void handle_arg_strace(const char *arg)
3204 {
3205     do_strace = 1;
3206 }
3207 
3208 static void handle_arg_version(const char *arg)
3209 {
3210     printf("qemu-" TARGET_ARCH " version " QEMU_VERSION QEMU_PKGVERSION
3211            ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3212     exit(0);
3213 }
3214 
3215 struct qemu_argument {
3216     const char *argv;
3217     const char *env;
3218     bool has_arg;
3219     void (*handle_opt)(const char *arg);
3220     const char *example;
3221     const char *help;
3222 };
3223 
3224 struct qemu_argument arg_table[] = {
3225     {"h",          "",                 false, handle_arg_help,
3226      "",           "print this help"},
3227     {"g",          "QEMU_GDB",         true,  handle_arg_gdb,
3228      "port",       "wait gdb connection to 'port'"},
3229     {"L",          "QEMU_LD_PREFIX",   true,  handle_arg_ld_prefix,
3230      "path",       "set the elf interpreter prefix to 'path'"},
3231     {"s",          "QEMU_STACK_SIZE",  true,  handle_arg_stack_size,
3232      "size",       "set the stack size to 'size' bytes"},
3233     {"cpu",        "QEMU_CPU",         true,  handle_arg_cpu,
3234      "model",      "select CPU (-cpu ? for list)"},
3235     {"E",          "QEMU_SET_ENV",     true,  handle_arg_set_env,
3236      "var=value",  "sets targets environment variable (see below)"},
3237     {"U",          "QEMU_UNSET_ENV",   true,  handle_arg_unset_env,
3238      "var",        "unsets targets environment variable (see below)"},
3239     {"0",          "QEMU_ARGV0",       true,  handle_arg_argv0,
3240      "argv0",      "forces target process argv[0] to be 'argv0'"},
3241     {"r",          "QEMU_UNAME",       true,  handle_arg_uname,
3242      "uname",      "set qemu uname release string to 'uname'"},
3243 #if defined(CONFIG_USE_GUEST_BASE)
3244     {"B",          "QEMU_GUEST_BASE",  true,  handle_arg_guest_base,
3245      "address",    "set guest_base address to 'address'"},
3246     {"R",          "QEMU_RESERVED_VA", true,  handle_arg_reserved_va,
3247      "size",       "reserve 'size' bytes for guest virtual address space"},
3248 #endif
3249     {"d",          "QEMU_LOG",         true,  handle_arg_log,
3250      "options",    "activate log"},
3251     {"D",          "QEMU_LOG_FILENAME", true, handle_arg_log_filename,
3252      "logfile",     "override default logfile location"},
3253     {"p",          "QEMU_PAGESIZE",    true,  handle_arg_pagesize,
3254      "pagesize",   "set the host page size to 'pagesize'"},
3255     {"singlestep", "QEMU_SINGLESTEP",  false, handle_arg_singlestep,
3256      "",           "run in singlestep mode"},
3257     {"strace",     "QEMU_STRACE",      false, handle_arg_strace,
3258      "",           "log system calls"},
3259     {"version",    "QEMU_VERSION",     false, handle_arg_version,
3260      "",           "display version information and exit"},
3261     {NULL, NULL, false, NULL, NULL, NULL}
3262 };
3263 
3264 static void usage(void)
3265 {
3266     struct qemu_argument *arginfo;
3267     int maxarglen;
3268     int maxenvlen;
3269 
3270     printf("usage: qemu-" TARGET_ARCH " [options] program [arguments...]\n"
3271            "Linux CPU emulator (compiled for " TARGET_ARCH " emulation)\n"
3272            "\n"
3273            "Options and associated environment variables:\n"
3274            "\n");
3275 
3276     maxarglen = maxenvlen = 0;
3277 
3278     for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3279         if (strlen(arginfo->env) > maxenvlen) {
3280             maxenvlen = strlen(arginfo->env);
3281         }
3282         if (strlen(arginfo->argv) > maxarglen) {
