1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu-version.h" 21 #include <sys/syscall.h> 22 #include <sys/resource.h> 23 24 #include "qapi/error.h" 25 #include "qemu.h" 26 #include "qemu/path.h" 27 #include "qemu/config-file.h" 28 #include "qemu/cutils.h" 29 #include "qemu/help_option.h" 30 #include "cpu.h" 31 #include "exec/exec-all.h" 32 #include "tcg.h" 33 #include "qemu/timer.h" 34 #include "qemu/envlist.h" 35 #include "elf.h" 36 #include "exec/log.h" 37 #include "trace/control.h" 38 39 char *exec_path; 40 41 int singlestep; 42 static const char *filename; 43 static const char *argv0; 44 static int gdbstub_port; 45 static envlist_t *envlist; 46 static const char *cpu_model; 47 unsigned long mmap_min_addr; 48 unsigned long guest_base; 49 int have_guest_base; 50 51 #define EXCP_DUMP(env, fmt, ...) \ 52 do { \ 53 CPUState *cs = ENV_GET_CPU(env); \ 54 fprintf(stderr, fmt , ## __VA_ARGS__); \ 55 cpu_dump_state(cs, stderr, fprintf, 0); \ 56 if (qemu_log_separate()) { \ 57 qemu_log(fmt, ## __VA_ARGS__); \ 58 log_cpu_state(cs, 0); \ 59 } \ 60 } while (0) 61 62 /* 63 * When running 32-on-64 we should make sure we can fit all of the possible 64 * guest address space into a contiguous chunk of virtual host memory. 65 * 66 * This way we will never overlap with our own libraries or binaries or stack 67 * or anything else that QEMU maps. 68 * 69 * Many cpus reserve the high bit (or more than one for some 64-bit cpus) 70 * of the address for the kernel. Some cpus rely on this and user space 71 * uses the high bit(s) for pointer tagging and the like. For them, we 72 * must preserve the expected address space. 73 */ 74 #ifndef MAX_RESERVED_VA 75 # if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS 76 # if TARGET_VIRT_ADDR_SPACE_BITS == 32 && \ 77 (TARGET_LONG_BITS == 32 || defined(TARGET_ABI32)) 78 /* There are a number of places where we assign reserved_va to a variable 79 of type abi_ulong and expect it to fit. Avoid the last page. */ 80 # define MAX_RESERVED_VA (0xfffffffful & TARGET_PAGE_MASK) 81 # else 82 # define MAX_RESERVED_VA (1ul << TARGET_VIRT_ADDR_SPACE_BITS) 83 # endif 84 # else 85 # define MAX_RESERVED_VA 0 86 # endif 87 #endif 88 89 /* That said, reserving *too* much vm space via mmap can run into problems 90 with rlimits, oom due to page table creation, etc. We will still try it, 91 if directed by the command-line option, but not by default. */ 92 #if HOST_LONG_BITS == 64 && TARGET_VIRT_ADDR_SPACE_BITS <= 32 93 unsigned long reserved_va = MAX_RESERVED_VA; 94 #else 95 unsigned long reserved_va; 96 #endif 97 98 static void usage(int exitcode); 99 100 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 101 const char *qemu_uname_release; 102 103 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 104 we allocate a bigger stack. Need a better solution, for example 105 by remapping the process stack directly at the right place */ 106 unsigned long guest_stack_size = 8 * 1024 * 1024UL; 107 108 void gemu_log(const char *fmt, ...) 109 { 110 va_list ap; 111 112 va_start(ap, fmt); 113 vfprintf(stderr, fmt, ap); 114 va_end(ap); 115 } 116 117 #if defined(TARGET_I386) 118 int cpu_get_pic_interrupt(CPUX86State *env) 119 { 120 return -1; 121 } 122 #endif 123 124 /***********************************************************/ 125 /* Helper routines for implementing atomic operations. */ 126 127 /* Make sure everything is in a consistent state for calling fork(). */ 128 void fork_start(void) 129 { 130 cpu_list_lock(); 131 qemu_mutex_lock(&tb_ctx.tb_lock); 132 mmap_fork_start(); 133 } 134 135 void fork_end(int child) 136 { 137 mmap_fork_end(child); 138 if (child) { 139 CPUState *cpu, *next_cpu; 140 /* Child processes created by fork() only have a single thread. 141 Discard information about the parent threads. */ 142 CPU_FOREACH_SAFE(cpu, next_cpu) { 143 if (cpu != thread_cpu) { 144 QTAILQ_REMOVE(&cpus, cpu, node); 145 } 146 } 147 qemu_mutex_init(&tb_ctx.tb_lock); 148 qemu_init_cpu_list(); 149 gdbserver_fork(thread_cpu); 150 } else { 151 qemu_mutex_unlock(&tb_ctx.tb_lock); 152 cpu_list_unlock(); 153 } 154 } 155 156 #ifdef TARGET_I386 157 /***********************************************************/ 158 /* CPUX86 core interface */ 159 160 uint64_t cpu_get_tsc(CPUX86State *env) 161 { 162 return cpu_get_host_ticks(); 163 } 164 165 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 166 int flags) 167 { 168 unsigned int e1, e2; 169 uint32_t *p; 170 e1 = (addr << 16) | (limit & 0xffff); 171 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 172 e2 |= flags; 173 p = ptr; 174 p[0] = tswap32(e1); 175 p[1] = tswap32(e2); 176 } 177 178 static uint64_t *idt_table; 179 #ifdef TARGET_X86_64 180 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 181 uint64_t addr, unsigned int sel) 182 { 183 uint32_t *p, e1, e2; 184 e1 = (addr & 0xffff) | (sel << 16); 185 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 186 p = ptr; 187 p[0] = tswap32(e1); 188 p[1] = tswap32(e2); 189 p[2] = tswap32(addr >> 32); 190 p[3] = 0; 191 } 192 /* only dpl matters as we do only user space emulation */ 193 static void set_idt(int n, unsigned int dpl) 194 { 195 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 196 } 197 #else 198 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 199 uint32_t addr, unsigned int sel) 200 { 201 uint32_t *p, e1, e2; 202 e1 = (addr & 0xffff) | (sel << 16); 203 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 204 p = ptr; 205 p[0] = tswap32(e1); 206 p[1] = tswap32(e2); 207 } 208 209 /* only dpl matters as we do only user space emulation */ 210 static void set_idt(int n, unsigned int dpl) 211 { 212 set_gate(idt_table + n, 0, dpl, 0, 0); 213 } 214 #endif 215 216 void cpu_loop(CPUX86State *env) 217 { 218 CPUState *cs = CPU(x86_env_get_cpu(env)); 219 int trapnr; 220 abi_ulong pc; 221 abi_ulong ret; 222 target_siginfo_t info; 223 224 for(;;) { 225 cpu_exec_start(cs); 226 trapnr = cpu_exec(cs); 227 cpu_exec_end(cs); 228 process_queued_cpu_work(cs); 229 230 switch(trapnr) { 231 case 0x80: 232 /* linux syscall from int $0x80 */ 233 ret = do_syscall(env, 234 env->regs[R_EAX], 235 env->regs[R_EBX], 236 env->regs[R_ECX], 237 env->regs[R_EDX], 238 env->regs[R_ESI], 239 env->regs[R_EDI], 240 env->regs[R_EBP], 241 0, 0); 242 if (ret == -TARGET_ERESTARTSYS) { 243 env->eip -= 2; 244 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 245 env->regs[R_EAX] = ret; 246 } 247 break; 248 #ifndef TARGET_ABI32 249 case EXCP_SYSCALL: 250 /* linux syscall from syscall instruction */ 251 ret = do_syscall(env, 252 env->regs[R_EAX], 253 env->regs[R_EDI], 254 env->regs[R_ESI], 255 env->regs[R_EDX], 256 env->regs[10], 257 env->regs[8], 258 env->regs[9], 259 0, 0); 260 if (ret == -TARGET_ERESTARTSYS) { 261 env->eip -= 2; 262 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 263 env->regs[R_EAX] = ret; 264 } 265 break; 266 #endif 267 case EXCP0B_NOSEG: 268 case EXCP0C_STACK: 269 info.si_signo = TARGET_SIGBUS; 270 info.si_errno = 0; 271 info.si_code = TARGET_SI_KERNEL; 272 info._sifields._sigfault._addr = 0; 273 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 274 break; 275 case EXCP0D_GPF: 276 /* XXX: potential problem if ABI32 */ 277 #ifndef TARGET_X86_64 278 if (env->eflags & VM_MASK) { 279 handle_vm86_fault(env); 280 } else 281 #endif 282 { 283 info.si_signo = TARGET_SIGSEGV; 284 info.si_errno = 0; 285 info.si_code = TARGET_SI_KERNEL; 286 info._sifields._sigfault._addr = 0; 287 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 288 } 289 break; 290 case EXCP0E_PAGE: 291 info.si_signo = TARGET_SIGSEGV; 292 info.si_errno = 0; 293 if (!(env->error_code & 1)) 294 info.si_code = TARGET_SEGV_MAPERR; 295 else 296 info.si_code = TARGET_SEGV_ACCERR; 297 info._sifields._sigfault._addr = env->cr[2]; 298 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 299 break; 300 case EXCP00_DIVZ: 301 #ifndef TARGET_X86_64 302 if (env->eflags & VM_MASK) { 303 handle_vm86_trap(env, trapnr); 304 } else 305 #endif 306 { 307 /* division by zero */ 308 info.si_signo = TARGET_SIGFPE; 309 info.si_errno = 0; 310 info.si_code = TARGET_FPE_INTDIV; 311 info._sifields._sigfault._addr = env->eip; 312 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 313 } 314 break; 315 case EXCP01_DB: 316 case EXCP03_INT3: 317 #ifndef TARGET_X86_64 318 if (env->eflags & VM_MASK) { 319 handle_vm86_trap(env, trapnr); 320 } else 321 #endif 322 { 323 info.si_signo = TARGET_SIGTRAP; 324 info.si_errno = 0; 325 if (trapnr == EXCP01_DB) { 326 info.si_code = TARGET_TRAP_BRKPT; 327 info._sifields._sigfault._addr = env->eip; 328 } else { 329 info.si_code = TARGET_SI_KERNEL; 330 info._sifields._sigfault._addr = 0; 331 } 332 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 333 } 334 break; 335 case EXCP04_INTO: 336 case EXCP05_BOUND: 337 #ifndef TARGET_X86_64 338 if (env->eflags & VM_MASK) { 339 handle_vm86_trap(env, trapnr); 340 } else 341 #endif 342 { 343 info.si_signo = TARGET_SIGSEGV; 344 info.si_errno = 0; 345 info.si_code = TARGET_SI_KERNEL; 346 info._sifields._sigfault._addr = 0; 347 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 348 } 349 break; 350 case EXCP06_ILLOP: 351 info.si_signo = TARGET_SIGILL; 352 info.si_errno = 0; 353 info.si_code = TARGET_ILL_ILLOPN; 354 info._sifields._sigfault._addr = env->eip; 355 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 356 break; 357 case EXCP_INTERRUPT: 358 /* just indicate that signals should be handled asap */ 359 break; 360 case EXCP_DEBUG: 361 { 362 int sig; 363 364 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 365 if (sig) 366 { 367 info.si_signo = sig; 368 info.si_errno = 0; 369 info.si_code = TARGET_TRAP_BRKPT; 370 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 371 } 372 } 373 break; 374 case EXCP_ATOMIC: 375 cpu_exec_step_atomic(cs); 376 break; 377 default: 378 pc = env->segs[R_CS].base + env->eip; 379 EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 380 (long)pc, trapnr); 381 abort(); 382 } 383 process_pending_signals(env); 384 } 385 } 386 #endif 387 388 #ifdef TARGET_ARM 389 390 #define get_user_code_u32(x, gaddr, env) \ 391 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 392 if (!__r && bswap_code(arm_sctlr_b(env))) { \ 393 (x) = bswap32(x); \ 394 } \ 395 __r; \ 396 }) 397 398 #define get_user_code_u16(x, gaddr, env) \ 399 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 400 if (!__r && bswap_code(arm_sctlr_b(env))) { \ 401 (x) = bswap16(x); \ 402 } \ 403 __r; \ 404 }) 405 406 #define get_user_data_u32(x, gaddr, env) \ 407 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 408 if (!__r && arm_cpu_bswap_data(env)) { \ 409 (x) = bswap32(x); \ 410 } \ 411 __r; \ 412 }) 413 414 #define get_user_data_u16(x, gaddr, env) \ 415 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 416 if (!__r && arm_cpu_bswap_data(env)) { \ 417 (x) = bswap16(x); \ 418 } \ 419 __r; \ 420 }) 421 422 #define put_user_data_u32(x, gaddr, env) \ 423 ({ typeof(x) __x = (x); \ 424 if (arm_cpu_bswap_data(env)) { \ 425 __x = bswap32(__x); \ 426 } \ 427 put_user_u32(__x, (gaddr)); \ 428 }) 429 430 #define put_user_data_u16(x, gaddr, env) \ 431 ({ typeof(x) __x = (x); \ 432 if (arm_cpu_bswap_data(env)) { \ 433 __x = bswap16(__x); \ 434 } \ 435 put_user_u16(__x, (gaddr)); \ 436 }) 437 438 #ifdef TARGET_ABI32 439 /* Commpage handling -- there is no commpage for AArch64 */ 440 441 /* 442 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt 443 * Input: 444 * r0 = pointer to oldval 445 * r1 = pointer to newval 446 * r2 = pointer to target value 447 * 448 * Output: 449 * r0 = 0 if *ptr was changed, non-0 if no exchange happened 450 * C set if *ptr was changed, clear if no exchange happened 451 * 452 * Note segv's in kernel helpers are a bit tricky, we can set the 453 * data address sensibly but the PC address is just the entry point. 454 */ 455 static void arm_kernel_cmpxchg64_helper(CPUARMState *env) 456 { 457 uint64_t oldval, newval, val; 458 uint32_t addr, cpsr; 459 target_siginfo_t info; 460 461 /* Based on the 32 bit code in do_kernel_trap */ 462 463 /* XXX: This only works between threads, not between processes. 464 It's probably possible to implement this with native host 465 operations. However things like ldrex/strex are much harder so 466 there's not much point trying. */ 467 start_exclusive(); 468 cpsr = cpsr_read(env); 469 addr = env->regs[2]; 470 471 if (get_user_u64(oldval, env->regs[0])) { 472 env->exception.vaddress = env->regs[0]; 473 goto segv; 474 }; 475 476 if (get_user_u64(newval, env->regs[1])) { 477 env->exception.vaddress = env->regs[1]; 478 goto segv; 479 }; 480 481 if (get_user_u64(val, addr)) { 482 env->exception.vaddress = addr; 483 goto segv; 484 } 485 486 if (val == oldval) { 487 val = newval; 488 489 if (put_user_u64(val, addr)) { 490 env->exception.vaddress = addr; 491 goto segv; 492 }; 493 494 env->regs[0] = 0; 495 cpsr |= CPSR_C; 496 } else { 497 env->regs[0] = -1; 498 cpsr &= ~CPSR_C; 499 } 500 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr); 501 end_exclusive(); 502 return; 503 504 segv: 505 end_exclusive(); 506 /* We get the PC of the entry address - which is as good as anything, 507 on a real kernel what you get depends on which mode it uses. */ 508 info.si_signo = TARGET_SIGSEGV; 509 info.si_errno = 0; 510 /* XXX: check env->error_code */ 511 info.si_code = TARGET_SEGV_MAPERR; 512 info._sifields._sigfault._addr = env->exception.vaddress; 513 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 514 } 515 516 /* Handle a jump to the kernel code page. */ 517 static int 518 do_kernel_trap(CPUARMState *env) 519 { 520 uint32_t addr; 521 uint32_t cpsr; 522 uint32_t val; 523 524 switch (env->regs[15]) { 525 case 0xffff0fa0: /* __kernel_memory_barrier */ 526 /* ??? No-op. Will need to do better for SMP. */ 527 break; 528 case 0xffff0fc0: /* __kernel_cmpxchg */ 529 /* XXX: This only works between threads, not between processes. 530 It's probably possible to implement this with native host 531 operations. However things like ldrex/strex are much harder so 532 there's not much point trying. */ 533 start_exclusive(); 534 cpsr = cpsr_read(env); 535 addr = env->regs[2]; 536 /* FIXME: This should SEGV if the access fails. */ 537 if (get_user_u32(val, addr)) 538 val = ~env->regs[0]; 539 if (val == env->regs[0]) { 540 val = env->regs[1]; 541 /* FIXME: Check for segfaults. */ 542 put_user_u32(val, addr); 543 env->regs[0] = 0; 544 cpsr |= CPSR_C; 545 } else { 546 env->regs[0] = -1; 547 cpsr &= ~CPSR_C; 548 } 549 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr); 550 end_exclusive(); 551 break; 552 case 0xffff0fe0: /* __kernel_get_tls */ 553 env->regs[0] = cpu_get_tls(env); 554 break; 555 case 0xffff0f60: /* __kernel_cmpxchg64 */ 556 arm_kernel_cmpxchg64_helper(env); 557 break; 558 559 default: 560 return 1; 561 } 562 /* Jump back to the caller. */ 563 addr = env->regs[14]; 564 if (addr & 1) { 565 env->thumb = 1; 566 addr &= ~1; 567 } 568 env->regs[15] = addr; 569 570 return 0; 571 } 572 573 void cpu_loop(CPUARMState *env) 574 { 575 CPUState *cs = CPU(arm_env_get_cpu(env)); 576 int trapnr; 577 unsigned int n, insn; 578 target_siginfo_t info; 579 uint32_t addr; 580 abi_ulong ret; 581 582 for(;;) { 583 cpu_exec_start(cs); 584 trapnr = cpu_exec(cs); 585 cpu_exec_end(cs); 586 process_queued_cpu_work(cs); 587 588 switch(trapnr) { 589 case EXCP_UDEF: 590 case EXCP_NOCP: 591 case EXCP_INVSTATE: 592 { 593 TaskState *ts = cs->opaque; 594 uint32_t opcode; 595 int rc; 596 597 /* we handle the FPU emulation here, as Linux */ 598 /* we get the opcode */ 599 /* FIXME - what to do if get_user() fails? */ 600 get_user_code_u32(opcode, env->regs[15], env); 601 602 rc = EmulateAll(opcode, &ts->fpa, env); 603 if (rc == 0) { /* illegal instruction */ 604 info.si_signo = TARGET_SIGILL; 605 info.si_errno = 0; 606 info.si_code = TARGET_ILL_ILLOPN; 607 info._sifields._sigfault._addr = env->regs[15]; 608 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 609 } else if (rc < 0) { /* FP exception */ 610 int arm_fpe=0; 611 612 /* translate softfloat flags to FPSR flags */ 613 if (-rc & float_flag_invalid) 614 arm_fpe |= BIT_IOC; 615 if (-rc & float_flag_divbyzero) 616 arm_fpe |= BIT_DZC; 617 if (-rc & float_flag_overflow) 618 arm_fpe |= BIT_OFC; 619 if (-rc & float_flag_underflow) 620 arm_fpe |= BIT_UFC; 621 if (-rc & float_flag_inexact) 622 arm_fpe |= BIT_IXC; 623 624 FPSR fpsr = ts->fpa.fpsr; 625 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); 626 627 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ 628 info.si_signo = TARGET_SIGFPE; 629 info.si_errno = 0; 630 631 /* ordered by priority, least first */ 632 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; 633 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; 634 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; 635 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; 636 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; 637 638 info._sifields._sigfault._addr = env->regs[15]; 639 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 640 } else { 641 env->regs[15] += 4; 642 } 643 644 /* accumulate unenabled exceptions */ 645 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) 646 fpsr |= BIT_IXC; 647 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) 648 fpsr |= BIT_UFC; 649 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) 650 fpsr |= BIT_OFC; 651 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) 652 fpsr |= BIT_DZC; 653 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) 654 fpsr |= BIT_IOC; 655 ts->fpa.fpsr=fpsr; 656 } else { /* everything OK */ 657 /* increment PC */ 658 env->regs[15] += 4; 659 } 660 } 661 break; 662 case EXCP_SWI: 663 case EXCP_BKPT: 664 { 665 env->eabi = 1; 666 /* system call */ 667 if (trapnr == EXCP_BKPT) { 668 if (env->thumb) { 669 /* FIXME - what to do if get_user() fails? */ 670 get_user_code_u16(insn, env->regs[15], env); 671 n = insn & 0xff; 672 env->regs[15] += 2; 673 } else { 674 /* FIXME - what to do if get_user() fails? */ 675 get_user_code_u32(insn, env->regs[15], env); 676 n = (insn & 0xf) | ((insn >> 4) & 0xff0); 677 env->regs[15] += 4; 678 } 679 } else { 680 if (env->thumb) { 681 /* FIXME - what to do if get_user() fails? */ 682 get_user_code_u16(insn, env->regs[15] - 2, env); 683 n = insn & 0xff; 684 } else { 685 /* FIXME - what to do if get_user() fails? */ 686 get_user_code_u32(insn, env->regs[15] - 4, env); 687 n = insn & 0xffffff; 688 } 689 } 690 691 if (n == ARM_NR_cacheflush) { 692 /* nop */ 693 } else if (n == ARM_NR_semihosting 694 || n == ARM_NR_thumb_semihosting) { 695 env->regs[0] = do_arm_semihosting (env); 696 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) { 697 /* linux syscall */ 698 if (env->thumb || n == 0) { 699 n = env->regs[7]; 700 } else { 701 n -= ARM_SYSCALL_BASE; 702 env->eabi = 0; 703 } 704 if ( n > ARM_NR_BASE) { 705 switch (n) { 706 case ARM_NR_cacheflush: 707 /* nop */ 708 break; 709 case ARM_NR_set_tls: 710 cpu_set_tls(env, env->regs[0]); 711 env->regs[0] = 0; 712 break; 713 case ARM_NR_breakpoint: 714 env->regs[15] -= env->thumb ? 