3283             maxarglen = strlen(arginfo->argv);
3284         }
3285     }
3286 
3287     printf("%-*s%-*sDescription\n", maxarglen+3, "Argument",
3288             maxenvlen+1, "Env-variable");
3289 
3290     for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3291         if (arginfo->has_arg) {
3292             printf("-%s %-*s %-*s %s\n", arginfo->argv,
3293                     (int)(maxarglen-strlen(arginfo->argv)), arginfo->example,
3294                     maxenvlen, arginfo->env, arginfo->help);
3295         } else {
3296             printf("-%-*s %-*s %s\n", maxarglen+1, arginfo->argv,
3297                     maxenvlen, arginfo->env,
3298                     arginfo->help);
3299         }
3300     }
3301 
3302     printf("\n"
3303            "Defaults:\n"
3304            "QEMU_LD_PREFIX  = %s\n"
3305            "QEMU_STACK_SIZE = %ld byte\n"
3306            "QEMU_LOG        = %s\n",
3307            interp_prefix,
3308            guest_stack_size,
3309            DEBUG_LOGFILE);
3310 
3311     printf("\n"
3312            "You can use -E and -U options or the QEMU_SET_ENV and\n"
3313            "QEMU_UNSET_ENV environment variables to set and unset\n"
3314            "environment variables for the target process.\n"
3315            "It is possible to provide several variables by separating them\n"
3316            "by commas in getsubopt(3) style. Additionally it is possible to\n"
3317            "provide the -E and -U options multiple times.\n"
3318            "The following lines are equivalent:\n"
3319            "    -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
3320            "    -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
3321            "    QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
3322            "Note that if you provide several changes to a single variable\n"
3323            "the last change will stay in effect.\n");
3324 
3325     exit(1);
3326 }
3327 
3328 static int parse_args(int argc, char **argv)
3329 {
3330     const char *r;
3331     int optind;
3332     struct qemu_argument *arginfo;
3333 
3334     for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3335         if (arginfo->env == NULL) {
3336             continue;
3337         }
3338 
3339         r = getenv(arginfo->env);
3340         if (r != NULL) {
3341             arginfo->handle_opt(r);
3342         }
3343     }
3344 
3345     optind = 1;
3346     for (;;) {
3347         if (optind >= argc) {
3348             break;
3349         }
3350         r = argv[optind];
3351         if (r[0] != '-') {
3352             break;
3353         }
3354         optind++;
3355         r++;
3356         if (!strcmp(r, "-")) {
3357             break;
3358         }
3359 
3360         for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3361             if (!strcmp(r, arginfo->argv)) {
3362                 if (arginfo->has_arg) {
3363                     if (optind >= argc) {
3364                         usage();
3365                     }
3366                     arginfo->handle_opt(argv[optind]);
3367                     optind++;
3368                 } else {
3369                     arginfo->handle_opt(NULL);
3370                 }
3371                 break;
3372             }
3373         }
3374 
3375         /* no option matched the current argv */
3376         if (arginfo->handle_opt == NULL) {
3377             usage();
3378         }
3379     }
3380 
3381     if (optind >= argc) {
3382         usage();
3383     }
3384 
3385     filename = argv[optind];
3386     exec_path = argv[optind];
3387 
3388     return optind;
3389 }
3390 
3391 int main(int argc, char **argv, char **envp)
3392 {
3393     const char *log_file = DEBUG_LOGFILE;
3394     struct target_pt_regs regs1, *regs = &regs1;
3395     struct image_info info1, *info = &info1;
3396     struct linux_binprm bprm;
3397     TaskState *ts;
3398     CPUArchState *env;
3399     int optind;
3400     char **target_environ, **wrk;
3401     char **target_argv;
3402     int target_argc;
3403     int i;
3404     int ret;
3405 
3406     module_call_init(MODULE_INIT_QOM);
3407 
3408     qemu_cache_utils_init(envp);
3409 
3410     if ((envlist = envlist_create()) == NULL) {
3411         (void) fprintf(stderr, "Unable to allocate envlist\n");
3412         exit(1);
3413     }
3414 
3415     /* add current environment into the list */
3416     for (wrk = environ; *wrk != NULL; wrk++) {
3417         (void) envlist_setenv(envlist, *wrk);
3418     }
3419 
3420     /* Read the stack limit from the kernel.  If it's "unlimited",
3421        then we can do little else besides use the default.  */
3422     {
3423         struct rlimit lim;
3424         if (getrlimit(RLIMIT_STACK, &lim) == 0
3425             && lim.rlim_cur != RLIM_INFINITY
3426             && lim.rlim_cur == (target_long)lim.rlim_cur) {
3427             guest_stack_size = lim.rlim_cur;
3428         }
3429     }
3430 
3431     cpu_model = NULL;
3432 #if defined(cpudef_setup)
3433     cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
3434 #endif
3435 
3436     /* init debug */
3437     cpu_set_log_filename(log_file);
3438     optind = parse_args(argc, argv);
3439 
3440     /* Zero out regs */
3441     memset(regs, 0, sizeof(struct target_pt_regs));
3442 
3443     /* Zero out image_info */
3444     memset(info, 0, sizeof(struct image_info));
3445 
3446     memset(&bprm, 0, sizeof (bprm));
3447 
3448     /* Scan interp_prefix dir for replacement files. */
3449     init_paths(interp_prefix);
3450 
3451     if (cpu_model == NULL) {
3452 #if defined(TARGET_I386)
3453 #ifdef TARGET_X86_64
3454         cpu_model = "qemu64";
3455 #else
3456         cpu_model = "qemu32";
3457 #endif
3458 #elif defined(TARGET_ARM)
3459         cpu_model = "any";
3460 #elif defined(TARGET_UNICORE32)
3461         cpu_model = "any";
3462 #elif defined(TARGET_M68K)
3463         cpu_model = "any";
3464 #elif defined(TARGET_SPARC)
3465 #ifdef TARGET_SPARC64
3466         cpu_model = "TI UltraSparc II";
3467 #else
3468         cpu_model = "Fujitsu MB86904";
3469 #endif
3470 #elif defined(TARGET_MIPS)
3471 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
3472         cpu_model = "20Kc";
3473 #else
3474         cpu_model = "24Kf";
3475 #endif
3476 #elif defined TARGET_OPENRISC
3477         cpu_model = "or1200";
3478 #elif defined(TARGET_PPC)
3479 #ifdef TARGET_PPC64
3480         cpu_model = "970fx";
3481 #else
3482         cpu_model = "750";
3483 #endif
3484 #else
3485         cpu_model = "any";
3486 #endif
3487     }
3488     tcg_exec_init(0);
3489     cpu_exec_init_all();
3490     /* NOTE: we need to init the CPU at this stage to get
3491        qemu_host_page_size */
3492     env = cpu_init(cpu_model);
3493     if (!env) {
3494         fprintf(stderr, "Unable to find CPU definition\n");
3495         exit(1);
3496     }
3497 #if defined(TARGET_I386) || defined(TARGET_SPARC) || defined(TARGET_PPC)
3498     cpu_reset(ENV_GET_CPU(env));
3499 #endif
3500 
3501     thread_env = env;
3502 
3503     if (getenv("QEMU_STRACE")) {
3504         do_strace = 1;
3505     }
3506 
3507     target_environ = envlist_to_environ(envlist, NULL);
3508     envlist_free(envlist);
3509 
3510 #if defined(CONFIG_USE_GUEST_BASE)
3511     /*
3512      * Now that page sizes are configured in cpu_init() we can do
3513      * proper page alignment for guest_base.