2 : 4; 715 goto excp_debug; 716 default: 717 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", 718 n); 719 env->regs[0] = -TARGET_ENOSYS; 720 break; 721 } 722 } else { 723 ret = do_syscall(env, 724 n, 725 env->regs[0], 726 env->regs[1], 727 env->regs[2], 728 env->regs[3], 729 env->regs[4], 730 env->regs[5], 731 0, 0); 732 if (ret == -TARGET_ERESTARTSYS) { 733 env->regs[15] -= env->thumb ? 2 : 4; 734 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 735 env->regs[0] = ret; 736 } 737 } 738 } else { 739 goto error; 740 } 741 } 742 break; 743 case EXCP_SEMIHOST: 744 env->regs[0] = do_arm_semihosting(env); 745 break; 746 case EXCP_INTERRUPT: 747 /* just indicate that signals should be handled asap */ 748 break; 749 case EXCP_PREFETCH_ABORT: 750 case EXCP_DATA_ABORT: 751 addr = env->exception.vaddress; 752 { 753 info.si_signo = TARGET_SIGSEGV; 754 info.si_errno = 0; 755 /* XXX: check env->error_code */ 756 info.si_code = TARGET_SEGV_MAPERR; 757 info._sifields._sigfault._addr = addr; 758 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 759 } 760 break; 761 case EXCP_DEBUG: 762 excp_debug: 763 { 764 int sig; 765 766 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 767 if (sig) 768 { 769 info.si_signo = sig; 770 info.si_errno = 0; 771 info.si_code = TARGET_TRAP_BRKPT; 772 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 773 } 774 } 775 break; 776 case EXCP_KERNEL_TRAP: 777 if (do_kernel_trap(env)) 778 goto error; 779 break; 780 case EXCP_YIELD: 781 /* nothing to do here for user-mode, just resume guest code */ 782 break; 783 case EXCP_ATOMIC: 784 cpu_exec_step_atomic(cs); 785 break; 786 default: 787 error: 788 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 789 abort(); 790 } 791 process_pending_signals(env); 792 } 793 } 794 795 #else 796 797 /* AArch64 main loop */ 798 void cpu_loop(CPUARMState *env) 799 { 800 CPUState *cs = CPU(arm_env_get_cpu(env)); 801 int trapnr, sig; 802 abi_long ret; 803 target_siginfo_t info; 804 805 for (;;) { 806 cpu_exec_start(cs); 807 trapnr = cpu_exec(cs); 808 cpu_exec_end(cs); 809 process_queued_cpu_work(cs); 810 811 switch (trapnr) { 812 case EXCP_SWI: 813 ret = do_syscall(env, 814 env->xregs[8], 815 env->xregs[0], 816 env->xregs[1], 817 env->xregs[2], 818 env->xregs[3], 819 env->xregs[4], 820 env->xregs[5], 821 0, 0); 822 if (ret == -TARGET_ERESTARTSYS) { 823 env->pc -= 4; 824 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 825 env->xregs[0] = ret; 826 } 827 break; 828 case EXCP_INTERRUPT: 829 /* just indicate that signals should be handled asap */ 830 break; 831 case EXCP_UDEF: 832 info.si_signo = TARGET_SIGILL; 833 info.si_errno = 0; 834 info.si_code = TARGET_ILL_ILLOPN; 835 info._sifields._sigfault._addr = env->pc; 836 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 837 break; 838 case EXCP_PREFETCH_ABORT: 839 case EXCP_DATA_ABORT: 840 info.si_signo = TARGET_SIGSEGV; 841 info.si_errno = 0; 842 /* XXX: check env->error_code */ 843 info.si_code = TARGET_SEGV_MAPERR; 844 info._sifields._sigfault._addr = env->exception.vaddress; 845 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 846 break; 847 case EXCP_DEBUG: 848 case EXCP_BKPT: 849 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 850 if (sig) { 851 info.si_signo = sig; 852 info.si_errno = 0; 853 info.si_code = TARGET_TRAP_BRKPT; 854 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 855 } 856 break; 857 case EXCP_SEMIHOST: 858 env->xregs[0] = do_arm_semihosting(env); 859 break; 860 case EXCP_YIELD: 861 /* nothing to do here for user-mode, just resume guest code */ 862 break; 863 case EXCP_ATOMIC: 864 cpu_exec_step_atomic(cs); 865 break; 866 default: 867 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 868 abort(); 869 } 870 process_pending_signals(env); 871 /* Exception return on AArch64 always clears the exclusive monitor, 872 * so any return to running guest code implies this. 873 */ 874 env->exclusive_addr = -1; 875 } 876 } 877 #endif /* ndef TARGET_ABI32 */ 878 879 #endif 880 881 #ifdef TARGET_UNICORE32 882 883 void cpu_loop(CPUUniCore32State *env) 884 { 885 CPUState *cs = CPU(uc32_env_get_cpu(env)); 886 int trapnr; 887 unsigned int n, insn; 888 target_siginfo_t info; 889 890 for (;;) { 891 cpu_exec_start(cs); 892 trapnr = cpu_exec(cs); 893 cpu_exec_end(cs); 894 process_queued_cpu_work(cs); 895 896 switch (trapnr) { 897 case UC32_EXCP_PRIV: 898 { 899 /* system call */ 900 get_user_u32(insn, env->regs[31] - 4); 901 n = insn & 0xffffff; 902 903 if (n >= UC32_SYSCALL_BASE) { 904 /* linux syscall */ 905 n -= UC32_SYSCALL_BASE; 906 if (n == UC32_SYSCALL_NR_set_tls) { 907 cpu_set_tls(env, env->regs[0]); 908 env->regs[0] = 0; 909 } else { 910 abi_long ret = do_syscall(env, 911 n, 912 env->regs[0], 913 env->regs[1], 914 env->regs[2], 915 env->regs[3], 916 env->regs[4], 917 env->regs[5], 918 0, 0); 919 if (ret == -TARGET_ERESTARTSYS) { 920 env->regs[31] -= 4; 921 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 922 env->regs[0] = ret; 923 } 924 } 925 } else { 926 goto error; 927 } 928 } 929 break; 930 case UC32_EXCP_DTRAP: 931 case UC32_EXCP_ITRAP: 932 info.si_signo = TARGET_SIGSEGV; 933 info.si_errno = 0; 934 /* XXX: check env->error_code */ 935 info.si_code = TARGET_SEGV_MAPERR; 936 info._sifields._sigfault._addr = env->cp0.c4_faultaddr; 937 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 938 break; 939 case EXCP_INTERRUPT: 940 /* just indicate that signals should be handled asap */ 941 break; 942 case EXCP_DEBUG: 943 { 944 int sig; 945 946 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 947 if (sig) { 948 info.si_signo = sig; 949 info.si_errno = 0; 950 info.si_code = TARGET_TRAP_BRKPT; 951 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 952 } 953 } 954 break; 955 case EXCP_ATOMIC: 956 cpu_exec_step_atomic(cs); 957 break; 958 default: 959 goto error; 960 } 961 process_pending_signals(env); 962 } 963 964 error: 965 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 966 abort(); 967 } 968 #endif 969 970 #ifdef TARGET_SPARC 971 #define SPARC64_STACK_BIAS 2047 972 973 //#define DEBUG_WIN 974 975 /* WARNING: dealing with register windows _is_ complicated. More info 976 can be found at http://www.sics.se/~psm/sparcstack.html */ 977 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 978 { 979 index = (index + cwp * 16) % (16 * env->nwindows); 980 /* wrap handling : if cwp is on the last window, then we use the 981 registers 'after' the end */ 982 if (index < 8 && env->cwp == env->nwindows - 1) 983 index += 16 * env->nwindows; 984 return index; 985 } 986 987 /* save the register window 'cwp1' */ 988 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 989 { 990 unsigned int i; 991 abi_ulong sp_ptr; 992 993 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 994 #ifdef TARGET_SPARC64 995 if (sp_ptr & 3) 996 sp_ptr += SPARC64_STACK_BIAS; 997 #endif 998 #if defined(DEBUG_WIN) 999 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 1000 sp_ptr, cwp1); 1001 #endif 1002 for(i = 0; i < 16; i++) { 1003 /* FIXME - what to do if put_user() fails? */ 1004 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1005 sp_ptr += sizeof(abi_ulong); 1006 } 1007 } 1008 1009 static void save_window(CPUSPARCState *env) 1010 { 1011 #ifndef TARGET_SPARC64 1012 unsigned int new_wim; 1013 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 1014 ((1LL << env->nwindows) - 1); 1015 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1016 env->wim = new_wim; 1017 #else 1018 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1019 env->cansave++; 1020 env->canrestore--; 1021 #endif 1022 } 1023 1024 static void restore_window(CPUSPARCState *env) 1025 { 1026 #ifndef TARGET_SPARC64 1027 unsigned int new_wim; 1028 #endif 1029 unsigned int i, cwp1; 1030 abi_ulong sp_ptr; 1031 1032 #ifndef TARGET_SPARC64 1033 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 1034 ((1LL << env->nwindows) - 1); 1035 #endif 1036 1037 /* restore the invalid window */ 1038 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1039 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1040 #ifdef TARGET_SPARC64 1041 if (sp_ptr & 3) 1042 sp_ptr += SPARC64_STACK_BIAS; 1043 #endif 1044 #if defined(DEBUG_WIN) 1045 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 1046 sp_ptr, cwp1); 1047 #endif 1048 for(i = 0; i < 16; i++) { 1049 /* FIXME - what to do if get_user() fails? */ 1050 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1051 sp_ptr += sizeof(abi_ulong); 1052 } 1053 #ifdef TARGET_SPARC64 1054 env->canrestore++; 1055 if (env->cleanwin < env->nwindows - 1) 1056 env->cleanwin++; 1057 env->cansave--; 1058 #else 1059 env->wim = new_wim; 1060 #endif 1061 } 1062 1063 static void flush_windows(CPUSPARCState *env) 1064 { 1065 int offset, cwp1; 1066 1067 offset = 1; 1068 for(;;) { 1069 /* if restore would invoke restore_window(), then we can stop */ 1070 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 1071 #ifndef TARGET_SPARC64 1072 if (env->wim & (1 << cwp1)) 1073 break; 1074 #else 1075 if (env->canrestore == 0) 1076 break; 1077 env->cansave++; 1078 env->canrestore--; 1079 #endif 1080 save_window_offset(env, cwp1); 1081 offset++; 1082 } 1083 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1084 #ifndef TARGET_SPARC64 1085 /* set wim so that restore will reload the registers */ 1086 env->wim = 1 << cwp1; 1087 #endif 1088 #if defined(DEBUG_WIN) 1089 printf("flush_windows: nb=%d\n", offset - 1); 1090 #endif 1091 } 1092 1093 void cpu_loop (CPUSPARCState *env) 1094 { 1095 CPUState *cs = CPU(sparc_env_get_cpu(env)); 1096 int trapnr; 1097 abi_long ret; 1098 target_siginfo_t info; 1099 1100 while (1) { 1101 cpu_exec_start(cs); 1102 trapnr = cpu_exec(cs); 1103 cpu_exec_end(cs); 1104 process_queued_cpu_work(cs); 1105 1106 /* Compute PSR before exposing state. */ 1107 if (env->cc_op != CC_OP_FLAGS) { 1108 cpu_get_psr(env); 1109 } 1110 1111 switch (trapnr) { 1112 #ifndef TARGET_SPARC64 1113 case 0x88: 1114 case 0x90: 1115 #else 1116 case 0x110: 1117 case 0x16d: 1118 #endif 1119 ret = do_syscall (env, env->gregs[1], 1120 env->regwptr[0], env->regwptr[1], 1121 env->regwptr[2], env->regwptr[3], 1122 env->regwptr[4], env->regwptr[5], 1123 0, 0); 1124 if (ret == -TARGET_ERESTARTSYS || ret == -TARGET_QEMU_ESIGRETURN) { 1125 break; 1126 } 1127 if ((abi_ulong)ret >= (abi_ulong)(-515)) { 1128 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1129 env->xcc |= PSR_CARRY; 1130 #else 1131 env->psr |= PSR_CARRY; 1132 #endif 1133 ret = -ret; 1134 } else { 1135 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1136 env->xcc &= ~PSR_CARRY; 1137 #else 1138 env->psr &= ~PSR_CARRY; 1139 #endif 1140 } 1141 env->regwptr[0] = ret; 1142 /* next instruction */ 1143 env->pc = env->npc; 1144 env->npc = env->npc + 4; 1145 break; 1146 case 0x83: /* flush windows */ 1147 #ifdef TARGET_ABI32 1148 case 0x103: 1149 #endif 1150 flush_windows(env); 1151 /* next instruction */ 1152 env->pc = env->npc; 1153 env->npc = env->npc + 4; 1154 break; 1155 #ifndef TARGET_SPARC64 1156 case TT_WIN_OVF: /* window overflow */ 1157 save_window(env); 1158 break; 1159 case TT_WIN_UNF: /* window underflow */ 1160 restore_window(env); 1161 break; 1162 case TT_TFAULT: 1163 case TT_DFAULT: 1164 { 1165 info.si_signo = TARGET_SIGSEGV; 1166 info.si_errno = 0; 1167 /* XXX: check env->error_code */ 1168 info.si_code = TARGET_SEGV_MAPERR; 1169 info._sifields._sigfault._addr = env->mmuregs[4]; 1170 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1171 } 1172 break; 1173 #else 1174 case TT_SPILL: /* window overflow */ 1175 save_window(env); 1176 break; 1177 case TT_FILL: /* window underflow */ 1178 restore_window(env); 1179 break; 1180 case TT_TFAULT: 1181 case TT_DFAULT: 1182 { 1183 info.si_signo = TARGET_SIGSEGV; 1184 info.si_errno = 0; 1185 /* XXX: check env->error_code */ 1186 info.si_code = TARGET_SEGV_MAPERR; 1187 if (trapnr == TT_DFAULT) 1188 info._sifields._sigfault._addr = env->dmmu.mmuregs[4]; 1189 else 1190 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; 1191 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1192 } 1193 break; 1194 #ifndef TARGET_ABI32 1195 case 0x16e: 1196 flush_windows(env); 1197 sparc64_get_context(env); 1198 break; 1199 case 0x16f: 1200 flush_windows(env); 1201 sparc64_set_context(env); 1202 break; 1203 #endif 1204 #endif 1205 case EXCP_INTERRUPT: 1206 /* just indicate that signals should be handled asap */ 1207 break; 1208 case TT_ILL_INSN: 1209 { 1210 info.si_signo = TARGET_SIGILL; 1211 info.si_errno = 0; 1212 info.si_code = TARGET_ILL_ILLOPC; 1213 info._sifields._sigfault._addr = env->pc; 1214 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1215 } 1216 break; 1217 case EXCP_DEBUG: 1218 { 1219 int sig; 1220 1221 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1222 if (sig) 1223 { 1224 info.si_signo = sig; 1225 info.si_errno = 0; 1226 info.si_code = TARGET_TRAP_BRKPT; 1227 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1228 } 1229 } 1230 break; 1231 case EXCP_ATOMIC: 1232 cpu_exec_step_atomic(cs); 1233 break; 1234 default: 1235 printf ("Unhandled trap: 0x%x\n", trapnr); 1236 cpu_dump_state(cs, stderr, fprintf, 0); 1237 exit(EXIT_FAILURE); 1238 } 1239 process_pending_signals (env); 1240 } 1241 } 1242 1243 #endif 1244 1245 #ifdef TARGET_PPC 1246 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env) 1247 { 1248 return cpu_get_host_ticks(); 1249 } 1250 1251 uint64_t cpu_ppc_load_tbl(CPUPPCState *env) 1252 { 1253 return cpu_ppc_get_tb(env); 1254 } 1255 1256 uint32_t cpu_ppc_load_tbu(CPUPPCState *env) 1257 { 1258 return cpu_ppc_get_tb(env) >> 32; 1259 } 1260 1261 uint64_t cpu_ppc_load_atbl(CPUPPCState *env) 1262 { 1263 return cpu_ppc_get_tb(env); 1264 } 1265 1266 uint32_t cpu_ppc_load_atbu(CPUPPCState *env) 1267 { 1268 return cpu_ppc_get_tb(env) >> 32; 1269 } 1270 1271 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env) 1272 __attribute__ (( alias ("cpu_ppc_load_tbu") )); 1273 1274 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env) 1275 { 1276 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1277 } 1278 1279 /* XXX: to be fixed */ 1280 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1281 { 1282 return -1; 1283 } 1284 1285 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1286 { 1287 return -1; 1288 } 1289 1290 static int do_store_exclusive(CPUPPCState *env) 1291 { 1292 target_ulong addr; 1293 target_ulong page_addr; 1294 target_ulong val, val2 __attribute__((unused)) = 0; 1295 int flags; 1296 int segv = 0; 1297 1298 addr = env->reserve_ea; 1299 page_addr = addr & TARGET_PAGE_MASK; 1300 start_exclusive(); 1301 mmap_lock(); 1302 flags = page_get_flags(page_addr); 1303 if ((flags & PAGE_READ) == 0) { 1304 segv = 1; 1305 } else { 1306 int reg = env->reserve_info & 0x1f; 1307 int size = env->reserve_info >> 5; 1308 int stored = 0; 1309 1310 if (addr == env->reserve_addr) { 1311 switch (size) { 1312 case 1: segv = get_user_u8(val, addr); break; 1313 case 2: segv = get_user_u16(val, addr); break; 1314 case 4: segv = get_user_u32(val, addr); break; 1315 #if defined(TARGET_PPC64) 1316 case 8: segv = get_user_u64(val, addr); break; 1317 case 16: { 1318 segv = get_user_u64(val, addr); 1319 if (!segv) { 1320 segv = get_user_u64(val2, addr + 8); 1321 } 1322 break; 1323 } 1324 #endif 1325 default: abort(); 1326 } 1327 if (!segv && val == env->reserve_val) { 1328 val = env->gpr[reg]; 1329 switch (size) { 1330 case 1: segv = put_user_u8(val, addr); break; 1331 case 2: segv = put_user_u16(val, addr); break; 1332 case 4: segv = put_user_u32(val, addr); break; 1333 #if defined(TARGET_PPC64) 1334 case 8: segv = put_user_u64(val, addr); break; 1335 case 16: { 1336 if (val2 == env->reserve_val2) { 1337 if (msr_le) { 1338 val2 = val; 1339 val = env->gpr[reg+1]; 1340 } else { 1341 val2 = env->gpr[reg+1]; 1342 } 1343 segv = put_user_u64(val, addr); 1344 if (!segv) { 1345 segv = put_user_u64(val2, addr + 8); 1346 } 1347 } 1348 break; 1349 } 1350 #endif 1351 default: abort(); 1352 } 1353 if (!segv) { 1354 stored = 1; 1355 } 1356 } 1357 } 1358 env->crf[0] = (stored << 1) | xer_so; 1359 env->reserve_addr = (target_ulong)-1; 1360 } 1361 if (!segv) { 1362 env->nip += 4; 1363 } 1364 mmap_unlock(); 1365 end_exclusive(); 1366 return segv; 1367 } 1368 1369 void cpu_loop(CPUPPCState *env) 1370 { 1371 CPUState *cs = CPU(ppc_env_get_cpu(env)); 1372 target_siginfo_t info; 1373 int trapnr; 1374 target_ulong ret; 1375 1376 for(;;) { 1377 cpu_exec_start(cs); 1378 trapnr = cpu_exec(cs); 1379 cpu_exec_end(cs); 1380 process_queued_cpu_work(cs); 1381 1382 switch(trapnr) { 1383 case POWERPC_EXCP_NONE: 1384 /* Just go on */ 1385 break; 1386 case POWERPC_EXCP_CRITICAL: /* Critical input */ 1387 cpu_abort(cs, "Critical interrupt while in user mode. " 1388 "Aborting\n"); 1389 break; 1390 case POWERPC_EXCP_MCHECK: /* Machine check exception */ 1391 cpu_abort(cs, "Machine check exception while in user mode. " 1392 "Aborting\n"); 1393 break; 1394 case POWERPC_EXCP_DSI: /* Data storage exception */ 1395 /* XXX: check this. Seems bugged */ 1396 switch (env->error_code & 0xFF000000) { 1397 case 0x40000000: 1398 case 0x42000000: 1399 info.si_signo = TARGET_SIGSEGV; 1400 info.si_errno = 0; 1401 info.si_code = TARGET_SEGV_MAPERR; 1402 break; 1403 case 0x04000000: 1404 info.si_signo = TARGET_SIGILL; 1405 info.si_errno = 0; 1406 info.si_code = TARGET_ILL_ILLADR; 1407 break; 1408 case 0x08000000: 1409 info.si_signo = TARGET_SIGSEGV; 1410 info.si_errno = 0; 1411 info.si_code = TARGET_SEGV_ACCERR; 1412 break; 1413 default: 1414 /* Let's send a regular segfault... */ 1415 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1416 env->error_code); 1417 info.si_signo = TARGET_SIGSEGV; 1418 info.si_errno = 0; 1419 info.si_code = TARGET_SEGV_MAPERR; 1420 break; 1421 } 1422 info._sifields._sigfault._addr = env->spr[SPR_DAR]; 1423 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1424 break; 1425 case POWERPC_EXCP_ISI: /* Instruction storage exception */ 1426 /* XXX: check this */ 1427 switch (env->error_code & 0xFF000000) { 1428 case 0x40000000: 1429 info.si_signo = TARGET_SIGSEGV; 1430 info.si_errno = 0; 1431 info.si_code = TARGET_SEGV_MAPERR; 1432 break; 1433 case 0x10000000: 1434 case 0x08000000: 1435 info.si_signo = TARGET_SIGSEGV; 1436 info.si_errno = 0; 1437 info.si_code = TARGET_SEGV_ACCERR; 1438 break; 1439 default: 1440 /* Let's send a regular segfault... */ 1441 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1442 env->error_code); 1443 info.si_signo = TARGET_SIGSEGV; 1444 info.si_errno = 0; 1445 info.si_code = TARGET_SEGV_MAPERR; 1446 break; 1447 } 1448 info._sifields._sigfault._addr = env->nip - 4; 1449 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1450 break; 1451 case POWERPC_EXCP_EXTERNAL: /* External input */ 1452 cpu_abort(cs, "External interrupt while in user mode. " 1453 "Aborting\n"); 1454 break; 1455 case POWERPC_EXCP_ALIGN: /* Alignment exception */ 1456 /* XXX: check this */ 1457 info.si_signo = TARGET_SIGBUS; 1458 info.si_errno = 0; 1459 info.si_code = TARGET_BUS_ADRALN; 1460 info._sifields._sigfault._addr = env->nip; 1461 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1462 break; 1463 case POWERPC_EXCP_PROGRAM: /* Program exception */ 1464 case POWERPC_EXCP_HV_EMU: /* HV emulation */ 1465 /* XXX: check this */ 1466 switch (env->error_code & ~0xF) { 1467 case POWERPC_EXCP_FP: 1468 info.si_signo = TARGET_SIGFPE; 1469 info.si_errno = 0; 1470 switch (env->error_code & 0xF) { 1471 case POWERPC_EXCP_FP_OX: 1472 info.si_code = TARGET_FPE_FLTOVF; 1473 break; 1474 case POWERPC_EXCP_FP_UX: 1475 info.si_code = TARGET_FPE_FLTUND; 1476 break; 1477 case POWERPC_EXCP_FP_ZX: 1478 case POWERPC_EXCP_FP_VXZDZ: 1479 info.si_code = TARGET_FPE_FLTDIV; 1480 break; 1481 case POWERPC_EXCP_FP_XX: 1482 info.si_code = TARGET_FPE_FLTRES; 1483 break; 1484 case POWERPC_EXCP_FP_VXSOFT: 1485 info.si_code = TARGET_FPE_FLTINV; 1486 break; 1487 case POWERPC_EXCP_FP_VXSNAN: 1488 case POWERPC_EXCP_FP_VXISI: 1489 case POWERPC_EXCP_FP_VXIDI: 1490 case POWERPC_EXCP_FP_VXIMZ: 1491 case POWERPC_EXCP_FP_VXVC: 1492 case POWERPC_EXCP_FP_VXSQRT: 1493 case POWERPC_EXCP_FP_VXCVI: 1494 info.si_code = TARGET_FPE_FLTSUB; 1495 break; 1496 default: 1497 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", 1498 env->error_code); 1499 break; 1500 } 1501 break; 1502 case POWERPC_EXCP_INVAL: 1503 info.si_signo = TARGET_SIGILL; 1504 info.si_errno = 0; 1505 switch (env->error_code & 0xF) { 1506 case POWERPC_EXCP_INVAL_INVAL: 1507 info.si_code = TARGET_ILL_ILLOPC; 1508 break; 1509 case POWERPC_EXCP_INVAL_LSWX: 1510 info.si_code = TARGET_ILL_ILLOPN; 1511 break; 1512 case POWERPC_EXCP_INVAL_SPR: 1513 info.si_code = TARGET_ILL_PRVREG; 1514 break; 1515 case POWERPC_EXCP_INVAL_FP: 1516 info.si_code = TARGET_ILL_COPROC; 1517 break; 1518 default: 1519 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", 1520 env->error_code & 0xF); 1521 info.si_code = TARGET_ILL_ILLADR; 1522 break; 1523 } 1524 break; 1525 case POWERPC_EXCP_PRIV: 1526 info.si_signo = TARGET_SIGILL; 1527 info.si_errno = 0; 1528 switch (env->error_code & 0xF) { 1529 case POWERPC_EXCP_PRIV_OPC: 1530 info.si_code = TARGET_ILL_PRVOPC; 1531 break; 1532 case POWERPC_EXCP_PRIV_REG: 1533 info.si_code = TARGET_ILL_PRVREG; 1534 break; 1535 default: 1536 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", 1537 env->error_code & 0xF); 1538 info.si_code = TARGET_ILL_PRVOPC; 1539 break; 1540 } 1541 break; 1542 case POWERPC_EXCP_TRAP: 1543 cpu_abort(cs, "Tried to call a TRAP\n"); 1544 break; 1545 default: 1546 /* Should not happen ! */ 1547 cpu_abort(cs, "Unknown program exception (%02x)\n", 1548 env->error_code); 1549 break; 1550 } 1551 info._sifields._sigfault._addr = env->nip; 1552 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1553 break; 1554 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ 1555 info.si_signo = TARGET_SIGILL; 1556 info.si_errno = 0; 1557 info.si_code = TARGET_ILL_COPROC; 1558 info._sifields._sigfault._addr = env->nip; 1559 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1560 break; 1561 case POWERPC_EXCP_SYSCALL: /* System call exception */ 1562 cpu_abort(cs, "Syscall exception while in user mode. " 1563 "Aborting\n"); 1564 break; 1565 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ 1566 info.si_signo = TARGET_SIGILL; 1567 info.si_errno = 0; 1568 info.si_code = TARGET_ILL_COPROC; 1569 info._sifields._sigfault._addr = env->nip; 1570 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1571 break; 1572 case POWERPC_EXCP_DECR: /* Decrementer exception */ 1573 cpu_abort(cs, "Decrementer interrupt while in user mode. " 1574 "Aborting\n"); 1575 break; 1576 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ 1577 cpu_abort(cs, "Fix interval timer interrupt while in user mode. " 1578 "Aborting\n"); 1579 break; 1580 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ 1581 cpu_abort(cs, "Watchdog timer interrupt while in user mode. " 1582 "Aborting\n"); 1583 break; 1584 case POWERPC_EXCP_DTLB: /* Data TLB error */ 1585 cpu_abort(cs, "Data TLB exception while in user mode. " 1586 "Aborting\n"); 1587 break; 1588 case POWERPC_EXCP_ITLB: /* Instruction TLB error */ 1589 cpu_abort(cs, "Instruction TLB exception while in user mode. " 1590 "Aborting\n"); 1591 break; 1592 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ 1593 info.si_signo = TARGET_SIGILL; 1594 info.si_errno = 0; 1595 info.si_code = TARGET_ILL_COPROC; 1596 info._sifields._sigfault._addr = env->nip; 1597 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1598 break; 1599 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ 1600 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n"); 1601 break; 1602 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ 1603 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n"); 1604 break; 1605 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ 1606 cpu_abort(cs, "Performance monitor exception not handled\n"); 1607 break; 1608 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ 1609 cpu_abort(cs, "Doorbell interrupt while in user mode. " 1610 "Aborting\n"); 1611 break; 1612 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ 1613 cpu_abort(cs, "Doorbell critical interrupt while in user mode. " 1614 "Aborting\n"); 1615 break; 1616 case POWERPC_EXCP_RESET: /* System reset exception */ 1617 cpu_abort(cs, "Reset interrupt while in user mode. " 1618 "Aborting\n"); 1619 break; 1620 case POWERPC_EXCP_DSEG: /* Data segment exception */ 1621 cpu_abort(cs, "Data segment exception while in user mode. " 1622 "Aborting\n"); 1623 break; 1624 case POWERPC_EXCP_ISEG: /* Instruction segment exception */ 1625 cpu_abort(cs, "Instruction segment exception " 1626 "while in user mode. Aborting\n"); 1627 break; 1628 /* PowerPC 64 with hypervisor mode support */ 1629 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ 1630 cpu_abort(cs, "Hypervisor decrementer interrupt " 1631 "while in user mode. Aborting\n"); 1632 break; 1633 case POWERPC_EXCP_TRACE: /* Trace exception */ 1634 /* Nothing to do: 1635 * we use this exception to emulate step-by-step execution mode. 1636 */ 1637 break; 1638 /* PowerPC 64 with hypervisor mode support */ 1639 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ 1640 cpu_abort(cs, "Hypervisor data storage exception " 1641 "while in user mode. Aborting\n"); 1642 break; 1643 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ 1644 cpu_abort(cs, "Hypervisor instruction storage exception " 1645 "while in user mode. Aborting\n"); 1646 break; 1647 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ 1648 cpu_abort(cs, "Hypervisor data segment exception " 1649 "while in user mode. Aborting\n"); 1650 break; 1651 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ 1652 cpu_abort(cs, "Hypervisor instruction segment exception " 1653 "while in user mode. Aborting\n"); 1654 break; 1655 case POWERPC_EXCP_VPU: /* Vector unavailable exception */ 1656 info.si_signo = TARGET_SIGILL; 1657 info.si_errno = 0; 1658 info.si_code = TARGET_ILL_COPROC; 1659 info._sifields._sigfault._addr = env->nip; 1660 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1661 break; 1662 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ 1663 cpu_abort(cs, "Programmable interval timer interrupt " 1664 "while in user mode. Aborting\n"); 1665 break; 1666 case POWERPC_EXCP_IO: /* IO error exception */ 1667 cpu_abort(cs, "IO error exception while in user mode. " 1668 "Aborting\n"); 1669 break; 1670 case POWERPC_EXCP_RUNM: /* Run mode exception */ 1671 cpu_abort(cs, "Run mode exception while in user mode. " 1672 "Aborting\n"); 1673 break; 1674 case POWERPC_EXCP_EMUL: /* Emulation trap exception */ 1675 cpu_abort(cs, "Emulation trap exception not handled\n"); 1676 break; 1677 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ 1678 cpu_abort(cs, "Instruction fetch TLB exception " 1679 "while in user-mode. Aborting"); 1680 break; 1681 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ 1682 cpu_abort(cs, "Data load TLB exception while in user-mode. " 1683 "Aborting"); 1684 break; 1685 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ 1686 cpu_abort(cs, "Data store TLB exception while in user-mode. " 1687 "Aborting"); 1688 break; 1689 case POWERPC_EXCP_FPA: /* Floating-point assist exception */ 1690 cpu_abort(cs, "Floating-point assist exception not handled\n"); 1691 break; 1692 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ 1693 cpu_abort(cs, "Instruction address breakpoint exception " 1694 "not handled\n"); 1695 break; 1696 case POWERPC_EXCP_SMI: /* System management interrupt */ 1697 cpu_abort(cs, "System management interrupt while in user mode. " 1698 "Aborting\n"); 1699 break; 1700 case POWERPC_EXCP_THERM: /* Thermal interrupt */ 1701 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. " 1702 "Aborting\n"); 1703 break; 1704 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ 1705 cpu_abort(cs, "Performance monitor exception not handled\n"); 1706 break; 1707 case POWERPC_EXCP_VPUA: /* Vector assist exception */ 1708 cpu_abort(cs, "Vector assist exception not handled\n"); 1709 break; 1710 case POWERPC_EXCP_SOFTP: /* Soft patch exception */ 1711 cpu_abort(cs, "Soft patch exception not handled\n"); 1712 break; 1713 case POWERPC_EXCP_MAINT: /* Maintenance exception */ 1714 cpu_abort(cs, "Maintenance exception while in user mode. " 1715 "Aborting\n"); 1716 break; 1717 case POWERPC_EXCP_STOP: /* stop translation */ 1718 /* We did invalidate the instruction cache. Go on */ 1719 break; 1720 case POWERPC_EXCP_BRANCH: /* branch instruction: */ 1721 /* We just stopped because of a branch. Go on */ 1722 break; 1723 case POWERPC_EXCP_SYSCALL_USER: 1724 /* system call in user-mode emulation */ 1725 /* WARNING: 1726 * PPC ABI uses overflow flag in cr0 to signal an error 1727 * in syscalls. 1728 */ 1729 env->crf[0] &= ~0x1; 1730 env->nip += 4; 1731 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], 1732 env->gpr[5], env->gpr[6], env->gpr[7], 1733 env->gpr[8], 0, 0); 1734 if (ret == -TARGET_ERESTARTSYS) { 1735 env->nip -= 4; 1736 break; 1737 } 1738 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) { 1739 /* Returning from a successful sigreturn syscall. 1740 Avoid corrupting register state. */ 1741 break; 1742 } 1743 if (ret > (target_ulong)(-515)) { 1744 env->crf[0] |= 0x1; 1745 ret = -ret; 1746 } 1747 env->gpr[3] = ret; 1748 break; 1749 case POWERPC_EXCP_STCX: 1750 if (do_store_exclusive(env)) { 1751 info.si_signo = TARGET_SIGSEGV; 1752 info.si_errno = 0; 1753 info.si_code = TARGET_SEGV_MAPERR; 1754 info._sifields._sigfault._addr = env->nip; 1755 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1756 } 1757 break; 1758 case EXCP_DEBUG: 1759 { 1760 int sig; 1761 1762 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1763 if (sig) { 1764 info.si_signo = sig; 1765 info.si_errno = 0; 1766 info.si_code = TARGET_TRAP_BRKPT; 1767 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1768 } 1769 } 1770 break; 1771 case EXCP_INTERRUPT: 1772 /* just indicate that signals should be handled asap */ 1773 break; 1774 case EXCP_ATOMIC: 1775 cpu_exec_step_atomic(cs); 1776 break; 1777 default: 1778 cpu_abort(cs, "Unknown exception 0x%x. Aborting\n", trapnr); 1779 break; 1780 } 1781 process_pending_signals(env); 1782 } 1783 } 1784 #endif 1785 1786 #ifdef TARGET_MIPS 1787 1788 # ifdef TARGET_ABI_MIPSO32 1789 # define MIPS_SYS(name, args) args, 1790 static const uint8_t mips_syscall_args[] = { 1791 MIPS_SYS(sys_syscall , 8) /* 4000 */ 1792 MIPS_SYS(sys_exit , 1) 1793 MIPS_SYS(sys_fork , 0) 1794 MIPS_SYS(sys_read , 3) 1795 MIPS_SYS(sys_write , 3) 1796 MIPS_SYS(sys_open , 3) /* 4005 */ 1797 MIPS_SYS(sys_close , 1) 1798 MIPS_SYS(sys_waitpid , 3) 1799 MIPS_SYS(sys_creat , 2) 1800 MIPS_SYS(sys_link , 2) 1801 MIPS_SYS(sys_unlink , 1) /* 4010 */ 1802 MIPS_SYS(sys_execve , 0) 1803 MIPS_SYS(sys_chdir , 1) 1804 MIPS_SYS(sys_time , 1) 1805 MIPS_SYS(sys_mknod , 3) 1806 MIPS_SYS(sys_chmod , 2) /* 4015 */ 1807 MIPS_SYS(sys_lchown , 3) 1808 MIPS_SYS(sys_ni_syscall , 0) 1809 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ 1810 MIPS_SYS(sys_lseek , 3) 1811 MIPS_SYS(sys_getpid , 0) /* 4020 */ 1812 MIPS_SYS(sys_mount , 5) 1813 MIPS_SYS(sys_umount , 1) 1814 MIPS_SYS(sys_setuid , 1) 1815 MIPS_SYS(sys_getuid , 0) 1816 MIPS_SYS(sys_stime , 1) /* 4025 */ 1817 MIPS_SYS(sys_ptrace , 4) 1818 MIPS_SYS(sys_alarm , 1) 1819 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ 1820 MIPS_SYS(sys_pause , 0) 1821 MIPS_SYS(sys_utime , 2) /* 4030 */ 1822 MIPS_SYS(sys_ni_syscall , 0) 1823 MIPS_SYS(sys_ni_syscall , 0) 1824 MIPS_SYS(sys_access , 2) 1825 MIPS_SYS(sys_nice , 1) 1826 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ 1827 MIPS_SYS(sys_sync , 0) 1828 MIPS_SYS(sys_kill , 2) 1829 MIPS_SYS(sys_rename , 2) 1830 MIPS_SYS(sys_mkdir , 2) 1831 MIPS_SYS(sys_rmdir , 1) /* 4040 */ 1832 MIPS_SYS(sys_dup , 1) 1833 MIPS_SYS(sys_pipe , 0) 1834 MIPS_SYS(sys_times , 1) 1835 MIPS_SYS(sys_ni_syscall , 0) 1836 MIPS_SYS(sys_brk , 1) /* 4045 */ 1837 MIPS_SYS(sys_setgid , 1) 1838 MIPS_SYS(sys_getgid , 0) 1839 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ 1840 MIPS_SYS(sys_geteuid , 0) 1841 MIPS_SYS(sys_getegid , 0) /* 4050 */ 1842 MIPS_SYS(sys_acct , 0) 1843 MIPS_SYS(sys_umount2 , 2) 1844 MIPS_SYS(sys_ni_syscall , 0) 1845 MIPS_SYS(sys_ioctl , 3) 1846 