3514      */
3515     guest_base = HOST_PAGE_ALIGN(guest_base);
3516 
3517     if (reserved_va) {
3518         void *p;
3519         int flags;
3520 
3521         flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
3522         if (have_guest_base) {
3523             flags |= MAP_FIXED;
3524         }
3525         p = mmap((void *)guest_base, reserved_va, PROT_NONE, flags, -1, 0);
3526         if (p == MAP_FAILED) {
3527             fprintf(stderr, "Unable to reserve guest address space\n");
3528             exit(1);
3529         }
3530         guest_base = (unsigned long)p;
3531         /* Make sure the address is properly aligned.  */
3532         if (guest_base & ~qemu_host_page_mask) {
3533             munmap(p, reserved_va);
3534             p = mmap((void *)guest_base, reserved_va + qemu_host_page_size,
3535                      PROT_NONE, flags, -1, 0);
3536             if (p == MAP_FAILED) {
3537                 fprintf(stderr, "Unable to reserve guest address space\n");
3538                 exit(1);
3539             }
3540             guest_base = HOST_PAGE_ALIGN((unsigned long)p);
3541         }
3542         qemu_log("Reserved 0x%lx bytes of guest address space\n", reserved_va);
3543         mmap_next_start = reserved_va;
3544     }
3545 
3546     if (reserved_va || have_guest_base) {
3547         if (!guest_validate_base(guest_base)) {
3548             fprintf(stderr, "Guest base/Reserved VA rejected by guest code\n");
3549             exit(1);
3550         }
3551     }
3552 #endif /* CONFIG_USE_GUEST_BASE */
3553 
3554     /*
3555      * Read in mmap_min_addr kernel parameter.  This value is used
3556      * When loading the ELF image to determine whether guest_base
3557      * is needed.  It is also used in mmap_find_vma.
3558      */
3559     {
3560         FILE *fp;
3561 
3562         if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
3563             unsigned long tmp;
3564             if (fscanf(fp, "%lu", &tmp) == 1) {
3565                 mmap_min_addr = tmp;
3566                 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr);
3567             }
3568             fclose(fp);
3569         }
3570     }
3571 
3572     /*
3573      * Prepare copy of argv vector for target.
3574      */
3575     target_argc = argc - optind;
3576     target_argv = calloc(target_argc + 1, sizeof (char *));
3577     if (target_argv == NULL) {
3578 	(void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
3579 	exit(1);
3580     }
3581 
3582     /*
3583      * If argv0 is specified (using '-0' switch) we replace
3584      * argv[0] pointer with the given one.
3585      */
3586     i = 0;
3587     if (argv0 != NULL) {
3588         target_argv[i++] = strdup(argv0);
3589     }
3590     for (; i < target_argc; i++) {
3591         target_argv[i] = strdup(argv[optind + i]);
3592     }
3593     target_argv[target_argc] = NULL;
3594 
3595     ts = g_malloc0 (sizeof(TaskState));
3596     init_task_state(ts);
3597     /* build Task State */
3598     ts->info = info;
3599     ts->bprm = &bprm;
3600     env->opaque = ts;
3601     task_settid(ts);
3602 
3603     ret = loader_exec(filename, target_argv, target_environ, regs,
3604         info, &bprm);
3605     if (ret != 0) {
3606         printf("Error %d while loading %s\n", ret, filename);
3607         _exit(1);
3608     }
3609 
3610     for (wrk = target_environ; *wrk; wrk++) {
3611         free(*wrk);
3612     }
3613 
3614     free(target_environ);
3615 
3616     if (qemu_log_enabled()) {
3617 #if defined(CONFIG_USE_GUEST_BASE)
3618         qemu_log("guest_base  0x%lx\n", guest_base);
3619 #endif
3620         log_page_dump();
3621 
3622         qemu_log("start_brk   0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
3623         qemu_log("end_code    0x" TARGET_ABI_FMT_lx "\n", info->end_code);
3624         qemu_log("start_code  0x" TARGET_ABI_FMT_lx "\n",
3625                  info->start_code);
3626         qemu_log("start_data  0x" TARGET_ABI_FMT_lx "\n",
3627                  info->start_data);
3628         qemu_log("end_data    0x" TARGET_ABI_FMT_lx "\n", info->end_data);
3629         qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
3630                  info->start_stack);
3631         qemu_log("brk         0x" TARGET_ABI_FMT_lx "\n", info->brk);
3632         qemu_log("entry       0x" TARGET_ABI_FMT_lx "\n", info->entry);
3633     }
3634 
3635     target_set_brk(info->brk);
3636     syscall_init();
3637     signal_init();
3638 
3639 #if defined(CONFIG_USE_GUEST_BASE)
3640     /* Now that we've loaded the binary, GUEST_BASE is fixed.  Delay
3641        generating the prologue until now so that the prologue can take
3642        the real value of GUEST_BASE into account.  */
3643     tcg_prologue_init(&tcg_ctx);
3644 #endif
3645 
3646 #if defined(TARGET_I386)
3647     cpu_x86_set_cpl(env, 3);
3648 
3649     env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
3650     env->hflags |= HF_PE_MASK;
3651     if (env->cpuid_features & CPUID_SSE) {
3652         env->cr[4] |= CR4_OSFXSR_MASK;
3653         env->hflags |= HF_OSFXSR_MASK;
3654     }
3655 #ifndef TARGET_ABI32
3656     /* enable 64 bit mode if possible */
3657     if (!(env->cpuid_ext2_features & CPUID_EXT2_LM)) {
3658         fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
3659         exit(1);
3660     }
3661     env->cr[4] |= CR4_PAE_MASK;
3662     env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
3663     env->hflags |= HF_LMA_MASK;
3664 #endif
3665 
3666     /* flags setup : we activate the IRQs by default as in user mode */
3667     env->eflags |= IF_MASK;
3668 
3669     /* linux register setup */
3670 #ifndef TARGET_ABI32
3671     env->regs[R_EAX] = regs->rax;
3672     env->regs[R_EBX] = regs->rbx;
3673     env->regs[R_ECX] = regs->rcx;
3674     env->regs[R_EDX] = regs->rdx;
3675     env->regs[R_ESI] = regs->rsi;
3676     env->regs[R_EDI] = regs->rdi;
3677     env->regs[R_EBP] = regs->rbp;
3678     env->regs[R_ESP] = regs->rsp;
3679     env->eip = regs->rip;
3680 #else
3681     env->regs[R_EAX] = regs->eax;
3682     env->regs[R_EBX] = regs->ebx;
3683     env->regs[R_ECX] = regs->ecx;
3684     env->regs[R_EDX] = regs->edx;
3685     env->regs[R_ESI] = regs->esi;
3686     env->regs[R_EDI] = regs->edi;
3687     env->regs[R_EBP] = regs->ebp;
3688     env->regs[R_ESP] = regs->esp;
3689     env->eip = regs->eip;
3690 #endif
3691 
3692     /* linux interrupt setup */
3693 #ifndef TARGET_ABI32
3694     env->idt.limit = 511;
3695 #else
3696     env->idt.limit = 255;
3697 #endif
3698     env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
3699                                 PROT_READ|PROT_WRITE,
3700                                 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
3701     idt_table = g2h(env->idt.base);
3702     set_idt(0, 0);
3703     set_idt(1, 0);
3704     set_idt(2, 0);
3705     set_idt(3, 3);
3706     set_idt(4, 3);
3707     set_idt(5, 0);
3708     set_idt(6, 0);
3709     set_idt(7, 0);
3710     set_idt(8, 0);
3711     set_idt(9, 0);
3712     set_idt(10, 0);
3713     set_idt(11, 0);
3714     set_idt(12, 0);
3715     set_idt(13, 0);
3716     set_idt(14, 0);
3717     set_idt(15, 0);
3718     set_idt(16, 0);
3719     set_idt(17, 0);
3720     set_idt(18, 0);
3721     set_idt(19, 0);
3722     set_idt(0x80, 3);
3723 
3724     /* linux segment setup */
3725     {
3726         uint64_t *gdt_table;
3727         env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
3728                                     PROT_READ|PROT_WRITE,
3729                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
3730         env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
3731         gdt_table = g2h(env->gdt.base);