MIPS_SYS(sys_fcntl , 3) /* 4055 */ 1847 MIPS_SYS(sys_ni_syscall , 2) 1848 MIPS_SYS(sys_setpgid , 2) 1849 MIPS_SYS(sys_ni_syscall , 0) 1850 MIPS_SYS(sys_olduname , 1) 1851 MIPS_SYS(sys_umask , 1) /* 4060 */ 1852 MIPS_SYS(sys_chroot , 1) 1853 MIPS_SYS(sys_ustat , 2) 1854 MIPS_SYS(sys_dup2 , 2) 1855 MIPS_SYS(sys_getppid , 0) 1856 MIPS_SYS(sys_getpgrp , 0) /* 4065 */ 1857 MIPS_SYS(sys_setsid , 0) 1858 MIPS_SYS(sys_sigaction , 3) 1859 MIPS_SYS(sys_sgetmask , 0) 1860 MIPS_SYS(sys_ssetmask , 1) 1861 MIPS_SYS(sys_setreuid , 2) /* 4070 */ 1862 MIPS_SYS(sys_setregid , 2) 1863 MIPS_SYS(sys_sigsuspend , 0) 1864 MIPS_SYS(sys_sigpending , 1) 1865 MIPS_SYS(sys_sethostname , 2) 1866 MIPS_SYS(sys_setrlimit , 2) /* 4075 */ 1867 MIPS_SYS(sys_getrlimit , 2) 1868 MIPS_SYS(sys_getrusage , 2) 1869 MIPS_SYS(sys_gettimeofday, 2) 1870 MIPS_SYS(sys_settimeofday, 2) 1871 MIPS_SYS(sys_getgroups , 2) /* 4080 */ 1872 MIPS_SYS(sys_setgroups , 2) 1873 MIPS_SYS(sys_ni_syscall , 0) /* old_select */ 1874 MIPS_SYS(sys_symlink , 2) 1875 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ 1876 MIPS_SYS(sys_readlink , 3) /* 4085 */ 1877 MIPS_SYS(sys_uselib , 1) 1878 MIPS_SYS(sys_swapon , 2) 1879 MIPS_SYS(sys_reboot , 3) 1880 MIPS_SYS(old_readdir , 3) 1881 MIPS_SYS(old_mmap , 6) /* 4090 */ 1882 MIPS_SYS(sys_munmap , 2) 1883 MIPS_SYS(sys_truncate , 2) 1884 MIPS_SYS(sys_ftruncate , 2) 1885 MIPS_SYS(sys_fchmod , 2) 1886 MIPS_SYS(sys_fchown , 3) /* 4095 */ 1887 MIPS_SYS(sys_getpriority , 2) 1888 MIPS_SYS(sys_setpriority , 3) 1889 MIPS_SYS(sys_ni_syscall , 0) 1890 MIPS_SYS(sys_statfs , 2) 1891 MIPS_SYS(sys_fstatfs , 2) /* 4100 */ 1892 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ 1893 MIPS_SYS(sys_socketcall , 2) 1894 MIPS_SYS(sys_syslog , 3) 1895 MIPS_SYS(sys_setitimer , 3) 1896 MIPS_SYS(sys_getitimer , 2) /* 4105 */ 1897 MIPS_SYS(sys_newstat , 2) 1898 MIPS_SYS(sys_newlstat , 2) 1899 MIPS_SYS(sys_newfstat , 2) 1900 MIPS_SYS(sys_uname , 1) 1901 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ 1902 MIPS_SYS(sys_vhangup , 0) 1903 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ 1904 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ 1905 MIPS_SYS(sys_wait4 , 4) 1906 MIPS_SYS(sys_swapoff , 1) /* 4115 */ 1907 MIPS_SYS(sys_sysinfo , 1) 1908 MIPS_SYS(sys_ipc , 6) 1909 MIPS_SYS(sys_fsync , 1) 1910 MIPS_SYS(sys_sigreturn , 0) 1911 MIPS_SYS(sys_clone , 6) /* 4120 */ 1912 MIPS_SYS(sys_setdomainname, 2) 1913 MIPS_SYS(sys_newuname , 1) 1914 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ 1915 MIPS_SYS(sys_adjtimex , 1) 1916 MIPS_SYS(sys_mprotect , 3) /* 4125 */ 1917 MIPS_SYS(sys_sigprocmask , 3) 1918 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ 1919 MIPS_SYS(sys_init_module , 5) 1920 MIPS_SYS(sys_delete_module, 1) 1921 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ 1922 MIPS_SYS(sys_quotactl , 0) 1923 MIPS_SYS(sys_getpgid , 1) 1924 MIPS_SYS(sys_fchdir , 1) 1925 MIPS_SYS(sys_bdflush , 2) 1926 MIPS_SYS(sys_sysfs , 3) /* 4135 */ 1927 MIPS_SYS(sys_personality , 1) 1928 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ 1929 MIPS_SYS(sys_setfsuid , 1) 1930 MIPS_SYS(sys_setfsgid , 1) 1931 MIPS_SYS(sys_llseek , 5) /* 4140 */ 1932 MIPS_SYS(sys_getdents , 3) 1933 MIPS_SYS(sys_select , 5) 1934 MIPS_SYS(sys_flock , 2) 1935 MIPS_SYS(sys_msync , 3) 1936 MIPS_SYS(sys_readv , 3) /* 4145 */ 1937 MIPS_SYS(sys_writev , 3) 1938 MIPS_SYS(sys_cacheflush , 3) 1939 MIPS_SYS(sys_cachectl , 3) 1940 MIPS_SYS(sys_sysmips , 4) 1941 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ 1942 MIPS_SYS(sys_getsid , 1) 1943 MIPS_SYS(sys_fdatasync , 0) 1944 MIPS_SYS(sys_sysctl , 1) 1945 MIPS_SYS(sys_mlock , 2) 1946 MIPS_SYS(sys_munlock , 2) /* 4155 */ 1947 MIPS_SYS(sys_mlockall , 1) 1948 MIPS_SYS(sys_munlockall , 0) 1949 MIPS_SYS(sys_sched_setparam, 2) 1950 MIPS_SYS(sys_sched_getparam, 2) 1951 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ 1952 MIPS_SYS(sys_sched_getscheduler, 1) 1953 MIPS_SYS(sys_sched_yield , 0) 1954 MIPS_SYS(sys_sched_get_priority_max, 1) 1955 MIPS_SYS(sys_sched_get_priority_min, 1) 1956 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ 1957 MIPS_SYS(sys_nanosleep, 2) 1958 MIPS_SYS(sys_mremap , 5) 1959 MIPS_SYS(sys_accept , 3) 1960 MIPS_SYS(sys_bind , 3) 1961 MIPS_SYS(sys_connect , 3) /* 4170 */ 1962 MIPS_SYS(sys_getpeername , 3) 1963 MIPS_SYS(sys_getsockname , 3) 1964 MIPS_SYS(sys_getsockopt , 5) 1965 MIPS_SYS(sys_listen , 2) 1966 MIPS_SYS(sys_recv , 4) /* 4175 */ 1967 MIPS_SYS(sys_recvfrom , 6) 1968 MIPS_SYS(sys_recvmsg , 3) 1969 MIPS_SYS(sys_send , 4) 1970 MIPS_SYS(sys_sendmsg , 3) 1971 MIPS_SYS(sys_sendto , 6) /* 4180 */ 1972 MIPS_SYS(sys_setsockopt , 5) 1973 MIPS_SYS(sys_shutdown , 2) 1974 MIPS_SYS(sys_socket , 3) 1975 MIPS_SYS(sys_socketpair , 4) 1976 MIPS_SYS(sys_setresuid , 3) /* 4185 */ 1977 MIPS_SYS(sys_getresuid , 3) 1978 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ 1979 MIPS_SYS(sys_poll , 3) 1980 MIPS_SYS(sys_nfsservctl , 3) 1981 MIPS_SYS(sys_setresgid , 3) /* 4190 */ 1982 MIPS_SYS(sys_getresgid , 3) 1983 MIPS_SYS(sys_prctl , 5) 1984 MIPS_SYS(sys_rt_sigreturn, 0) 1985 MIPS_SYS(sys_rt_sigaction, 4) 1986 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ 1987 MIPS_SYS(sys_rt_sigpending, 2) 1988 MIPS_SYS(sys_rt_sigtimedwait, 4) 1989 MIPS_SYS(sys_rt_sigqueueinfo, 3) 1990 MIPS_SYS(sys_rt_sigsuspend, 0) 1991 MIPS_SYS(sys_pread64 , 6) /* 4200 */ 1992 MIPS_SYS(sys_pwrite64 , 6) 1993 MIPS_SYS(sys_chown , 3) 1994 MIPS_SYS(sys_getcwd , 2) 1995 MIPS_SYS(sys_capget , 2) 1996 MIPS_SYS(sys_capset , 2) /* 4205 */ 1997 MIPS_SYS(sys_sigaltstack , 2) 1998 MIPS_SYS(sys_sendfile , 4) 1999 MIPS_SYS(sys_ni_syscall , 0) 2000 MIPS_SYS(sys_ni_syscall , 0) 2001 MIPS_SYS(sys_mmap2 , 6) /* 4210 */ 2002 MIPS_SYS(sys_truncate64 , 4) 2003 MIPS_SYS(sys_ftruncate64 , 4) 2004 MIPS_SYS(sys_stat64 , 2) 2005 MIPS_SYS(sys_lstat64 , 2) 2006 MIPS_SYS(sys_fstat64 , 2) /* 4215 */ 2007 MIPS_SYS(sys_pivot_root , 2) 2008 MIPS_SYS(sys_mincore , 3) 2009 MIPS_SYS(sys_madvise , 3) 2010 MIPS_SYS(sys_getdents64 , 3) 2011 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ 2012 MIPS_SYS(sys_ni_syscall , 0) 2013 MIPS_SYS(sys_gettid , 0) 2014 MIPS_SYS(sys_readahead , 5) 2015 MIPS_SYS(sys_setxattr , 5) 2016 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ 2017 MIPS_SYS(sys_fsetxattr , 5) 2018 MIPS_SYS(sys_getxattr , 4) 2019 MIPS_SYS(sys_lgetxattr , 4) 2020 MIPS_SYS(sys_fgetxattr , 4) 2021 MIPS_SYS(sys_listxattr , 3) /* 4230 */ 2022 MIPS_SYS(sys_llistxattr , 3) 2023 MIPS_SYS(sys_flistxattr , 3) 2024 MIPS_SYS(sys_removexattr , 2) 2025 MIPS_SYS(sys_lremovexattr, 2) 2026 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ 2027 MIPS_SYS(sys_tkill , 2) 2028 MIPS_SYS(sys_sendfile64 , 5) 2029 MIPS_SYS(sys_futex , 6) 2030 MIPS_SYS(sys_sched_setaffinity, 3) 2031 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ 2032 MIPS_SYS(sys_io_setup , 2) 2033 MIPS_SYS(sys_io_destroy , 1) 2034 MIPS_SYS(sys_io_getevents, 5) 2035 MIPS_SYS(sys_io_submit , 3) 2036 MIPS_SYS(sys_io_cancel , 3) /* 4245 */ 2037 MIPS_SYS(sys_exit_group , 1) 2038 MIPS_SYS(sys_lookup_dcookie, 3) 2039 MIPS_SYS(sys_epoll_create, 1) 2040 MIPS_SYS(sys_epoll_ctl , 4) 2041 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ 2042 MIPS_SYS(sys_remap_file_pages, 5) 2043 MIPS_SYS(sys_set_tid_address, 1) 2044 MIPS_SYS(sys_restart_syscall, 0) 2045 MIPS_SYS(sys_fadvise64_64, 7) 2046 MIPS_SYS(sys_statfs64 , 3) /* 4255 */ 2047 MIPS_SYS(sys_fstatfs64 , 2) 2048 MIPS_SYS(sys_timer_create, 3) 2049 MIPS_SYS(sys_timer_settime, 4) 2050 MIPS_SYS(sys_timer_gettime, 2) 2051 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ 2052 MIPS_SYS(sys_timer_delete, 1) 2053 MIPS_SYS(sys_clock_settime, 2) 2054 MIPS_SYS(sys_clock_gettime, 2) 2055 MIPS_SYS(sys_clock_getres, 2) 2056 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ 2057 MIPS_SYS(sys_tgkill , 3) 2058 MIPS_SYS(sys_utimes , 2) 2059 MIPS_SYS(sys_mbind , 4) 2060 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ 2061 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ 2062 MIPS_SYS(sys_mq_open , 4) 2063 MIPS_SYS(sys_mq_unlink , 1) 2064 MIPS_SYS(sys_mq_timedsend, 5) 2065 MIPS_SYS(sys_mq_timedreceive, 5) 2066 MIPS_SYS(sys_mq_notify , 2) /* 4275 */ 2067 MIPS_SYS(sys_mq_getsetattr, 3) 2068 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ 2069 MIPS_SYS(sys_waitid , 4) 2070 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ 2071 MIPS_SYS(sys_add_key , 5) 2072 MIPS_SYS(sys_request_key, 4) 2073 MIPS_SYS(sys_keyctl , 5) 2074 MIPS_SYS(sys_set_thread_area, 1) 2075 MIPS_SYS(sys_inotify_init, 0) 2076 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ 2077 MIPS_SYS(sys_inotify_rm_watch, 2) 2078 MIPS_SYS(sys_migrate_pages, 4) 2079 MIPS_SYS(sys_openat, 4) 2080 MIPS_SYS(sys_mkdirat, 3) 2081 MIPS_SYS(sys_mknodat, 4) /* 4290 */ 2082 MIPS_SYS(sys_fchownat, 5) 2083 MIPS_SYS(sys_futimesat, 3) 2084 MIPS_SYS(sys_fstatat64, 4) 2085 MIPS_SYS(sys_unlinkat, 3) 2086 MIPS_SYS(sys_renameat, 4) /* 4295 */ 2087 MIPS_SYS(sys_linkat, 5) 2088 MIPS_SYS(sys_symlinkat, 3) 2089 MIPS_SYS(sys_readlinkat, 4) 2090 MIPS_SYS(sys_fchmodat, 3) 2091 MIPS_SYS(sys_faccessat, 3) /* 4300 */ 2092 MIPS_SYS(sys_pselect6, 6) 2093 MIPS_SYS(sys_ppoll, 5) 2094 MIPS_SYS(sys_unshare, 1) 2095 MIPS_SYS(sys_splice, 6) 2096 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ 2097 MIPS_SYS(sys_tee, 4) 2098 MIPS_SYS(sys_vmsplice, 4) 2099 MIPS_SYS(sys_move_pages, 6) 2100 MIPS_SYS(sys_set_robust_list, 2) 2101 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ 2102 MIPS_SYS(sys_kexec_load, 4) 2103 MIPS_SYS(sys_getcpu, 3) 2104 MIPS_SYS(sys_epoll_pwait, 6) 2105 MIPS_SYS(sys_ioprio_set, 3) 2106 MIPS_SYS(sys_ioprio_get, 2) 2107 MIPS_SYS(sys_utimensat, 4) 2108 MIPS_SYS(sys_signalfd, 3) 2109 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */ 2110 MIPS_SYS(sys_eventfd, 1) 2111 MIPS_SYS(sys_fallocate, 6) /* 4320 */ 2112 MIPS_SYS(sys_timerfd_create, 2) 2113 MIPS_SYS(sys_timerfd_gettime, 2) 2114 MIPS_SYS(sys_timerfd_settime, 4) 2115 MIPS_SYS(sys_signalfd4, 4) 2116 MIPS_SYS(sys_eventfd2, 2) /* 4325 */ 2117 MIPS_SYS(sys_epoll_create1, 1) 2118 MIPS_SYS(sys_dup3, 3) 2119 MIPS_SYS(sys_pipe2, 2) 2120 MIPS_SYS(sys_inotify_init1, 1) 2121 MIPS_SYS(sys_preadv, 5) /* 4330 */ 2122 MIPS_SYS(sys_pwritev, 5) 2123 MIPS_SYS(sys_rt_tgsigqueueinfo, 4) 2124 MIPS_SYS(sys_perf_event_open, 5) 2125 MIPS_SYS(sys_accept4, 4) 2126 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */ 2127 MIPS_SYS(sys_fanotify_init, 2) 2128 MIPS_SYS(sys_fanotify_mark, 6) 2129 MIPS_SYS(sys_prlimit64, 4) 2130 MIPS_SYS(sys_name_to_handle_at, 5) 2131 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */ 2132 MIPS_SYS(sys_clock_adjtime, 2) 2133 MIPS_SYS(sys_syncfs, 1) 2134 MIPS_SYS(sys_sendmmsg, 4) 2135 MIPS_SYS(sys_setns, 2) 2136 MIPS_SYS(sys_process_vm_readv, 6) /* 345 */ 2137 MIPS_SYS(sys_process_vm_writev, 6) 2138 MIPS_SYS(sys_kcmp, 5) 2139 MIPS_SYS(sys_finit_module, 3) 2140 MIPS_SYS(sys_sched_setattr, 2) 2141 MIPS_SYS(sys_sched_getattr, 3) /* 350 */ 2142 MIPS_SYS(sys_renameat2, 5) 2143 MIPS_SYS(sys_seccomp, 3) 2144 MIPS_SYS(sys_getrandom, 3) 2145 MIPS_SYS(sys_memfd_create, 2) 2146 MIPS_SYS(sys_bpf, 3) /* 355 */ 2147 MIPS_SYS(sys_execveat, 5) 2148 MIPS_SYS(sys_userfaultfd, 1) 2149 MIPS_SYS(sys_membarrier, 2) 2150 MIPS_SYS(sys_mlock2, 3) 2151 MIPS_SYS(sys_copy_file_range, 6) /* 360 */ 2152 MIPS_SYS(sys_preadv2, 6) 2153 MIPS_SYS(sys_pwritev2, 6) 2154 }; 2155 # undef MIPS_SYS 2156 # endif /* O32 */ 2157 2158 static int do_store_exclusive(CPUMIPSState *env) 2159 { 2160 target_ulong addr; 2161 target_ulong page_addr; 2162 target_ulong val; 2163 int flags; 2164 int segv = 0; 2165 int reg; 2166 int d; 2167 2168 addr = env->lladdr; 2169 page_addr = addr & TARGET_PAGE_MASK; 2170 start_exclusive(); 2171 mmap_lock(); 2172 flags = page_get_flags(page_addr); 2173 if ((flags & PAGE_READ) == 0) { 2174 segv = 1; 2175 } else { 2176 reg = env->llreg & 0x1f; 2177 d = (env->llreg & 0x20) != 0; 2178 if (d) { 2179 segv = get_user_s64(val, addr); 2180 } else { 2181 segv = get_user_s32(val, addr); 2182 } 2183 if (!segv) { 2184 if (val != env->llval) { 2185 env->active_tc.gpr[reg] = 0; 2186 } else { 2187 if (d) { 2188 segv = put_user_u64(env->llnewval, addr); 2189 } else { 2190 segv = put_user_u32(env->llnewval, addr); 2191 } 2192 if (!segv) { 2193 env->active_tc.gpr[reg] = 1; 2194 } 2195 } 2196 } 2197 } 2198 env->lladdr = -1; 2199 if (!segv) { 2200 env->active_tc.PC += 4; 2201 } 2202 mmap_unlock(); 2203 end_exclusive(); 2204 return segv; 2205 } 2206 2207 /* Break codes */ 2208 enum { 2209 BRK_OVERFLOW = 6, 2210 BRK_DIVZERO = 7 2211 }; 2212 2213 static int do_break(CPUMIPSState *env, target_siginfo_t *info, 2214 unsigned int code) 2215 { 2216 int ret = -1; 2217 2218 switch (code) { 2219 case BRK_OVERFLOW: 2220 case BRK_DIVZERO: 2221 info->si_signo = TARGET_SIGFPE; 2222 info->si_errno = 0; 2223 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; 2224 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info); 2225 ret = 0; 2226 break; 2227 default: 2228 info->si_signo = TARGET_SIGTRAP; 2229 info->si_errno = 0; 2230 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info); 2231 ret = 0; 2232 break; 2233 } 2234 2235 return ret; 2236 } 2237 2238 void cpu_loop(CPUMIPSState *env) 2239 { 2240 CPUState *cs = CPU(mips_env_get_cpu(env)); 2241 target_siginfo_t info; 2242 int trapnr; 2243 abi_long ret; 2244 # ifdef TARGET_ABI_MIPSO32 2245 unsigned int syscall_num; 2246 # endif 2247 2248 for(;;) { 2249 cpu_exec_start(cs); 2250 trapnr = cpu_exec(cs); 2251 cpu_exec_end(cs); 2252 process_queued_cpu_work(cs); 2253 2254 switch(trapnr) { 2255 case EXCP_SYSCALL: 2256 env->active_tc.PC += 4; 2257 # ifdef TARGET_ABI_MIPSO32 2258 syscall_num = env->active_tc.gpr[2] - 4000; 2259 if (syscall_num >= sizeof(mips_syscall_args)) { 2260 ret = -TARGET_ENOSYS; 2261 } else { 2262 int nb_args; 2263 abi_ulong sp_reg; 2264 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; 2265 2266 nb_args = mips_syscall_args[syscall_num]; 2267 sp_reg = env->active_tc.gpr[29]; 2268 switch (nb_args) { 2269 /* these arguments are taken from the stack */ 2270 case 8: 2271 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { 2272 goto done_syscall; 2273 } 2274 case 7: 2275 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { 2276 goto done_syscall; 2277 } 2278 case 6: 2279 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { 2280 goto done_syscall; 2281 } 2282 case 5: 2283 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { 2284 goto done_syscall; 2285 } 2286 default: 2287 break; 2288 } 2289 ret = do_syscall(env, env->active_tc.gpr[2], 2290 env->active_tc.gpr[4], 2291 env->active_tc.gpr[5], 2292 env->active_tc.gpr[6], 2293 env->active_tc.gpr[7], 2294 arg5, arg6, arg7, arg8); 2295 } 2296 done_syscall: 2297 # else 2298 ret = do_syscall(env, env->active_tc.gpr[2], 2299 env->active_tc.gpr[4], env->active_tc.gpr[5], 2300 env->active_tc.gpr[6], env->active_tc.gpr[7], 2301 env->active_tc.gpr[8], env->active_tc.gpr[9], 2302 env->active_tc.gpr[10], env->active_tc.gpr[11]); 2303 # endif /* O32 */ 2304 if (ret == -TARGET_ERESTARTSYS) { 2305 env->active_tc.PC -= 4; 2306 break; 2307 } 2308 if (ret == -TARGET_QEMU_ESIGRETURN) { 2309 /* Returning from a successful sigreturn syscall. 