3732 #ifdef TARGET_ABI32
3733         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
3734                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3735                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
3736 #else
3737         /* 64 bit code segment */
3738         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
3739                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3740                  DESC_L_MASK |
3741                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
3742 #endif
3743         write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
3744                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
3745                  (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
3746     }
3747     cpu_x86_load_seg(env, R_CS, __USER_CS);
3748     cpu_x86_load_seg(env, R_SS, __USER_DS);
3749 #ifdef TARGET_ABI32
3750     cpu_x86_load_seg(env, R_DS, __USER_DS);
3751     cpu_x86_load_seg(env, R_ES, __USER_DS);
3752     cpu_x86_load_seg(env, R_FS, __USER_DS);
3753     cpu_x86_load_seg(env, R_GS, __USER_DS);
3754     /* This hack makes Wine work... */
3755     env->segs[R_FS].selector = 0;
3756 #else
3757     cpu_x86_load_seg(env, R_DS, 0);
3758     cpu_x86_load_seg(env, R_ES, 0);
3759     cpu_x86_load_seg(env, R_FS, 0);
3760     cpu_x86_load_seg(env, R_GS, 0);
3761 #endif
3762 #elif defined(TARGET_ARM)
3763     {
3764         int i;
3765         cpsr_write(env, regs->uregs[16], 0xffffffff);
3766         for(i = 0; i < 16; i++) {
3767             env->regs[i] = regs->uregs[i];
3768         }
3769         /* Enable BE8.  */
3770         if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
3771             && (info->elf_flags & EF_ARM_BE8)) {
3772             env->bswap_code = 1;
3773         }
3774     }
3775 #elif defined(TARGET_UNICORE32)
3776     {
3777         int i;
3778         cpu_asr_write(env, regs->uregs[32], 0xffffffff);
3779         for (i = 0; i < 32; i++) {
3780             env->regs[i] = regs->uregs[i];
3781         }
3782     }
3783 #elif defined(TARGET_SPARC)
3784     {
3785         int i;
3786 	env->pc = regs->pc;
3787 	env->npc = regs->npc;
3788         env->y = regs->y;
3789         for(i = 0; i < 8; i++)
3790             env->gregs[i] = regs->u_regs[i];
3791         for(i = 0; i < 8; i++)
3792             env->regwptr[i] = regs->u_regs[i + 8];
3793     }
3794 #elif defined(TARGET_PPC)
3795     {
3796         int i;
3797 
3798 #if defined(TARGET_PPC64)
3799 #if defined(TARGET_ABI32)
3800         env->msr &= ~((target_ulong)1 << MSR_SF);
3801 #else
3802         env->msr |= (target_ulong)1 << MSR_SF;
3803 #endif
3804 #endif
3805         env->nip = regs->nip;
3806         for(i = 0; i < 32; i++) {
3807             env->gpr[i] = regs->gpr[i];
3808         }
3809     }
3810 #elif defined(TARGET_M68K)
3811     {
3812         env->pc = regs->pc;
3813         env->dregs[0] = regs->d0;
3814         env->dregs[1] = regs->d1;
3815         env->dregs[2] = regs->d2;
3816         env->dregs[3] = regs->d3;
3817         env->dregs[4] = regs->d4;
3818         env->dregs[5] = regs->d5;
3819         env->dregs[6] = regs->d6;
3820         env->dregs[7] = regs->d7;
3821         env->aregs[0] = regs->a0;
3822         env->aregs[1] = regs->a1;
3823         env->aregs[2] = regs->a2;
3824         env->aregs[3] = regs->a3;
3825         env->aregs[4] = regs->a4;
3826         env->aregs[5] = regs->a5;
3827         env->aregs[6] = regs->a6;
3828         env->aregs[7] = regs->usp;
3829         env->sr = regs->sr;
3830         ts->sim_syscalls = 1;
3831     }
3832 #elif defined(TARGET_MICROBLAZE)
3833     {
3834         env->regs[0] = regs->r0;
3835         env->regs[1] = regs->r1;
3836         env->regs[2] = regs->r2;
3837         env->regs[3] = regs->r3;
3838         env->regs[4] = regs->r4;