2310 Avoid clobbering register state. */ 2311 break; 2312 } 2313 if ((abi_ulong)ret >= (abi_ulong)-1133) { 2314 env->active_tc.gpr[7] = 1; /* error flag */ 2315 ret = -ret; 2316 } else { 2317 env->active_tc.gpr[7] = 0; /* error flag */ 2318 } 2319 env->active_tc.gpr[2] = ret; 2320 break; 2321 case EXCP_TLBL: 2322 case EXCP_TLBS: 2323 case EXCP_AdEL: 2324 case EXCP_AdES: 2325 info.si_signo = TARGET_SIGSEGV; 2326 info.si_errno = 0; 2327 /* XXX: check env->error_code */ 2328 info.si_code = TARGET_SEGV_MAPERR; 2329 info._sifields._sigfault._addr = env->CP0_BadVAddr; 2330 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2331 break; 2332 case EXCP_CpU: 2333 case EXCP_RI: 2334 info.si_signo = TARGET_SIGILL; 2335 info.si_errno = 0; 2336 info.si_code = 0; 2337 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2338 break; 2339 case EXCP_INTERRUPT: 2340 /* just indicate that signals should be handled asap */ 2341 break; 2342 case EXCP_DEBUG: 2343 { 2344 int sig; 2345 2346 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2347 if (sig) 2348 { 2349 info.si_signo = sig; 2350 info.si_errno = 0; 2351 info.si_code = TARGET_TRAP_BRKPT; 2352 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2353 } 2354 } 2355 break; 2356 case EXCP_SC: 2357 if (do_store_exclusive(env)) { 2358 info.si_signo = TARGET_SIGSEGV; 2359 info.si_errno = 0; 2360 info.si_code = TARGET_SEGV_MAPERR; 2361 info._sifields._sigfault._addr = env->active_tc.PC; 2362 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2363 } 2364 break; 2365 case EXCP_DSPDIS: 2366 info.si_signo = TARGET_SIGILL; 2367 info.si_errno = 0; 2368 info.si_code = TARGET_ILL_ILLOPC; 2369 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2370 break; 2371 /* The code below was inspired by the MIPS Linux kernel trap 2372 * handling code in arch/mips/kernel/traps.c. 2373 */ 2374 case EXCP_BREAK: 2375 { 2376 abi_ulong trap_instr; 2377 unsigned int code; 2378 2379 if (env->hflags & MIPS_HFLAG_M16) { 2380 if (env->insn_flags & ASE_MICROMIPS) { 2381 /* microMIPS mode */ 2382 ret = get_user_u16(trap_instr, env->active_tc.PC); 2383 if (ret != 0) { 2384 goto error; 2385 } 2386 2387 if ((trap_instr >> 10) == 0x11) { 2388 /* 16-bit instruction */ 2389 code = trap_instr & 0xf; 2390 } else { 2391 /* 32-bit instruction */ 2392 abi_ulong instr_lo; 2393 2394 ret = get_user_u16(instr_lo, 2395 env->active_tc.PC + 2); 2396 if (ret != 0) { 2397 goto error; 2398 } 2399 trap_instr = (trap_instr << 16) | instr_lo; 2400 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2401 /* Unfortunately, microMIPS also suffers from 2402 the old assembler bug... */ 2403 if (code >= (1 << 10)) { 2404 code >>= 10; 2405 } 2406 } 2407 } else { 2408 /* MIPS16e mode */ 2409 ret = get_user_u16(trap_instr, env->active_tc.PC); 2410 if (ret != 0) { 2411 goto error; 2412 } 2413 code = (trap_instr >> 6) & 0x3f; 2414 } 2415 } else { 2416 ret = get_user_u32(trap_instr, env->active_tc.PC); 2417 if (ret != 0) { 2418 goto error; 2419 } 2420 2421 /* As described in the original Linux kernel code, the 2422 * below checks on 'code' are to work around an old 2423 * assembly bug. 2424 */ 2425 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2426 if (code >= (1 << 10)) { 2427 code >>= 10; 2428 } 2429 } 2430 2431 if (do_break(env, &info, code) != 0) { 2432 goto error; 2433 } 2434 } 2435 break; 2436 case EXCP_TRAP: 2437 { 2438 abi_ulong trap_instr; 2439 unsigned int code = 0; 2440 2441 if (env->hflags & MIPS_HFLAG_M16) { 2442 /* microMIPS mode */ 2443 abi_ulong instr[2]; 2444 2445 ret = get_user_u16(instr[0], env->active_tc.PC) || 2446 get_user_u16(instr[1], env->active_tc.PC + 2); 2447 2448 trap_instr = (instr[0] << 16) | instr[1]; 2449 } else { 2450 ret = get_user_u32(trap_instr, env->active_tc.PC); 2451 } 2452 2453 if (ret != 0) { 2454 goto error; 2455 } 2456 2457 /* The immediate versions don't provide a code. */ 2458 if (!(trap_instr & 0xFC000000)) { 2459 if (env->hflags & MIPS_HFLAG_M16) { 2460 /* microMIPS mode */ 2461 code = ((trap_instr >> 12) & ((1 << 4) - 1)); 2462 } else { 2463 code = ((trap_instr >> 6) & ((1 << 10) - 1)); 2464 } 2465 } 2466 2467 if (do_break(env, &info, code) != 0) { 2468 goto error; 2469 } 2470 } 2471 break; 2472 case EXCP_ATOMIC: 2473 cpu_exec_step_atomic(cs); 2474 break; 2475 default: 2476 error: 2477 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 2478 abort(); 2479 } 2480 process_pending_signals(env); 2481 } 2482 } 2483 #endif 2484 2485 #ifdef TARGET_NIOS2 2486 2487 void cpu_loop(CPUNios2State *env) 2488 { 2489 CPUState *cs = ENV_GET_CPU(env); 2490 Nios2CPU *cpu = NIOS2_CPU(cs); 2491 target_siginfo_t info; 2492 int trapnr, gdbsig, ret; 2493 2494 for (;;) { 2495 cpu_exec_start(cs); 2496 trapnr = cpu_exec(cs); 2497 cpu_exec_end(cs); 2498 gdbsig = 0; 2499 2500 switch (trapnr) { 2501 case EXCP_INTERRUPT: 2502 /* just indicate that signals should be handled asap */ 2503 break; 2504 case EXCP_TRAP: 2505 if (env->regs[R_AT] == 0) { 2506 abi_long ret; 2507 qemu_log_mask(CPU_LOG_INT, "\nSyscall\n"); 2508 2509 ret = do_syscall(env, env->regs[2], 2510 env->regs[4], env->regs[5], env->regs[6], 2511 env->regs[7], env->regs[8], env->regs[9], 2512 0, 0); 2513 2514 if (env->regs[2] == 0) { /* FIXME: syscall 0 workaround */ 2515 ret = 0; 2516 } 2517 2518 env->regs[2] = abs(ret); 2519 /* Return value is 0..4096 */ 2520 env->regs[7] = (ret > 0xfffffffffffff000ULL); 2521 env->regs[CR_ESTATUS] = env->regs[CR_STATUS]; 2522 env->regs[CR_STATUS] &= ~0x3; 2523 env->regs[R_EA] = env->regs[R_PC] + 4; 2524 env->regs[R_PC] += 4; 2525 break; 2526 } else { 2527 qemu_log_mask(CPU_LOG_INT, "\nTrap\n"); 2528 2529 env->regs[CR_ESTATUS] = env->regs[CR_STATUS]; 2530 env->regs[CR_STATUS] &= ~0x3; 2531 env->regs[R_EA] = env->regs[R_PC] + 4; 2532 env->regs[R_PC] = cpu->exception_addr; 2533 2534 gdbsig = TARGET_SIGTRAP; 2535 break; 2536 } 2537 case 0xaa: 2538 switch (env->regs[R_PC]) { 2539 /*case 0x1000:*/ /* TODO:__kuser_helper_version */ 2540 case 0x1004: /* __kuser_cmpxchg */ 2541 start_exclusive(); 2542 if (env->regs[4] & 0x3) { 2543 goto kuser_fail; 2544 } 2545 ret = get_user_u32(env->regs[2], env->regs[4]); 2546 if (ret) { 2547 end_exclusive(); 2548 goto kuser_fail; 2549 } 2550 env->regs[2] -= env->regs[5]; 2551 if (env->regs[2] == 0) { 2552 put_user_u32(env->regs[6], env->regs[4]); 2553 } 2554 end_exclusive(); 2555 env->regs[R_PC] = env->regs[R_RA]; 2556 break; 2557 /*case 0x1040:*/ /* TODO:__kuser_sigtramp */ 2558 default: 2559 ; 2560 kuser_fail: 2561 info.si_signo = TARGET_SIGSEGV; 2562 info.si_errno = 0; 2563 /* TODO: check env->error_code */ 2564 info.si_code = TARGET_SEGV_MAPERR; 2565 info._sifields._sigfault._addr = env->regs[R_PC]; 2566 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2567 } 2568 break; 2569 default: 2570 EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n", 2571 trapnr); 2572 gdbsig = TARGET_SIGILL; 2573 break; 2574 } 2575 if (gdbsig) { 2576 gdb_handlesig(cs, gdbsig); 2577 if (gdbsig != TARGET_SIGTRAP) { 2578 exit(EXIT_FAILURE); 2579 } 2580 } 2581 2582 process_pending_signals(env); 2583 } 2584 } 2585 2586 #endif /* TARGET_NIOS2 */ 2587 2588 #ifdef TARGET_OPENRISC 2589 2590 void cpu_loop(CPUOpenRISCState *env) 2591 { 2592 CPUState *cs = CPU(openrisc_env_get_cpu(env)); 2593 int trapnr; 2594 abi_long ret; 2595 target_siginfo_t info; 2596 2597 for (;;) { 2598 cpu_exec_start(cs); 2599 trapnr = cpu_exec(cs); 2600 cpu_exec_end(cs); 2601 process_queued_cpu_work(cs); 2602 2603 switch (trapnr) { 2604 case EXCP_SYSCALL: 2605 env->pc += 4; /* 0xc00; */ 2606 ret = do_syscall(env, 2607 cpu_get_gpr(env, 11), /* return value */ 2608 cpu_get_gpr(env, 3), /* r3 - r7 are params */ 2609 cpu_get_gpr(env, 4), 2610 cpu_get_gpr(env, 5), 2611 cpu_get_gpr(env, 6), 2612 cpu_get_gpr(env, 7), 2613 cpu_get_gpr(env, 8), 0, 0); 2614 if (ret == -TARGET_ERESTARTSYS) { 2615 env->pc -= 4; 2616 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2617 cpu_set_gpr(env, 11, ret); 2618 } 2619 break; 2620 case EXCP_DPF: 2621 case EXCP_IPF: 2622 case EXCP_RANGE: 2623 info.si_signo = TARGET_SIGSEGV; 2624 info.si_errno = 0; 2625 info.si_code = TARGET_SEGV_MAPERR; 2626 info._sifields._sigfault._addr = env->pc; 2627 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2628 break; 2629 case EXCP_ALIGN: 2630 info.si_signo = TARGET_SIGBUS; 2631 info.si_errno = 0; 2632 info.si_code = TARGET_BUS_ADRALN; 2633 info._sifields._sigfault._addr = env->pc; 2634 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2635 break; 2636 case EXCP_ILLEGAL: 2637 info.si_signo = TARGET_SIGILL; 2638 info.si_errno = 0; 2639 info.si_code = TARGET_ILL_ILLOPC; 2640 info._sifields._sigfault._addr = env->pc; 2641 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2642 break; 2643 case EXCP_FPE: 2644 info.si_signo = TARGET_SIGFPE; 2645 info.si_errno = 0; 2646 info.si_code = 0; 2647 info._sifields._sigfault._addr = env->pc; 2648 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2649 break; 2650 case EXCP_INTERRUPT: 2651 /* We processed the pending cpu work above. */ 2652 break; 2653 case EXCP_DEBUG: 2654 trapnr = gdb_handlesig(cs, TARGET_SIGTRAP); 2655 if (trapnr) { 2656 info.si_signo = trapnr; 2657 info.si_errno = 0; 2658 info.si_code = TARGET_TRAP_BRKPT; 2659 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2660 } 2661 break; 2662 case EXCP_ATOMIC: 2663 cpu_exec_step_atomic(cs); 2664 break; 2665 default: 2666 g_assert_not_reached(); 2667 } 2668 process_pending_signals(env); 2669 } 2670 } 2671 2672 #endif /* TARGET_OPENRISC */ 2673 2674 #ifdef TARGET_SH4 2675 void cpu_loop(CPUSH4State *env) 2676 { 2677 CPUState *cs = CPU(sh_env_get_cpu(env)); 2678 int trapnr, ret; 2679 target_siginfo_t info; 2680 2681 while (1) { 2682 bool arch_interrupt = true; 2683 2684 cpu_exec_start(cs); 2685 trapnr = cpu_exec(cs); 2686 cpu_exec_end(cs); 2687 process_queued_cpu_work(cs); 2688 2689 switch (trapnr) { 2690 case 0x160: 2691 env->pc += 2; 2692 ret = do_syscall(env, 2693 env->gregs[3], 2694 env->gregs[4], 2695 env->gregs[5], 2696 env->gregs[6], 2697 env->gregs[7], 2698 env->gregs[0], 2699 env->gregs[1], 2700 0, 0); 2701 if (ret == -TARGET_ERESTARTSYS) { 2702 env->pc -= 2; 2703 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2704 env->gregs[0] = ret; 2705 } 2706 break; 2707 case EXCP_INTERRUPT: 2708 /* just indicate that signals should be handled asap */ 2709 break; 2710 case EXCP_DEBUG: 2711 { 2712 int sig; 2713 2714 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2715 if (sig) { 2716 info.si_signo = sig; 2717 info.si_errno = 0; 2718 info.si_code = TARGET_TRAP_BRKPT; 2719 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2720 } else { 2721 arch_interrupt = false; 2722 } 2723 } 2724 break; 2725 case 0xa0: 2726 case 0xc0: 2727 info.si_signo = TARGET_SIGSEGV; 2728 info.si_errno = 0; 2729 info.si_code = TARGET_SEGV_MAPERR; 2730 info._sifields._sigfault._addr = env->tea; 2731 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2732 break; 2733 case EXCP_ATOMIC: 2734 cpu_exec_step_atomic(cs); 2735 arch_interrupt = false; 2736 break; 2737 default: 2738 printf ("Unhandled trap: 0x%x\n", trapnr); 2739 cpu_dump_state(cs, stderr, fprintf, 0); 2740 exit(EXIT_FAILURE); 2741 } 2742 process_pending_signals (env); 2743 2744 /* Most of the traps imply an exception or interrupt, which 2745 implies an REI instruction has been executed. Which means 2746 that LDST (aka LOK_ADDR) should be cleared. But there are 2747 a few exceptions for traps internal to QEMU. */ 2748 if (arch_interrupt) { 2749 env->lock_addr = -1; 2750 } 2751 } 2752 } 2753 #endif 2754 2755 #ifdef TARGET_CRIS 2756 void cpu_loop(CPUCRISState *env) 2757 { 2758 CPUState *cs = CPU(cris_env_get_cpu(env)); 2759 int trapnr, ret; 2760 target_siginfo_t info; 2761 2762 while (1) { 2763 cpu_exec_start(cs); 2764 trapnr = cpu_exec(cs); 2765 cpu_exec_end(cs); 2766 process_queued_cpu_work(cs); 2767 2768 switch (trapnr) { 2769 case 0xaa: 2770 { 2771 info.si_signo = TARGET_SIGSEGV; 2772 info.si_errno = 0; 2773 /* XXX: check env->error_code */ 2774 info.si_code = TARGET_SEGV_MAPERR; 2775 info._sifields._sigfault._addr = env->pregs[PR_EDA]; 2776 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2777 } 2778 break; 2779 case EXCP_INTERRUPT: 2780 /* just indicate that signals should be handled asap */ 2781 break; 2782 case EXCP_BREAK: 2783 ret = do_syscall(env, 2784 env->regs[9], 2785 env->regs[10], 2786 env->regs[11], 2787 env->regs[12], 2788 env->regs[13], 2789 env->pregs[7], 2790 env->pregs[11], 2791 0, 0); 2792 if (ret == -TARGET_ERESTARTSYS) { 2793 env->pc -= 2; 2794 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2795 env->regs[10] = ret; 2796 } 2797 break; 2798 case EXCP_DEBUG: 2799 { 2800 int sig; 2801 2802 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2803 if (sig) 2804 { 2805 info.si_signo = sig; 2806 info.si_errno = 0; 2807 info.si_code = TARGET_TRAP_BRKPT; 2808 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2809 } 2810 } 2811 break; 2812 case EXCP_ATOMIC: 2813 cpu_exec_step_atomic(cs); 2814 break; 2815 default: 2816 printf ("Unhandled trap: 0x%x\n", trapnr); 2817 cpu_dump_state(cs, stderr, fprintf, 0); 2818 exit(EXIT_FAILURE); 2819 } 2820 process_pending_signals (env); 2821 } 2822 } 2823 #endif 2824 2825 #ifdef TARGET_MICROBLAZE 2826 void cpu_loop(CPUMBState *env) 2827 { 2828 CPUState *cs = CPU(mb_env_get_cpu(env)); 2829 int trapnr, ret; 2830 target_siginfo_t info; 2831 2832 while (1) { 2833 cpu_exec_start(cs); 2834 trapnr = cpu_exec(cs); 2835 cpu_exec_end(cs); 2836 process_queued_cpu_work(cs); 2837 2838 switch (trapnr) { 2839 case 0xaa: 2840 { 2841 info.si_signo = TARGET_SIGSEGV; 2842 info.si_errno = 0; 2843 /* XXX: check env->error_code */ 2844 info.si_code = TARGET_SEGV_MAPERR; 2845 info._sifields._sigfault._addr = 0; 2846 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2847 } 2848 break; 2849 case EXCP_INTERRUPT: 2850 /* just indicate that signals should be handled asap */ 2851 break; 2852 case EXCP_BREAK: 2853 /* Return address is 4 bytes after the call. */ 2854 env->regs[14] += 4; 2855 env->sregs[SR_PC] = env->regs[14]; 2856 ret = do_syscall(env, 2857 env->regs[12], 2858 env->regs[5], 2859 env->regs[6], 2860 env->regs[7], 2861 env->regs[8], 2862 env->regs[9], 2863 env->regs[10], 2864 0, 0); 2865 if (ret == -TARGET_ERESTARTSYS) { 2866 /* Wind back to before the syscall. */ 2867 env->sregs[SR_PC] -= 4; 2868 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2869 env->regs[3] = ret; 2870 } 2871 /* All syscall exits result in guest r14 being equal to the 2872 * PC we return to, because the kernel syscall exit "rtbd" does 2873 * this. (This is true even for sigreturn(); note that r14 is 2874 * not a userspace-usable register, as the kernel may clobber it 2875 * at any point.) 2876 */ 2877 env->regs[14] = env->sregs[SR_PC]; 2878 break; 2879 case EXCP_HW_EXCP: 2880 env->regs[17] = env->sregs[SR_PC] + 4; 2881 if (env->iflags & D_FLAG) { 2882 env->sregs[SR_ESR] |= 1 << 12; 2883 env->sregs[SR_PC] -= 4; 2884 /* FIXME: if branch was immed, replay the imm as well. */ 2885 } 2886 2887 env->iflags &= ~(IMM_FLAG | D_FLAG); 2888 2889 switch (env->sregs[SR_ESR] & 31) { 2890 case ESR_EC_DIVZERO: 2891 info.si_signo = TARGET_SIGFPE; 2892 info.si_errno = 0; 2893 info.si_code = TARGET_FPE_FLTDIV; 2894 info._sifields._sigfault._addr = 0; 2895 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2896 break; 2897 case ESR_EC_FPU: 2898 info.si_signo = TARGET_SIGFPE; 2899 info.si_errno = 0; 2900 if (env->sregs[SR_FSR] & FSR_IO) { 2901 info.si_code = TARGET_FPE_FLTINV; 2902 } 2903 if (env->sregs[SR_FSR] & FSR_DZ) { 2904 info.si_code = TARGET_FPE_FLTDIV; 2905 } 2906 info._sifields._sigfault._addr = 0; 2907 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2908 break; 2909 default: 2910 printf ("Unhandled hw-exception: 0x%x\n", 2911 env->sregs[SR_ESR] & ESR_EC_MASK); 2912 cpu_dump_state(cs, stderr, fprintf, 0); 2913 exit(EXIT_FAILURE); 2914 break; 2915 } 2916 break; 2917 case EXCP_DEBUG: 2918 { 2919 int sig; 2920 2921 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2922 if (sig) 2923 { 2924 info.si_signo = sig; 2925 info.si_errno = 0; 2926 info.si_code = TARGET_TRAP_BRKPT; 2927 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2928 } 2929 } 2930 break; 2931 case EXCP_ATOMIC: 2932 cpu_exec_step_atomic(cs); 2933 break; 2934 default: 2935 printf ("Unhandled trap: 0x%x\n", trapnr); 2936 cpu_dump_state(cs, stderr, fprintf, 0); 2937 exit(EXIT_FAILURE); 2938 } 2939 process_pending_signals (env); 2940 } 2941 } 2942 #endif 2943 2944 #ifdef TARGET_M68K 2945 2946 void cpu_loop(CPUM68KState *env) 2947 { 2948 CPUState *cs = CPU(m68k_env_get_cpu(env)); 2949 int trapnr; 2950 unsigned int n; 2951 target_siginfo_t info; 2952 TaskState *ts = cs->opaque; 2953 2954 for(;;) { 2955 cpu_exec_start(cs); 2956 trapnr = cpu_exec(cs); 2957 cpu_exec_end(cs); 2958 process_queued_cpu_work(cs); 2959 2960 switch(trapnr) { 2961 case EXCP_ILLEGAL: 2962 { 2963 if (ts->sim_syscalls) { 2964 uint16_t nr; 2965 get_user_u16(nr, env->pc + 2); 2966 env->pc += 4; 2967 do_m68k_simcall(env, nr); 2968 } else { 2969 goto do_sigill; 2970 } 2971 } 2972 break; 2973 case EXCP_HALT_INSN: 2974 /* Semihosing syscall. */ 2975 env->pc += 4; 2976 do_m68k_semihosting(env, env->dregs[0]); 2977 break; 2978 case EXCP_LINEA: 2979 case EXCP_LINEF: 2980 case EXCP_UNSUPPORTED: 2981 do_sigill: 2982 info.si_signo = TARGET_SIGILL; 2983 info.si_errno = 0; 2984 info.si_code = TARGET_ILL_ILLOPN; 2985 info._sifields._sigfault._addr = env->pc; 2986 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2987 break; 2988 case EXCP_DIV0: 2989 info.si_signo = TARGET_SIGFPE; 2990 info.si_errno = 0; 2991 info.si_code = TARGET_FPE_INTDIV; 2992 info._sifields._sigfault._addr = env->pc; 2993 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2994 break; 2995 case EXCP_TRAP0: 2996 { 2997 abi_long ret; 2998 ts->sim_syscalls = 0; 2999 n = env->dregs[0]; 3000 env->pc += 2; 3001 ret = do_syscall(env, 3002 n, 3003 env->dregs[1], 3004 env->dregs[2], 3005 env->dregs[3], 3006 env->dregs[4], 3007 env->dregs[5], 3008 env->aregs[0], 3009 0, 0); 3010 if (ret == -TARGET_ERESTARTSYS) { 3011 env->pc -= 2; 3012 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3013 env->dregs[0] = ret; 3014 } 3015 } 3016 break; 3017 case EXCP_INTERRUPT: 3018 /* just indicate that signals should be handled asap */ 3019 break; 3020 case EXCP_ACCESS: 3021 { 3022 info.si_signo = TARGET_SIGSEGV; 3023 info.si_errno = 0; 3024 /* XXX: check env->error_code */ 3025 info.si_code = TARGET_SEGV_MAPERR; 3026 info._sifields._sigfault._addr = env->mmu.ar; 3027 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3028 } 3029 break; 3030 case EXCP_DEBUG: 3031 { 3032 int sig; 3033 3034 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3035 if (sig) 3036 { 3037 info.si_signo = sig; 3038 info.si_errno = 0; 3039 info.si_code = TARGET_TRAP_BRKPT; 3040 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3041 } 3042 } 3043 break; 3044 case EXCP_ATOMIC: 3045 cpu_exec_step_atomic(cs); 3046 break; 3047 default: 3048 