3839         env->regs[5] = regs->r5;
3840         env->regs[6] = regs->r6;
3841         env->regs[7] = regs->r7;
3842         env->regs[8] = regs->r8;
3843         env->regs[9] = regs->r9;
3844         env->regs[10] = regs->r10;
3845         env->regs[11] = regs->r11;
3846         env->regs[12] = regs->r12;
3847         env->regs[13] = regs->r13;
3848         env->regs[14] = regs->r14;
3849         env->regs[15] = regs->r15;
3850         env->regs[16] = regs->r16;
3851         env->regs[17] = regs->r17;
3852         env->regs[18] = regs->r18;
3853         env->regs[19] = regs->r19;
3854         env->regs[20] = regs->r20;
3855         env->regs[21] = regs->r21;
3856         env->regs[22] = regs->r22;
3857         env->regs[23] = regs->r23;
3858         env->regs[24] = regs->r24;
3859         env->regs[25] = regs->r25;
3860         env->regs[26] = regs->r26;
3861         env->regs[27] = regs->r27;
3862         env->regs[28] = regs->r28;
3863         env->regs[29] = regs->r29;
3864         env->regs[30] = regs->r30;
3865         env->regs[31] = regs->r31;
3866         env->sregs[SR_PC] = regs->pc;
3867     }
3868 #elif defined(TARGET_MIPS)
3869     {
3870         int i;
3871 
3872         for(i = 0; i < 32; i++) {
3873             env->active_tc.gpr[i] = regs->regs[i];
3874         }
3875         env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1;
3876         if (regs->cp0_epc & 1) {
3877             env->hflags |= MIPS_HFLAG_M16;
3878         }
3879     }
3880 #elif defined(TARGET_OPENRISC)
3881     {
3882         int i;
3883 
3884         for (i = 0; i < 32; i++) {
3885             env->gpr[i] = regs->gpr[i];
3886         }
3887 
3888         env->sr = regs->sr;
3889         env->pc = regs->pc;
3890     }
3891 #elif defined(TARGET_SH4)
3892     {
3893         int i;
3894 
3895         for(i = 0; i < 16; i++) {
3896             env->gregs[i] = regs->regs[i];
3897         }
3898         env->pc = regs->pc;
3899     }
3900 #elif defined(TARGET_ALPHA)
3901     {
3902         int i;
3903 
3904         for(i = 0; i < 28; i++) {
3905             env->ir[i] = ((abi_ulong *)regs)[i];
3906         }
3907         env->ir[IR_SP] = regs->usp;
3908         env->pc = regs->pc;
3909     }
3910 #elif defined(TARGET_CRIS)
3911     {
3912 	    env->regs[0] = regs->r0;
3913 	    env->regs[1] = regs->r1;
3914 	    env->regs[2] = regs->r2;
3915 	    env->regs[3] = regs->r3;
3916 	    env->regs[4] = regs->r4;
3917 	    env->regs[5] = regs->r5;
3918 	    env->regs[6] = regs->r6;
3919 	    env->regs[7] = regs->r7;
3920 	    env->regs[8] = regs->r8;
3921 	    env->regs[9] = regs->r9;
3922 	    env->regs[10] = regs->r10;
3923 	    env->regs[11] = regs->r11;
3924 	    env->regs[12] = regs->r12;
3925 	    env->regs[13] = regs->r13;
3926 	    env->regs[14] = info->start_stack;
3927 	    env->regs[15] = regs->acr;
3928 	    env->pc = regs->erp;
3929     }
3930 #elif defined(TARGET_S390X)
3931     {
3932             int i;
3933             for (i = 0; i < 16; i++) {
3934                 env->regs[i] = regs->gprs[i];
3935             }
3936             env->psw.mask = regs->psw.mask;
3937             env->psw.addr = regs->psw.addr;
3938     }
3939 #else
3940 #error unsupported target CPU
3941 #endif
3942 
3943 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
3944     ts->stack_base = info->start_stack;
3945     ts->heap_base = info->brk;
3946     /* This will be filled in on the first SYS_HEAPINFO call.  */
3947     ts->heap_limit = 0;
3948 #endif
3949 
3950     if (gdbstub_port) {
3951         if (gdbserver_start(gdbstub_port) < 0) {
3952             fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
3953                     gdbstub_port);
3954             exit(1);
3955         }
3956         gdb_handlesig(env, 0);
3957     }
3958     cpu_loop(env);
3959     /* never exits */
3960     return 0;
3961 }
3962