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 3049 abort(); 3050 } 3051 process_pending_signals(env); 3052 } 3053 } 3054 #endif /* TARGET_M68K */ 3055 3056 #ifdef TARGET_ALPHA 3057 void cpu_loop(CPUAlphaState *env) 3058 { 3059 CPUState *cs = CPU(alpha_env_get_cpu(env)); 3060 int trapnr; 3061 target_siginfo_t info; 3062 abi_long sysret; 3063 3064 while (1) { 3065 bool arch_interrupt = true; 3066 3067 cpu_exec_start(cs); 3068 trapnr = cpu_exec(cs); 3069 cpu_exec_end(cs); 3070 process_queued_cpu_work(cs); 3071 3072 switch (trapnr) { 3073 case EXCP_RESET: 3074 fprintf(stderr, "Reset requested. Exit\n"); 3075 exit(EXIT_FAILURE); 3076 break; 3077 case EXCP_MCHK: 3078 fprintf(stderr, "Machine check exception. Exit\n"); 3079 exit(EXIT_FAILURE); 3080 break; 3081 case EXCP_SMP_INTERRUPT: 3082 case EXCP_CLK_INTERRUPT: 3083 case EXCP_DEV_INTERRUPT: 3084 fprintf(stderr, "External interrupt. Exit\n"); 3085 exit(EXIT_FAILURE); 3086 break; 3087 case EXCP_MMFAULT: 3088 info.si_signo = TARGET_SIGSEGV; 3089 info.si_errno = 0; 3090 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID 3091 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR); 3092 info._sifields._sigfault._addr = env->trap_arg0; 3093 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3094 break; 3095 case EXCP_UNALIGN: 3096 info.si_signo = TARGET_SIGBUS; 3097 info.si_errno = 0; 3098 info.si_code = TARGET_BUS_ADRALN; 3099 info._sifields._sigfault._addr = env->trap_arg0; 3100 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3101 break; 3102 case EXCP_OPCDEC: 3103 do_sigill: 3104 info.si_signo = TARGET_SIGILL; 3105 info.si_errno = 0; 3106 info.si_code = TARGET_ILL_ILLOPC; 3107 info._sifields._sigfault._addr = env->pc; 3108 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3109 break; 3110 case EXCP_ARITH: 3111 info.si_signo = TARGET_SIGFPE; 3112 info.si_errno = 0; 3113 info.si_code = TARGET_FPE_FLTINV; 3114 info._sifields._sigfault._addr = env->pc; 3115 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3116 break; 3117 case EXCP_FEN: 3118 /* No-op. Linux simply re-enables the FPU. */ 3119 break; 3120 case EXCP_CALL_PAL: 3121 switch (env->error_code) { 3122 case 0x80: 3123 /* BPT */ 3124 info.si_signo = TARGET_SIGTRAP; 3125 info.si_errno = 0; 3126 info.si_code = TARGET_TRAP_BRKPT; 3127 info._sifields._sigfault._addr = env->pc; 3128 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3129 break; 3130 case 0x81: 3131 /* BUGCHK */ 3132 info.si_signo = TARGET_SIGTRAP; 3133 info.si_errno = 0; 3134 info.si_code = 0; 3135 info._sifields._sigfault._addr = env->pc; 3136 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3137 break; 3138 case 0x83: 3139 /* CALLSYS */ 3140 trapnr = env->ir[IR_V0]; 3141 sysret = do_syscall(env, trapnr, 3142 env->ir[IR_A0], env->ir[IR_A1], 3143 env->ir[IR_A2], env->ir[IR_A3], 3144 env->ir[IR_A4], env->ir[IR_A5], 3145 0, 0); 3146 if (sysret == -TARGET_ERESTARTSYS) { 3147 env->pc -= 4; 3148 break; 3149 } 3150 if (sysret == -TARGET_QEMU_ESIGRETURN) { 3151 break; 3152 } 3153 /* Syscall writes 0 to V0 to bypass error check, similar 3154 to how this is handled internal to Linux kernel. 3155 (Ab)use trapnr temporarily as boolean indicating error. */ 3156 trapnr = (env->ir[IR_V0] != 0 && sysret < 0); 3157 env->ir[IR_V0] = (trapnr ? -sysret : sysret); 3158 env->ir[IR_A3] = trapnr; 3159 break; 3160 case 0x86: 3161 /* IMB */ 3162 /* ??? We can probably elide the code using page_unprotect 3163 that is checking for self-modifying code. Instead we 3164 could simply call tb_flush here. Until we work out the 3165 changes required to turn off the extra write protection, 3166 this can be a no-op. */ 3167 break; 3168 case 0x9E: 3169 /* RDUNIQUE */ 3170 /* Handled in the translator for usermode. */ 3171 abort(); 3172 case 0x9F: 3173 /* WRUNIQUE */ 3174 /* Handled in the translator for usermode. */ 3175 abort(); 3176 case 0xAA: 3177 /* GENTRAP */ 3178 info.si_signo = TARGET_SIGFPE; 3179 switch (env->ir[IR_A0]) { 3180 case TARGET_GEN_INTOVF: 3181 info.si_code = TARGET_FPE_INTOVF; 3182 break; 3183 case TARGET_GEN_INTDIV: 3184 info.si_code = TARGET_FPE_INTDIV; 3185 break; 3186 case TARGET_GEN_FLTOVF: 3187 info.si_code = TARGET_FPE_FLTOVF; 3188 break; 3189 case TARGET_GEN_FLTUND: 3190 info.si_code = TARGET_FPE_FLTUND; 3191 break; 3192 case TARGET_GEN_FLTINV: 3193 info.si_code = TARGET_FPE_FLTINV; 3194 break; 3195 case TARGET_GEN_FLTINE: 3196 info.si_code = TARGET_FPE_FLTRES; 3197 break; 3198 case TARGET_GEN_ROPRAND: 3199 info.si_code = 0; 3200 break; 3201 default: 3202 info.si_signo = TARGET_SIGTRAP; 3203 info.si_code = 0; 3204 break; 3205 } 3206 info.si_errno = 0; 3207 info._sifields._sigfault._addr = env->pc; 3208 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3209 break; 3210 default: 3211 goto do_sigill; 3212 } 3213 break; 3214 case EXCP_DEBUG: 3215 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP); 3216 if (info.si_signo) { 3217 info.si_errno = 0; 3218 info.si_code = TARGET_TRAP_BRKPT; 3219 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3220 } else { 3221 arch_interrupt = false; 3222 } 3223 break; 3224 case EXCP_INTERRUPT: 3225 /* Just indicate that signals should be handled asap. */ 3226 break; 3227 case EXCP_ATOMIC: 3228 cpu_exec_step_atomic(cs); 3229 arch_interrupt = false; 3230 break; 3231 default: 3232 printf ("Unhandled trap: 0x%x\n", trapnr); 3233 cpu_dump_state(cs, stderr, fprintf, 0); 3234 exit(EXIT_FAILURE); 3235 } 3236 process_pending_signals (env); 3237 3238 /* Most of the traps imply a transition through PALcode, which 3239 implies an REI instruction has been executed. Which means 3240 that RX and LOCK_ADDR should be cleared. But there are a 3241 few exceptions for traps internal to QEMU. */ 3242 if (arch_interrupt) { 3243 env->flags &= ~ENV_FLAG_RX_FLAG; 3244 env->lock_addr = -1; 3245 } 3246 } 3247 } 3248 #endif /* TARGET_ALPHA */ 3249 3250 #ifdef TARGET_S390X 3251 3252 /* s390x masks the fault address it reports in si_addr for SIGSEGV and SIGBUS */ 3253 #define S390X_FAIL_ADDR_MASK -4096LL 3254 3255 void cpu_loop(CPUS390XState *env) 3256 { 3257 CPUState *cs = CPU(s390_env_get_cpu(env)); 3258 int trapnr, n, sig; 3259 target_siginfo_t info; 3260 target_ulong addr; 3261 abi_long ret; 3262 3263 while (1) { 3264 cpu_exec_start(cs); 3265 trapnr = cpu_exec(cs); 3266 cpu_exec_end(cs); 3267 process_queued_cpu_work(cs); 3268 3269 switch (trapnr) { 3270 case EXCP_INTERRUPT: 3271 /* Just indicate that signals should be handled asap. */ 3272 break; 3273 3274 case EXCP_SVC: 3275 n = env->int_svc_code; 3276 if (!n) { 3277 /* syscalls > 255 */ 3278 n = env->regs[1]; 3279 } 3280 env->psw.addr += env->int_svc_ilen; 3281 ret = do_syscall(env, n, env->regs[2], env->regs[3], 3282 env->regs[4], env->regs[5], 3283 env->regs[6], env->regs[7], 0, 0); 3284 if (ret == -TARGET_ERESTARTSYS) { 3285 env->psw.addr -= env->int_svc_ilen; 3286 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3287 env->regs[2] = ret; 3288 } 3289 break; 3290 3291 case EXCP_DEBUG: 3292 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3293 if (sig) { 3294 n = TARGET_TRAP_BRKPT; 3295 goto do_signal_pc; 3296 } 3297 break; 3298 case EXCP_PGM: 3299 n = env->int_pgm_code; 3300 switch (n) { 3301 case PGM_OPERATION: 3302 case PGM_PRIVILEGED: 3303 sig = TARGET_SIGILL; 3304 n = TARGET_ILL_ILLOPC; 3305 goto do_signal_pc; 3306 case PGM_PROTECTION: 3307 case PGM_ADDRESSING: 3308 sig = TARGET_SIGSEGV; 3309 /* XXX: check env->error_code */ 3310 n = TARGET_SEGV_MAPERR; 3311 addr = env->__excp_addr & S390X_FAIL_ADDR_MASK; 3312 goto do_signal; 3313 case PGM_EXECUTE: 3314 case PGM_SPECIFICATION: 3315 case PGM_SPECIAL_OP: 3316 case PGM_OPERAND: 3317 do_sigill_opn: 3318 sig = TARGET_SIGILL; 3319 n = TARGET_ILL_ILLOPN; 3320 goto do_signal_pc; 3321 3322 case PGM_FIXPT_OVERFLOW: 3323 sig = TARGET_SIGFPE; 3324 n = TARGET_FPE_INTOVF; 3325 goto do_signal_pc; 3326 case PGM_FIXPT_DIVIDE: 3327 sig = TARGET_SIGFPE; 3328 n = TARGET_FPE_INTDIV; 3329 goto do_signal_pc; 3330 3331 case PGM_DATA: 3332 n = (env->fpc >> 8) & 0xff; 3333 if (n == 0xff) { 3334 /* compare-and-trap */ 3335 goto do_sigill_opn; 3336 } else { 3337 /* An IEEE exception, simulated or otherwise. */ 3338 if (n & 0x80) { 3339 n = TARGET_FPE_FLTINV; 3340 } else if (n & 0x40) { 3341 n = TARGET_FPE_FLTDIV; 3342 } else if (n & 0x20) { 3343 n = TARGET_FPE_FLTOVF; 3344 } else if (n & 0x10) { 3345 n = TARGET_FPE_FLTUND; 3346 } else if (n & 0x08) { 3347 n = TARGET_FPE_FLTRES; 3348 } else { 3349 /* ??? Quantum exception; BFP, DFP error. */ 3350 goto do_sigill_opn; 3351 } 3352 sig = TARGET_SIGFPE; 3353 goto do_signal_pc; 3354 } 3355 3356 default: 3357 fprintf(stderr, "Unhandled program exception: %#x\n", n); 3358 cpu_dump_state(cs, stderr, fprintf, 0); 3359 exit(EXIT_FAILURE); 3360 } 3361 break; 3362 3363 do_signal_pc: 3364 addr = env->psw.addr; 3365 do_signal: 3366 info.si_signo = sig; 3367 info.si_errno = 0; 3368 info.si_code = n; 3369 info._sifields._sigfault._addr = addr; 3370 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3371 break; 3372 3373 case EXCP_ATOMIC: 3374 cpu_exec_step_atomic(cs); 3375 break; 3376 default: 3377 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); 3378 cpu_dump_state(cs, stderr, fprintf, 0); 3379 exit(EXIT_FAILURE); 3380 } 3381 process_pending_signals (env); 3382 } 3383 } 3384 3385 #endif /* TARGET_S390X */ 3386 3387 #ifdef TARGET_TILEGX 3388 3389 static void gen_sigill_reg(CPUTLGState *env) 3390 { 3391 target_siginfo_t info; 3392 3393 info.si_signo = TARGET_SIGILL; 3394 info.si_errno = 0; 3395 info.si_code = TARGET_ILL_PRVREG; 3396 info._sifields._sigfault._addr = env->pc; 3397 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3398 } 3399 3400 static void do_signal(CPUTLGState *env, int signo, int sigcode) 3401 { 3402 target_siginfo_t info; 3403 3404 info.si_signo = signo; 3405 info.si_errno = 0; 3406 info._sifields._sigfault._addr = env->pc; 3407 3408 if (signo == TARGET_SIGSEGV) { 3409 /* The passed in sigcode is a dummy; check for a page mapping 3410 and pass either MAPERR or ACCERR. */ 3411 target_ulong addr = env->excaddr; 3412 info._sifields._sigfault._addr = addr; 3413 if (page_check_range(addr, 1, PAGE_VALID) < 0) { 3414 sigcode = TARGET_SEGV_MAPERR; 3415 } else { 3416 sigcode = TARGET_SEGV_ACCERR; 3417 } 3418 } 3419 info.si_code = sigcode; 3420 3421 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3422 } 3423 3424 static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr) 3425 { 3426 env->excaddr = addr; 3427 do_signal(env, TARGET_SIGSEGV, 0); 3428 } 3429 3430 static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val) 3431 { 3432 if (unlikely(reg >= TILEGX_R_COUNT)) { 3433 switch (reg) { 3434 case TILEGX_R_SN: 3435 case TILEGX_R_ZERO: 3436 return; 3437 case TILEGX_R_IDN0: 3438 case TILEGX_R_IDN1: 3439 case TILEGX_R_UDN0: 3440 case TILEGX_R_UDN1: 3441 case TILEGX_R_UDN2: 3442 case TILEGX_R_UDN3: 3443 gen_sigill_reg(env); 3444 return; 3445 default: 3446 g_assert_not_reached(); 3447 } 3448 } 3449 env->regs[reg] = val; 3450 } 3451 3452 /* 3453 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in 3454 * memory at the address held in the first source register. If the values are 3455 * not equal, then no memory operation is performed. If the values are equal, 3456 * the 8-byte quantity from the second source register is written into memory 3457 * at the address held in the first source register. In either case, the result 3458 * of the instruction is the value read from memory. The compare and write to 3459 * memory are atomic and thus can be used for synchronization purposes. This 3460 * instruction only operates for addresses aligned to a 8-byte boundary. 3461 * Unaligned memory access causes an Unaligned Data Reference interrupt. 3462 * 3463 * Functional Description (64-bit) 3464 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]); 3465 * rf[Dest] = memVal; 3466 * if (memVal == SPR[CmpValueSPR]) 3467 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]); 3468 * 3469 * Functional Description (32-bit) 3470 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA])); 3471 * rf[Dest] = memVal; 3472 * if (memVal == signExtend32 (SPR[CmpValueSPR])) 3473 * memoryWriteWord (rf[SrcA], rf[SrcB]); 3474 * 3475 * 3476 * This function also processes exch and exch4 which need not process SPR. 3477 */ 3478 static void do_exch(CPUTLGState *env, bool quad, bool cmp) 3479 { 3480 target_ulong addr; 3481 target_long val, sprval; 3482 3483 start_exclusive(); 3484 3485 addr = env->atomic_srca; 3486 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3487 goto sigsegv_maperr; 3488 } 3489 3490 if (cmp) { 3491 if (quad) { 3492 sprval = env->spregs[TILEGX_SPR_CMPEXCH]; 3493 } else { 3494 sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32); 3495 } 3496 } 3497 3498 if (!cmp || val == sprval) { 3499 target_long valb = env->atomic_srcb; 3500 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3501 goto sigsegv_maperr; 3502 } 3503 } 3504 3505 set_regval(env, env->atomic_dstr, val); 3506 end_exclusive(); 3507 return; 3508 3509 sigsegv_maperr: 3510 end_exclusive(); 3511 gen_sigsegv_maperr(env, addr); 3512 } 3513 3514 static void do_fetch(CPUTLGState *env, int trapnr, bool quad) 3515 { 3516 int8_t write = 1; 3517 target_ulong addr; 3518 target_long val, valb; 3519 3520 start_exclusive(); 3521 3522 addr = env->atomic_srca; 3523 valb = env->atomic_srcb; 3524 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3525 goto sigsegv_maperr; 3526 } 3527 3528 switch (trapnr) { 3529 case TILEGX_EXCP_OPCODE_FETCHADD: 3530 case TILEGX_EXCP_OPCODE_FETCHADD4: 3531 valb += val; 3532 break; 3533 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3534 valb += val; 3535 if (valb < 0) { 3536 write = 0; 3537 } 3538 break; 3539 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3540 valb += val; 3541 if ((int32_t)valb < 0) { 3542 write = 0; 3543 } 3544 break; 3545 case TILEGX_EXCP_OPCODE_FETCHAND: 3546 case TILEGX_EXCP_OPCODE_FETCHAND4: 3547 valb &= val; 3548 break; 3549 case TILEGX_EXCP_OPCODE_FETCHOR: 3550 case TILEGX_EXCP_OPCODE_FETCHOR4: 3551 valb |= val; 3552 break; 3553 default: 3554 g_assert_not_reached(); 3555 } 3556 3557 if (write) { 3558 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3559 goto sigsegv_maperr; 3560 } 3561 } 3562 3563 set_regval(env, env->atomic_dstr, val); 3564 end_exclusive(); 3565 return; 3566 3567 sigsegv_maperr: 3568 end_exclusive(); 3569 gen_sigsegv_maperr(env, addr); 3570 } 3571 3572 void cpu_loop(CPUTLGState *env) 3573 { 3574 CPUState *cs = CPU(tilegx_env_get_cpu(env)); 3575 int trapnr; 3576 3577 while (1) { 3578 cpu_exec_start(cs); 3579 trapnr = cpu_exec(cs); 3580 cpu_exec_end(cs); 3581 process_queued_cpu_work(cs); 3582 3583 switch (trapnr) { 3584 case TILEGX_EXCP_SYSCALL: 3585 { 3586 abi_ulong ret = do_syscall(env, env->regs[TILEGX_R_NR], 3587 env->regs[0], env->regs[1], 3588 env->regs[2], env->regs[3], 3589 env->regs[4], env->regs[5], 3590 env->regs[6], env->regs[7]); 3591 if (ret == -TARGET_ERESTARTSYS) { 3592 env->pc -= 8; 3593 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3594 env->regs[TILEGX_R_RE] = ret; 3595 env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(ret) ? -ret : 0; 3596 } 3597 break; 3598 } 3599 case TILEGX_EXCP_OPCODE_EXCH: 3600 do_exch(env, true, false); 3601 break; 3602 case TILEGX_EXCP_OPCODE_EXCH4: 3603 do_exch(env, false, false); 3604 break; 3605 case TILEGX_EXCP_OPCODE_CMPEXCH: 3606 do_exch(env, true, true); 3607 break; 3608 case TILEGX_EXCP_OPCODE_CMPEXCH4: 3609 do_exch(env, false, true); 3610 break; 3611 case TILEGX_EXCP_OPCODE_FETCHADD: 3612 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3613 case TILEGX_EXCP_OPCODE_FETCHAND: 3614 case TILEGX_EXCP_OPCODE_FETCHOR: 3615 do_fetch(env, trapnr, true); 3616 break; 3617 case TILEGX_EXCP_OPCODE_FETCHADD4: 3618 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3619 case TILEGX_EXCP_OPCODE_FETCHAND4: 3620 case TILEGX_EXCP_OPCODE_FETCHOR4: 3621 do_fetch(env, trapnr, false); 3622 break; 3623 case TILEGX_EXCP_SIGNAL: 3624 do_signal(env, env->signo, env->sigcode); 3625 break; 3626 case TILEGX_EXCP_REG_IDN_ACCESS: 3627 case TILEGX_EXCP_REG_UDN_ACCESS: 3628 gen_sigill_reg(env); 3629 break; 3630 case EXCP_ATOMIC: 3631 cpu_exec_step_atomic(cs); 3632 break; 3633 default: 3634 fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr); 3635 g_assert_not_reached(); 3636 } 3637 process_pending_signals(env); 3638 } 3639 } 3640 3641 #endif 3642 3643 #ifdef TARGET_HPPA 3644 3645 static abi_ulong hppa_lws(CPUHPPAState *env) 3646 { 3647 uint32_t which = env->gr[20]; 3648 abi_ulong addr = env->gr[26]; 3649 abi_ulong old = env->gr[25]; 3650 abi_ulong new = env->gr[24]; 3651 abi_ulong size, ret; 3652 3653 switch (which) { 3654 default: 3655 return -TARGET_ENOSYS; 3656 3657 case 0: /* elf32 atomic 32bit cmpxchg */ 3658 if ((addr & 3) || !access_ok(VERIFY_WRITE, addr, 4)) { 3659 return -TARGET_EFAULT; 3660 } 3661 old = tswap32(old); 3662 new = tswap32(new); 3663 ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new); 3664 ret = tswap32(ret); 3665 break; 3666 3667 case 2: /* elf32 atomic "new" cmpxchg */ 3668 size = env->gr[23]; 3669 if (size >= 4) { 3670 return -TARGET_ENOSYS; 3671 } 3672 if (((addr | old | new) & ((1 << size) - 1)) 3673 || !access_ok(VERIFY_WRITE, addr, 1 << size) 3674 || !access_ok(VERIFY_READ, old, 1 << size) 3675 || !access_ok(VERIFY_READ, new, 1 << size)) { 3676 return -TARGET_EFAULT; 3677 } 3678 /* Note that below we use host-endian loads so that the cmpxchg 3679 can be host-endian as well. */ 3680 switch (size) { 3681 case 0: 3682 old = *(uint8_t *)g2h(old); 3683 new = *(uint8_t *)g2h(new); 3684 ret = atomic_cmpxchg((uint8_t *)g2h(addr), old, new); 3685 ret = ret != old; 3686 break; 3687 case 1: 3688 old = *(uint16_t *)g2h(old); 3689 new = *(uint16_t *)g2h(new); 3690 ret = atomic_cmpxchg((uint16_t *)g2h(addr), old, new); 3691 ret = ret != old; 3692 break; 3693 case 2: 3694 old = *(uint32_t *)g2h(old); 3695 new = *(uint32_t *)g2h(new); 3696 ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new); 3697 ret = ret != old; 3698 break; 3699 case 3: 3700 { 3701 uint64_t o64, n64, r64; 3702 o64 = *(uint64_t *)g2h(old); 3703 n64 = *(uint64_t *)g2h(new); 3704 #ifdef CONFIG_ATOMIC64 3705 r64 = atomic_cmpxchg__nocheck((uint64_t *)g2h(addr), o64, n64); 3706 ret = r64 != o64; 3707 #else 3708 start_exclusive(); 3709 r64 = *(uint64_t *)g2h(addr); 3710 ret = 1; 3711 if (r64 == o64) { 3712 *(uint64_t *)g2h(addr) = n64; 3713 ret = 0; 3714 } 3715 end_exclusive(); 3716 #endif 3717 } 3718 break; 3719 } 3720 break; 3721 } 3722 3723 env->gr[28] = ret; 3724 return 0; 3725 } 3726 3727 void cpu_loop(CPUHPPAState *env) 3728 { 3729 CPUState *cs = CPU(hppa_env_get_cpu(env)); 3730 target_siginfo_t info; 3731 abi_ulong ret; 3732 int trapnr; 3733 3734 while (1) { 3735 cpu_exec_start(cs); 3736 trapnr = cpu_exec(cs); 3737 cpu_exec_end(cs); 3738 process_queued_cpu_work(cs); 3739 3740 switch (trapnr) { 3741 case EXCP_SYSCALL: 3742 ret = do_syscall(env, env->gr[20], 3743 env->gr[26], env->gr[25], 3744 env->gr[24], env->gr[23], 3745 env->gr[22], env->gr[21], 0, 0); 3746 switch (ret) { 3747 default: 3748 env->gr[28] = ret; 3749 /* We arrived here by faking the gateway page. Return. */ 3750 env->iaoq_f = env->gr[31]; 3751 env->iaoq_b = env->gr[31] + 4; 3752 break; 3753 case -TARGET_ERESTARTSYS: 3754 case -TARGET_QEMU_ESIGRETURN: 3755 break; 3756 } 3757 break; 3758 case EXCP_SYSCALL_LWS: 3759 env->gr[21] = hppa_lws(env); 3760 /* We arrived here by faking the gateway page. Return. */ 3761 env->iaoq_f = env->gr[31]; 3762 env->iaoq_b = env->gr[31] + 4; 3763 break; 3764 case EXCP_SIGSEGV: 3765 info.si_signo = TARGET_SIGSEGV; 3766 info.si_errno = 0; 3767 info.si_code = TARGET_SEGV_ACCERR; 3768 info._sifields._sigfault._addr = env->ior; 3769 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3770 break; 3771 case EXCP_SIGILL: 3772 info.si_signo = TARGET_SIGILL; 3773 info.si_errno = 0; 3774 info.si_code = TARGET_ILL_ILLOPN; 3775 info._sifields._sigfault._addr = env->iaoq_f; 3776 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3777 break; 3778 case EXCP_SIGFPE: 3779 info.si_signo = TARGET_SIGFPE; 3780 info.si_errno = 0; 3781 info.si_code = 0; 3782 info._sifields._sigfault._addr = env->iaoq_f; 3783 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3784 break; 3785 case EXCP_DEBUG: 3786 trapnr = gdb_handlesig(cs, TARGET_SIGTRAP); 3787 if (trapnr) { 3788 info.si_signo = trapnr; 3789 info.si_errno = 0; 3790 info.si_code = TARGET_TRAP_BRKPT; 3791 queue_signal(env, trapnr, QEMU_SI_FAULT, &info); 3792 } 3793 break; 3794 case EXCP_INTERRUPT: 3795 /* just indicate that signals should be handled asap */ 3796 break; 3797 default: 3798 g_assert_not_reached(); 3799 } 3800 process_pending_signals(env); 3801 } 3802 } 3803 3804 #endif /* TARGET_HPPA */ 3805 3806 THREAD CPUState *thread_cpu; 3807 3808 bool qemu_cpu_is_self(CPUState *cpu) 3809 { 3810 return thread_cpu == cpu; 3811 } 3812 3813 void qemu_cpu_kick(CPUState *cpu) 3814 { 3815 cpu_exit(cpu); 3816 } 3817 3818 void task_settid(TaskState *ts) 3819 { 3820 if (ts->ts_tid == 0) { 3821 ts->ts_tid = (pid_t)syscall(SYS_gettid); 3822 } 3823 } 3824 3825 void stop_all_tasks(void) 3826 { 3827 /* 3828 * We trust that when using NPTL, start_exclusive() 3829 * handles thread stopping correctly. 3830 */ 3831 start_exclusive(); 3832 } 3833 3834 /* Assumes contents are already zeroed. */ 3835 void init_task_state(TaskState *ts) 3836 { 3837 ts->used = 1; 3838 } 3839 3840 CPUArchState *cpu_copy(CPUArchState *env) 3841 { 3842 CPUState *cpu = ENV_GET_CPU(env); 3843 CPUState *new_cpu = cpu_init(cpu_model); 3844 CPUArchState *new_env = new_cpu->env_ptr; 3845 CPUBreakpoint *bp; 3846 CPUWatchpoint *wp; 3847 3848 /* Reset non arch specific state */ 3849 cpu_reset(new_cpu); 3850 3851 memcpy(new_env, env, sizeof(CPUArchState)); 3852 3853 /* Clone all break/watchpoints. 3854 Note: Once we support ptrace with hw-debug register access, make sure 3855 BP_CPU break/watchpoints are handled correctly on clone. */ 3856 QTAILQ_INIT(&new_cpu->breakpoints); 3857 QTAILQ_INIT(&new_cpu->watchpoints); 3858 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 3859 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL); 3860 } 3861 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 3862 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL); 3863 } 3864 3865 return new_env; 3866 } 3867 3868 static void handle_arg_help(const char *arg) 3869 { 3870 usage(EXIT_SUCCESS); 3871 } 3872 3873 static void handle_arg_log(const char *arg) 3874 { 3875 int mask; 3876 3877 mask = qemu_str_to_log_mask(arg); 3878 if (!mask) { 3879 qemu_print_log_usage(stdout); 3880 exit(EXIT_FAILURE); 3881 } 3882 qemu_log_needs_buffers(); 3883 qemu_set_log(mask); 3884 } 3885 3886 static void handle_arg_dfilter(const char *arg) 3887 { 3888 qemu_set_dfilter_ranges(arg, NULL); 3889 } 3890 3891 static void handle_arg_log_filename(const char *arg) 3892 { 3893 qemu_set_log_filename(arg, &error_fatal); 3894 } 3895 3896 static void handle_arg_set_env(const char *arg) 3897 { 3898 char *r, *p, *token; 3899 r = p = strdup(arg); 3900 while ((token = strsep(&p, ",")) != NULL) { 3901 if (envlist_setenv(envlist, token) != 0) { 3902 usage(EXIT_FAILURE); 3903 } 3904 } 3905 free(r); 3906 } 3907 3908 static void handle_arg_unset_env(const char *arg) 3909 { 3910 char *r, *p, *token; 3911 r = p = strdup(arg); 3912 while ((token = strsep(&p, ",")) != NULL) { 3913 if (envlist_unsetenv(envlist, token) != 0) { 3914 usage(EXIT_FAILURE); 3915 } 3916 } 3917 free(r); 3918 } 3919 3920 static void handle_arg_argv0(const char *arg) 3921 { 3922 argv0 = strdup(arg); 3923 } 3924 3925 static void handle_arg_stack_size(const char *arg) 3926 { 3927 char *p; 3928 guest_stack_size = strtoul(arg, &p, 0); 3929 if (guest_stack_size == 0) { 3930 usage(EXIT_FAILURE); 3931 } 3932 3933 if (*p == 'M') { 3934 guest_stack_size *= 1024 * 1024; 3935 } else if (*p == 'k' || *p == 'K') { 3936 guest_stack_size *= 1024; 3937 } 3938 } 3939 3940 static void handle_arg_ld_prefix(const char *arg) 3941 { 3942 interp_prefix = strdup(arg); 3943 } 3944 3945 static void handle_arg_pagesize(const char *arg) 3946 { 3947 qemu_host_page_size = atoi(arg); 3948 if (qemu_host_page_size == 0 || 3949 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 3950 fprintf(stderr, "page size must be a power of two\n"); 3951 exit(EXIT_FAILURE); 3952 } 3953 } 3954 3955 static void handle_arg_randseed(const char *arg) 3956 { 3957 unsigned long long seed; 3958 3959 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) { 3960 fprintf(stderr, "Invalid seed number: %s\n", arg); 3961 exit(EXIT_FAILURE); 3962 } 3963 srand(seed); 3964 } 3965 3966 static void handle_arg_gdb(const char *arg) 3967 { 3968 gdbstub_port = atoi(arg); 3969 } 3970 3971 static void handle_arg_uname(const char *arg) 3972 { 3973 qemu_uname_release = strdup(arg); 3974 } 3975 3976 static void handle_arg_cpu(const char *arg) 3977 { 3978 cpu_model = strdup(arg); 3979 if (cpu_model == NULL || is_help_option(cpu_model)) { 3980 /* XXX: implement xxx_cpu_list for targets that still miss it */ 3981 #if defined(cpu_list) 3982 cpu_list(stdout, &fprintf); 3983 #endif 3984 exit(EXIT_FAILURE); 3985 } 3986 } 3987 3988 static void handle_arg_guest_base(const char *arg) 3989 { 3990 guest_base = strtol(arg, NULL, 0); 3991 have_guest_base = 1; 3992 } 3993 3994 static void handle_arg_reserved_va(const char *arg) 3995 { 3996 char *p; 3997 int shift = 0; 3998 reserved_va = strtoul(arg, &p, 0); 3999 switch (*p) { 4000 case 'k': 4001 case 'K': 4002 shift = 10; 4003 break; 4004 case 'M': 4005 shift = 20; 4006 break; 4007 case 'G': 4008 shift = 30; 4009 break; 4010 } 4011 if (shift) { 4012 unsigned long unshifted = reserved_va; 4013 p++; 4014 reserved_va <<= shift; 4015 if (reserved_va >> shift != unshifted 4016 || (MAX_RESERVED_VA && reserved_va > MAX_RESERVED_VA)) { 4017 fprintf(stderr, "Reserved virtual address too big\n"); 4018 exit(EXIT_FAILURE); 4019 } 4020 } 4021 if (*p) { 4022 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); 4023 exit(EXIT_FAILURE); 4024 } 4025 } 4026 4027 static void handle_arg_singlestep(const char *arg) 4028 { 4029 singlestep = 1; 4030 } 4031 4032 static void handle_arg_strace(const char *arg) 4033 { 4034 do_strace = 1; 4035 } 4036 4037 static void handle_arg_version(const char *arg) 4038 { 4039 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 4040 "\n" QEMU_COPYRIGHT "\n"); 4041 exit(EXIT_SUCCESS); 4042 } 4043 4044 static char *trace_file; 4045 static void handle_arg_trace(const char *arg) 4046 { 4047 g_free(trace_file); 4048 trace_file = trace_opt_parse(arg); 4049 } 4050 4051 struct qemu_argument { 4052 const char *argv; 4053 const char *env; 4054 bool has_arg; 4055 void (*handle_opt)(const char *arg); 4056 const char *example; 4057 const char *help; 4058 }; 4059 4060 static const struct qemu_argument arg_table[] = { 4061 {"h", "", false, handle_arg_help, 4062 "", "print this help"}, 4063 {"help", "", false, handle_arg_help, 4064 "", ""}, 4065 {"g", "QEMU_GDB", true, handle_arg_gdb, 4066 "port", "wait gdb connection to 'port'"}, 4067 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix, 4068 "path", "set the elf interpreter prefix to 'path'"}, 4069 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size, 4070 "size", "set the stack size to 'size' bytes"}, 4071 {"cpu", "QEMU_CPU", true, handle_arg_cpu, 4072 "model", "select CPU (-cpu help for list)"}, 4073 {"E", "QEMU_SET_ENV", true, handle_arg_set_env, 4074 "var=value", "sets targets environment variable (see below)"}, 4075 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env, 4076 "var", "unsets targets environment variable (see below)"}, 4077 {"0", "QEMU_ARGV0", true, handle_arg_argv0, 4078 "argv0", "forces target process argv[0] to be 'argv0'"}, 4079 {"r", "QEMU_UNAME", true, handle_arg_uname, 4080 "uname", "set qemu uname release string to 'uname'"}, 4081 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base, 4082 "address", "set guest_base address to 'address'"}, 4083 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va, 4084 "size", "reserve 'size' bytes for guest virtual address space"}, 4085 {"d", "QEMU_LOG", true, handle_arg_log, 4086 "item[,...]", "enable logging of specified items " 4087 "(use '-d help' for a list of items)"}, 4088 {"dfilter", "QEMU_DFILTER", true, handle_arg_dfilter, 4089 "range[,...]","filter logging based on address range"}, 4090 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename, 4091 "logfile", "write logs to 'logfile' (default stderr)"}, 4092 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize, 4093 "pagesize", "set the host page size to 'pagesize'"}, 4094 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep, 4095 "", "run in singlestep mode"}, 4096 {"strace", "QEMU_STRACE", false, handle_arg_strace, 4097 "", "log system calls"}, 4098 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed, 4099 "", "Seed for pseudo-random number generator"}, 4100 {"trace", "QEMU_TRACE", true, handle_arg_trace, 4101 "", "[[enable=]<pattern>][,events=<file>][,file=<file>]"}, 4102 {"version", "QEMU_VERSION", false, handle_arg_version, 4103 "", "display version information and exit"}, 4104 {NULL, NULL, false, NULL, NULL, NULL} 4105 }; 4106 4107 static void usage(int exitcode) 4108 { 4109 const struct qemu_argument *arginfo; 4110 int maxarglen; 4111 int maxenvlen; 4112 4113 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 4114 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n" 4115 "\n" 4116 "Options and associated environment variables:\n" 4117 "\n"); 4118 4119 /* Calculate column widths. We must always have at least enough space 4120 * for the column header. 4121 */ 4122 maxarglen = strlen("Argument"); 4123 maxenvlen = strlen("Env-variable"); 4124 4125 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4126 int arglen = strlen(arginfo->argv); 4127 if (arginfo->has_arg) { 4128 arglen += strlen(arginfo->example) + 1; 4129 } 4130 if (strlen(arginfo->env) > maxenvlen) { 4131 maxenvlen = strlen(arginfo->env); 4132 } 4133 if (arglen > maxarglen) { 4134 maxarglen = arglen; 4135 } 4136 } 4137 4138 printf("%-*s %-*s Description\n", maxarglen+1, "Argument", 4139 maxenvlen, "Env-variable"); 4140 4141 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4142 if (arginfo->has_arg) { 4143 printf("-%s %-*s %-*s %s\n", arginfo->argv, 4144 (int)(maxarglen - strlen(arginfo->argv) - 1), 4145 arginfo->example, maxenvlen, arginfo->env, arginfo->help); 4146 } else { 4147 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv, 4148 maxenvlen, arginfo->env, 4149 arginfo->help); 4150 } 4151 } 4152 4153 printf("\n" 4154 "Defaults:\n" 4155 "QEMU_LD_PREFIX = %s\n" 4156 "QEMU_STACK_SIZE = %ld byte\n", 4157 interp_prefix, 4158 guest_stack_size); 4159 4160 printf("\n" 4161 "You can use -E and -U options or the QEMU_SET_ENV and\n" 4162 "QEMU_UNSET_ENV environment variables to set and unset\n" 4163 "environment variables for the target process.\n" 4164 "It is possible to provide several variables by separating them\n" 4165 "by commas in getsubopt(3) style. Additionally it is possible to\n" 4166 "provide the -E and -U options multiple times.\n" 4167 "The following lines are equivalent:\n" 4168 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 4169 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n" 4170 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n" 4171 "Note that if you provide several changes to a single variable\n" 4172 "the last change will stay in effect.\n" 4173 "\n" 4174 QEMU_HELP_BOTTOM "\n"); 4175 4176 exit(exitcode); 4177 } 4178 4179 static int parse_args(int argc, char **argv) 4180 { 4181 const char *r; 4182 int optind; 4183 const struct qemu_argument *arginfo; 4184 4185 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4186 if (arginfo->env == NULL) { 4187 continue; 4188 } 4189 4190 r = getenv(arginfo->env); 4191 if (r != NULL) { 4192 arginfo->handle_opt(r); 4193 } 4194 } 4195 4196 optind = 1; 4197 for (;;) { 4198 if (optind >= argc) { 4199 break; 4200 } 4201 r = argv[optind]; 4202 if (r[0] != '-') { 4203 break; 4204 } 4205 optind++; 4206 r++; 4207 if (!strcmp(r, "-")) { 4208 break; 4209 } 4210 /* Treat --foo the same as -foo. */ 4211 if (r[0] == '-') { 4212 r++; 4213 } 4214 4215 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4216 if (!strcmp(r, arginfo->argv)) { 4217 if (arginfo->has_arg) { 4218 if (optind >= argc) { 4219 (void) fprintf(stderr, 4220 "qemu: missing argument for option '%s'\n", r); 4221 exit(EXIT_FAILURE); 4222 } 4223 arginfo->handle_opt(argv[optind]); 4224 optind++; 4225 } else { 4226 arginfo->handle_opt(NULL); 4227 } 4228 break; 4229 } 4230 } 4231 4232 /* no option matched the current argv */ 4233 if (arginfo->handle_opt == NULL) { 4234 (void) fprintf(stderr, "qemu: unknown option '%s'\n", r); 4235 exit(EXIT_FAILURE); 4236 } 4237 } 4238 4239 if (optind >= argc) { 4240 (void) fprintf(stderr, "qemu: no user program specified\n"); 4241 exit(EXIT_FAILURE); 4242 } 4243 4244 filename = argv[optind]; 4245 exec_path = argv[optind]; 4246 4247 return optind; 4248 } 4249 4250 int main(int argc, char **argv, char **envp) 4251 { 4252 struct target_pt_regs regs1, *regs = ®s1; 4253 struct image_info info1, *info = &info1; 4254 struct linux_binprm bprm; 4255 TaskState *ts; 4256 CPUArchState *env; 4257 CPUState *cpu; 4258 int optind; 4259 char **target_environ, **wrk; 4260 char **target_argv; 4261 int target_argc; 4262 int i; 4263 int ret; 4264 int execfd; 4265 4266 module_call_init(MODULE_INIT_TRACE); 4267 qemu_init_cpu_list(); 4268 module_call_init(MODULE_INIT_QOM); 4269 4270 envlist = envlist_create(); 4271 4272 /* add current environment into the list */ 4273 for (wrk = environ; *wrk != NULL; wrk++) { 4274 (void) envlist_setenv(envlist, *wrk); 4275 } 4276 4277 /* Read the stack limit from the kernel. If it's "unlimited", 4278 then we can do little else besides use the default. */ 4279 { 4280 struct rlimit lim; 4281 if (getrlimit(RLIMIT_STACK, &lim) == 0 4282 && lim.rlim_cur != RLIM_INFINITY 4283 && lim.rlim_cur == (target_long)lim.rlim_cur) { 4284 guest_stack_size = lim.rlim_cur; 4285 } 4286 } 4287 4288 cpu_model = NULL; 4289 4290 srand(time(NULL)); 4291 4292 qemu_add_opts(&qemu_trace_opts); 4293 4294 optind = parse_args(argc, argv); 4295 4296 if (!trace_init_backends()) { 4297 exit(1); 4298 } 4299 trace_init_file(trace_file); 4300 4301 /* Zero out regs */ 4302 memset(regs, 0, sizeof(struct target_pt_regs)); 4303 4304 /* Zero out image_info */ 4305 memset(info, 0, sizeof(struct image_info)); 4306 4307 memset(&bprm, 0, sizeof (bprm)); 4308 4309 /* Scan interp_prefix dir for replacement files. */ 4310 init_paths(interp_prefix); 4311 4312 init_qemu_uname_release(); 4313 4314 if (cpu_model == NULL) { 4315 #if defined(TARGET_I386) 4316 #ifdef TARGET_X86_64 4317 cpu_model = "qemu64"; 4318 #else 4319 cpu_model = "qemu32"; 4320 #endif 4321 #elif defined(TARGET_ARM) 4322 cpu_model = "any"; 4323 #elif defined(TARGET_UNICORE32) 4324 cpu_model = "any"; 4325 #elif defined(TARGET_M68K) 4326 cpu_model = "any"; 4327 #elif defined(TARGET_SPARC) 4328 #ifdef TARGET_SPARC64 4329 cpu_model = "TI UltraSparc II"; 4330 #else 4331 cpu_model = "Fujitsu MB86904"; 4332 #endif 4333 #elif defined(TARGET_MIPS) 4334 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) 4335 cpu_model = "5KEf"; 4336 #else 4337 cpu_model = "24Kf"; 4338 #endif 4339 #elif defined TARGET_OPENRISC 4340 cpu_model = "or1200"; 4341 #elif defined(TARGET_PPC) 4342 # ifdef TARGET_PPC64 4343 cpu_model = "POWER8"; 4344 # else 4345 cpu_model = "750"; 4346 # endif 4347 #elif defined TARGET_SH4 4348 cpu_model = "sh7785"; 4349 #elif defined TARGET_S390X 4350 cpu_model = "qemu"; 4351 #else 4352 cpu_model = "any"; 4353 #endif 4354 } 4355 tcg_exec_init(0); 4356 /* NOTE: we need to init the CPU at this stage to get 4357 qemu_host_page_size */ 4358 cpu = cpu_init(cpu_model); 4359 env = cpu->env_ptr; 4360 cpu_reset(cpu); 4361 4362 thread_cpu = cpu; 4363 4364 if (getenv("QEMU_STRACE")) { 4365 do_strace = 1; 4366 } 4367 4368 if (getenv("QEMU_RAND_SEED")) { 4369 handle_arg_randseed(getenv("QEMU_RAND_SEED")); 4370 } 4371 4372 target_environ = envlist_to_environ(envlist, NULL); 4373 envlist_free(envlist); 4374 4375 /* 4376 * Now that page sizes are configured in cpu_init() we can do 4377 * proper page alignment for guest_base. 4378 */ 4379 guest_base = HOST_PAGE_ALIGN(guest_base); 4380 4381 if (reserved_va || have_guest_base) { 4382 guest_base = init_guest_space(guest_base, reserved_va, 0, 4383 have_guest_base); 4384 if (guest_base == (unsigned long)-1) { 4385 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " 4386 "space for use as guest address space (check your virtual " 4387 "memory ulimit setting or reserve less using -R option)\n", 4388 reserved_va); 4389 exit(EXIT_FAILURE); 4390 } 4391 4392 if (reserved_va) { 4393 mmap_next_start = reserved_va; 4394 } 4395 } 4396 4397 /* 4398 * Read in mmap_min_addr kernel parameter. This value is used 4399 * When loading the ELF image to determine whether guest_base 4400 * is needed. It is also used in mmap_find_vma. 4401 */ 4402 { 4403 FILE *fp; 4404 4405 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 4406 unsigned long tmp; 4407 if (fscanf(fp, "%lu", &tmp) == 1) { 4408 mmap_min_addr = tmp; 4409 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr); 4410 } 4411 fclose(fp); 4412 } 4413 } 4414 4415 /* 4416 * Prepare copy of argv vector for target. 4417 */ 4418 target_argc = argc - optind; 4419 target_argv = calloc(target_argc + 1, sizeof (char *)); 4420 if (target_argv == NULL) { 4421 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); 4422 exit(EXIT_FAILURE); 4423 } 4424 4425 /* 4426 * If argv0 is specified (using '-0' switch) we replace 4427 * argv[0] pointer with the given one. 4428 */ 4429 i = 0; 4430 if (argv0 != NULL) { 4431 target_argv[i++] = strdup(argv0); 4432 } 4433 for (; i < target_argc; i++) { 4434 target_argv[i] = strdup(argv[optind + i]); 4435 } 4436 target_argv[target_argc] = NULL; 4437 4438 ts = g_new0(TaskState, 1); 4439 init_task_state(ts); 4440 /* build Task State */ 4441 ts->info = info; 4442 ts->bprm = &bprm; 4443 cpu->opaque = ts; 4444 task_settid(ts); 4445 4446 execfd = qemu_getauxval(AT_EXECFD); 4447 if (execfd == 0) { 4448 execfd = open(filename, O_RDONLY); 4449 if (execfd < 0) { 4450 printf("Error while loading %s: %s\n", filename, strerror(errno)); 4451 _exit(EXIT_FAILURE); 4452 } 4453 } 4454 4455 ret = loader_exec(execfd, filename, target_argv, target_environ, regs, 4456 info, &bprm); 4457 if (ret != 0) { 4458 printf("Error while loading %s: %s\n", filename, strerror(-ret)); 4459 _exit(EXIT_FAILURE); 4460 } 4461 4462 for (wrk = target_environ; *wrk; wrk++) { 4463 g_free(*wrk); 4464 } 4465 4466 g_free(target_environ); 4467 4468 if (qemu_loglevel_mask(CPU_LOG_PAGE)) { 4469 qemu_log("guest_base 0x%lx\n", guest_base); 4470 log_page_dump(); 4471 4472 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 4473 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 4474 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", info->start_code); 4475 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", info->start_data); 4476 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 4477 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", info->start_stack); 4478 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 4479 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 4480 qemu_log("argv_start 0x" TARGET_ABI_FMT_lx "\n", info->arg_start); 4481 qemu_log("env_start 0x" TARGET_ABI_FMT_lx "\n", 4482 info->arg_end + (abi_ulong)sizeof(abi_ulong)); 4483 qemu_log("auxv_start 0x" TARGET_ABI_FMT_lx "\n", info->saved_auxv); 4484 } 4485 4486 target_set_brk(info->brk); 4487 syscall_init(); 4488 signal_init(); 4489 4490 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 4491 generating the prologue until now so that the prologue can take 4492 the real value of GUEST_BASE into account. */ 4493 tcg_prologue_init(tcg_ctx); 4494 tcg_region_init(); 4495 4496 #if defined(TARGET_I386) 4497 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 4498 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 4499 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 4500 env->cr[4] |= CR4_OSFXSR_MASK; 4501 env->hflags |= HF_OSFXSR_MASK; 4502 } 4503 #ifndef TARGET_ABI32 4504 /* enable 64 bit mode if possible */ 4505 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 4506 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 4507 exit(EXIT_FAILURE); 4508 } 4509 env->cr[4] |= CR4_PAE_MASK; 4510 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 4511 env->hflags |= HF_LMA_MASK; 4512 #endif 4513 4514 /* flags setup : we activate the IRQs by default as in user mode */ 4515 env->eflags |= IF_MASK; 4516 4517 /* linux register setup */ 4518 #ifndef TARGET_ABI32 4519 env->regs[R_EAX] = regs->rax; 4520 env->regs[R_EBX] = regs->rbx; 4521 env->regs[R_ECX] = regs->rcx; 4522 env->regs[R_EDX] = regs->rdx; 4523 env->regs[R_ESI] = regs->rsi; 4524 env->regs[R_EDI] = regs->rdi; 4525 env->regs[R_EBP] = regs->rbp; 4526 env->regs[R_ESP] = regs->rsp; 4527 env->eip = regs->rip; 4528 #else 4529 env->regs[R_EAX] = regs->eax; 4530 env->regs[R_EBX] = regs->ebx; 4531 env->regs[R_ECX] = regs->ecx; 4532 env->regs[R_EDX] = regs->edx; 4533 env->regs[R_ESI] = regs->esi; 4534 env->regs[R_EDI] = regs->edi; 4535 env->regs[R_EBP] = regs->ebp; 4536 env->regs[R_ESP] = regs->esp; 4537 env->eip = regs->eip; 4538 #endif 4539 4540 /* linux interrupt setup */ 4541 #ifndef TARGET_ABI32 4542 env->idt.limit = 511; 4543 #else 4544 env->idt.limit = 255; 4545 #endif 4546 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 4547 PROT_READ|PROT_WRITE, 4548 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4549 idt_table = g2h(env->idt.base); 4550 set_idt(0, 0); 4551 set_idt(1, 0); 4552 set_idt(2, 0); 4553 set_idt(3, 3); 4554 set_idt(4, 3); 4555 set_idt(5, 0); 4556 set_idt(6, 0); 4557 set_idt(7, 0); 4558 set_idt(8, 0); 4559 set_idt(9, 0); 4560 set_idt(10, 0); 4561 set_idt(11, 0); 4562 set_idt(12, 0); 4563 set_idt(13, 0); 4564 set_idt(14, 0); 4565 set_idt(15, 0); 4566 set_idt(16, 0); 4567 set_idt(17, 0); 4568 set_idt(18, 0); 4569 set_idt(19, 0); 4570 set_idt(0x80, 3); 4571 4572 /* linux segment setup */ 4573 { 4574 uint64_t *gdt_table; 4575 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 4576 PROT_READ|PROT_WRITE, 4577 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4578 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 4579 gdt_table = g2h(env->gdt.base); 4580 #ifdef TARGET_ABI32 4581 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4582 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4583 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4584 #else 4585 /* 64 bit code segment */ 4586 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4587 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4588 DESC_L_MASK | 4589 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4590 #endif 4591 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 4592 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4593 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 4594 } 4595 cpu_x86_load_seg(env, R_CS, __USER_CS); 4596 cpu_x86_load_seg(env, R_SS, __USER_DS); 4597 #ifdef TARGET_ABI32 4598 cpu_x86_load_seg(env, R_DS, __USER_DS); 4599 cpu_x86_load_seg(env, R_ES, __USER_DS); 4600 cpu_x86_load_seg(env, R_FS, __USER_DS); 4601 cpu_x86_load_seg(env, R_GS, __USER_DS); 4602 /* This hack makes Wine work... */ 4603 env->segs[R_FS].selector = 0; 4604 #else 4605 cpu_x86_load_seg(env, R_DS, 0); 4606 cpu_x86_load_seg(env, R_ES, 0); 4607 cpu_x86_load_seg(env, R_FS, 0); 4608 cpu_x86_load_seg(env, R_GS, 0); 4609 #endif 4610 #elif defined(TARGET_AARCH64) 4611 { 4612 int i; 4613 4614 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { 4615 fprintf(stderr, 4616 "The selected ARM CPU does not support 64 bit mode\n"); 4617 exit(EXIT_FAILURE); 4618 } 4619 4620 for (i = 0; i < 31; i++) { 4621 env->xregs[i] = regs->regs[i]; 4622 } 4623 env->pc = regs->pc; 4624 env->xregs[31] = regs->sp; 4625 } 4626 #elif defined(TARGET_ARM) 4627 { 4628 int i; 4629 cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC, 4630 CPSRWriteByInstr); 4631 for(i = 0; i < 16; i++) { 4632 env->regs[i] = regs->uregs[i]; 4633 } 4634 #ifdef TARGET_WORDS_BIGENDIAN 4635 /* Enable BE8. */ 4636 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 4637 && (info->elf_flags & EF_ARM_BE8)) { 4638 env->uncached_cpsr |= CPSR_E; 4639 env->cp15.sctlr_el[1] |= SCTLR_E0E; 4640 } else { 4641 env->cp15.sctlr_el[1] |= SCTLR_B; 4642 } 4643 #endif 4644 } 4645 #elif defined(TARGET_UNICORE32) 4646 { 4647 int i; 4648 cpu_asr_write(env, regs->uregs[32], 0xffffffff); 4649 for (i = 0; i < 32; i++) { 4650 env->regs[i] = regs->uregs[i]; 4651 } 4652 } 4653 #elif defined(TARGET_SPARC) 4654 { 4655 int i; 4656 env->pc = regs->pc; 4657 env->npc = regs->npc; 4658 env->y = regs->y; 4659 for(i = 0; i < 8; i++) 4660 env->gregs[i] = regs->u_regs[i]; 4661 for(i = 0; i < 8; i++) 4662 env->regwptr[i] = regs->u_regs[i + 8]; 4663 } 4664 #elif defined(TARGET_PPC) 4665 { 4666 int i; 4667 4668 #if defined(TARGET_PPC64) 4669 int flag = (env->insns_flags2 & PPC2_BOOKE206) ? MSR_CM : MSR_SF; 4670 #if defined(TARGET_ABI32) 4671 env->msr &= ~((target_ulong)1 << flag); 4672 #else 4673 env->msr |= (target_ulong)1 << flag; 4674 #endif 4675 #endif 4676 env->nip = regs->nip; 4677 for(i = 0; i < 32; i++) { 4678 env->gpr[i] = regs->gpr[i]; 4679 } 4680 } 4681 #elif defined(TARGET_M68K) 4682 { 4683 env->pc = regs->pc; 4684 env->dregs[0] = regs->d0; 4685 env->dregs[1] = regs->d1; 4686 env->dregs[2] = regs->d2; 4687 env->dregs[3] = regs->d3; 4688 env->dregs[4] = regs->d4; 4689 env->dregs[5] = regs->d5; 4690 env->dregs[6] = regs->d6; 4691 env->dregs[7] = regs->d7; 4692 env->aregs[0] = regs->a0; 4693 env->aregs[1] = regs->a1; 4694 env->aregs[2] = regs->a2; 4695 env->aregs[3] = regs->a3; 4696 env->aregs[4] = regs->a4; 4697 env->aregs[5] = regs->a5; 4698 env->aregs[6] = regs->a6; 4699 env->aregs[7] = regs->usp; 4700 env->sr = regs->sr; 4701 ts->sim_syscalls = 1; 4702 } 4703 #elif defined(TARGET_MICROBLAZE) 4704 { 4705 env->regs[0] = regs->r0; 4706 env->regs[1] = regs->r1; 4707 env->regs[2] = regs->r2; 4708 env->regs[3] = regs->r3; 4709 env->regs[4] = regs->r4; 4710 env->regs[5] = regs->r5; 4711 env->regs[6] = regs->r6; 4712 env->regs[7] = regs->r7; 4713 env->regs[8] = regs->r8; 4714 env->regs[9] = regs->r9; 4715 env->regs[10] = regs->r10; 4716 env->regs[11] = regs->r11; 4717 env->regs[12] = regs->r12; 4718 env->regs[13] = regs->r13; 4719 env->regs[14] = regs->r14; 4720 env->regs[15] = regs->r15; 4721 env->regs[16] = regs->r16; 4722 env->regs[17] = regs->r17; 4723 env->regs[18] = regs->r18; 4724 env->regs[19] = regs->r19; 4725 env->regs[20] = regs->r20; 4726 env->regs[21] = regs->r21; 4727 env->regs[22] = regs->r22; 4728 env->regs[23] = regs->r23; 4729 env->regs[24] = regs->r24; 4730 env->regs[25] = regs->r25; 4731 env->regs[26] = regs->r26; 4732 env->regs[27] = regs->r27; 4733 env->regs[28] = regs->r28; 4734 env->regs[29] = regs->r29; 4735 env->regs[30] = regs->r30; 4736 env->regs[31] = regs->r31; 4737 env->sregs[SR_PC] = regs->pc; 4738 } 4739 #elif defined(TARGET_MIPS) 4740 { 4741 int i; 4742 4743 for(i = 0; i < 32; i++) { 4744 env->active_tc.gpr[i] = regs->regs[i]; 4745 } 4746 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; 4747 if (regs->cp0_epc & 1) { 4748 env->hflags |= MIPS_HFLAG_M16; 4749 } 4750 if (((info->elf_flags & EF_MIPS_NAN2008) != 0) != 4751 ((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) != 0)) { 4752 if ((env->active_fpu.fcr31_rw_bitmask & 4753 (1 << FCR31_NAN2008)) == 0) { 4754 fprintf(stderr, "ELF binary's NaN mode not supported by CPU\n"); 4755 exit(1); 4756 } 4757 if ((info->elf_flags & EF_MIPS_NAN2008) != 0) { 4758 env->active_fpu.fcr31 |= (1 << FCR31_NAN2008); 4759 } else { 4760 env->active_fpu.fcr31 &= ~(1 << FCR31_NAN2008); 4761 } 4762 restore_snan_bit_mode(env); 4763 } 4764 } 4765 #elif defined(TARGET_NIOS2) 4766 { 4767 env->regs[0] = 0; 4768 env->regs[1] = regs->r1; 4769 env->regs[2] = regs->r2; 4770 env->regs[3] = regs->r3; 4771 env->regs[4] = regs->r4; 4772 env->regs[5] = regs->r5; 4773 env->regs[6] = regs->r6; 4774 env->regs[7] = regs->r7; 4775 env->regs[8] = regs->r8; 4776 env->regs[9] = regs->r9; 4777 env->regs[10] = regs->r10; 4778 env->regs[11] = regs->r11; 4779 env->regs[12] = regs->r12; 4780 env->regs[13] = regs->r13; 4781 env->regs[14] = regs->r14; 4782 env->regs[15] = regs->r15; 4783 /* TODO: unsigned long orig_r2; */ 4784 env->regs[R_RA] = regs->ra; 4785 env->regs[R_FP] = regs->fp; 4786 env->regs[R_SP] = regs->sp; 4787 env->regs[R_GP] = regs->gp; 4788 env->regs[CR_ESTATUS] = regs->estatus; 4789 env->regs[R_EA] = regs->ea; 4790 /* TODO: unsigned long orig_r7; */ 4791 4792 /* Emulate eret when starting thread. */ 4793 env->regs[R_PC] = regs->ea; 4794 } 4795 #elif defined(TARGET_OPENRISC) 4796 { 4797 int i; 4798 4799 for (i = 0; i < 32; i++) { 4800 cpu_set_gpr(env, i, regs->gpr[i]); 4801 } 4802 env->pc = regs->pc; 4803 cpu_set_sr(env, regs->sr); 4804 } 4805 #elif defined(TARGET_SH4) 4806 { 4807 int i; 4808 4809 for(i = 0; i < 16; i++) { 4810 env->gregs[i] = regs->regs[i]; 4811 } 4812 env->pc = regs->pc; 4813 } 4814 #elif defined(TARGET_ALPHA) 4815 { 4816 int i; 4817 4818 for(i = 0; i < 28; i++) { 4819 env->ir[i] = ((abi_ulong *)regs)[i]; 4820 } 4821 env->ir[IR_SP] = regs->usp; 4822 env->pc = regs->pc; 4823 } 4824 #elif defined(TARGET_CRIS) 4825 { 4826 env->regs[0] = regs->r0; 4827 env->regs[1] = regs->r1; 4828 env->regs[2] = regs->r2; 4829 env->regs[3] = regs->r3; 4830 env->regs[4] = regs->r4; 4831 env->regs[5] = regs->r5; 4832 env->regs[6] = regs->r6; 4833 env->regs[7] = regs->r7; 4834 env->regs[8] = regs->r8; 4835 env->regs[9] = regs->r9; 4836 env->regs[10] = regs->r10; 4837 env->regs[11] = regs->r11; 4838 env->regs[12] = regs->r12; 4839 env->regs[13] = regs->r13; 4840 env->regs[14] = info->start_stack; 4841 env->regs[15] = regs->acr; 4842 env->pc = regs->erp; 4843 } 4844 #elif defined(TARGET_S390X) 4845 { 4846 int i; 4847 for (i = 0; i < 16; i++) { 4848 env->regs[i] = regs->gprs[i]; 4849 } 4850 env->psw.mask = regs->psw.mask; 4851 env->psw.addr = regs->psw.addr; 4852 } 4853 #elif defined(TARGET_TILEGX) 4854 { 4855 int i; 4856 for (i = 0; i < TILEGX_R_COUNT; i++) { 4857 env->regs[i] = regs->regs[i]; 4858 } 4859 for (i = 0; i < TILEGX_SPR_COUNT; i++) { 4860 env->spregs[i] = 0; 4861 } 4862 env->pc = regs->pc; 4863 } 4864 #elif defined(TARGET_HPPA) 4865 { 4866 int i; 4867 for (i = 1; i < 32; i++) { 4868 env->gr[i] = regs->gr[i]; 4869 } 4870 env->iaoq_f = regs->iaoq[0]; 4871 env->iaoq_b = regs->iaoq[1]; 4872 } 4873 #else 4874 #error unsupported target CPU 4875 #endif 4876 4877 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 4878 ts->stack_base = info->start_stack; 4879 ts->heap_base = info->brk; 4880 /* This will be filled in on the first SYS_HEAPINFO call. */ 4881 ts->heap_limit = 0; 4882 #endif 4883 4884 if (gdbstub_port) { 4885 if (gdbserver_start(gdbstub_port) < 0) { 4886 fprintf(stderr, "qemu: could not open gdbserver on port %d\n", 4887 gdbstub_port); 4888 exit(EXIT_FAILURE); 4889 } 4890 gdb_handlesig(cpu, 0); 4891 } 4892 cpu_loop(env); 4893 /* never exits */ 4894 return 0; 4895 } 4896